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Abstract: This paper presents the design and implementation of a digital control strategy for a
Buck converter, used as a solar charger of valve-regulated lead acid (VRLA) batteries. The control
system consists of two fuzzy logic controllers (FLCs), which adjust the appropriate increment of the
converter duty cycle based on battery state of charge according to a three-stage charging scheme. One
FLC works as a maximum power point tracker (FLC-MPPT), while the other regulates the battery
voltage (FLC-VR). This approach of using two different set of membership functions overcomes the
limitations of the battery chargers with a single control function, where the voltage supplied to the
battery is either not constant due to the operation of the MPPT algorithm (possibly damaging the
battery) or is constant due to the operation of the voltage control (hence, MPP cannot be achieved).
In this way, the proposed control approach has the advantage of extracting the maximum energy
of the PV panel, preventing battery damage caused by variable MPPT voltage, thereby extending
the battery’s lifetime. Moreover, it allows overcoming of the drawbacks of the conventional solar
chargers, which become slow or inaccurate during abrupt changes in weather conditions. The
strategy is developed to be implemented in a low-cost AT91SAM3X8E Arduino Due microcontroller.
Simulations by MATLAB/Simulink and experimental results from hardware implementation are
provided and discussed, which validate the reliability and robustness of the control strategy.

Keywords: buck converter; solar battery charger; fuzzy logic controller; PV standalone system;
digital MPPT

1. Introduction

In photovoltaic (PV) generation systems, the energy produced is limited by the effi-
ciency of solar panels, which is generally between 18 and 23% [1]. The low conversion
efficiency of a PV panel is due to the physical characteristic of PV conversion, and the
dependence of its maximum power point (MPP) with atmospheric conditions [2]. Thus,
the use of a maximum power point tracking (MPPT) technique to optimize the energy pro-
duced becomes essential [3,4]. The implementation of an MPPT algorithm needs a DC–DC
power converter, which acts as an impedance adapter between the PV panel and the load,
adapting the apparent impedance of the PV module to make it match the impedance in the
MPP [5].

Over the years, many MPPT techniques have been developed [6–10]. Among the
most popular conventional MPPT methods are: Fractional open circuit voltage (FOCV),
Fractional short circuit current (FSCC), Hill Climbing (HC), Perturb and observe (P&O),
and Incremental conductance (IncCond). FOCV and FSCC are the simplest and cheapest
ones to implement, although they achieve less accurate results [11,12]. HC and P&O
are widely used techniques due to their simplicity and ease of implementation [13–15].
Both algorithms present the problem of oscillations around the MPP, and fail under rapid
atmospheric changes [16,17]. IncCond theoretically overcomes the problem of oscillations;
however, in practice, this rarely happens due to the resolution of the digital implementation
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and noise in the measurements [18,19]. IncCond is more complex to implement than P&O
and HC, due to the need to perform divisions in its algorithm.

Due to the non-linear features of PV systems, non-linear MPPT controllers have at-
tracted considerable attention [3]. Among non-linear MPPT techniques, sliding mode
control (SMC) has received much attention because of its benefits of a quick response,
robustness to operate under uncertainty conditions [20], and in many cases, easy imple-
mentation (depending on the sliding surface) [21]. This technique is attractive since it
simplifies the design task and endows the controller with robustness properties. [22] A
typical SMC has two modes of operation. One is called the approaching mode, where the
system state converges to a predefined manifold named sliding function in finite time. The
other mode is called the sliding mode, where the system state is confined on the sliding
surface and is driven to the origin [23]. Although the convergence rate of a standard
SMC may be arbitrarily fast, it only provides an asymptotic stability and infinite time
convergence [14].

In the last few decades, artificial intelligence (AI) techniques have been introduced,
proving to be more efficient and with better dynamic response [24]. They have the charac-
teristic of not needing an exact mathematical model of the system [25–27], and handle the
typical non-linearities of PV systems very well; although, they are more complex methods
to implement, needing higher performance controllers [28,29]. Artificial neural networks
(ANN) and Fuzzy logic controller (FLC) are the most common AI techniques. The main dis-
advantage of an ANN controller is the need for rigorous and periodic training to achieve an
optimal relationship between input and output variables [30,31]. The main drawback of an
FLC is the absence of a systematic method for formulating the membership functions. They
are usually based on the designers’ experience and knowledge about the system [32–34].
FLC and ANN have similar performances; however, the computational calculation time,
hardware memory requirement, development time, and implementation complexity of an
FLC controller in general can be reduced, when compared to an ANN [26,35,36].

In autonomous PV systems, batteries represent the main weakness, considering that
their lifetime depends on an efficient management of their charging and discharging
processes [37]. Valve-regulated lead acid (VRLA) batteries are the most used in off-grid
PV systems due to their availability in the market, low cost, and being maintenance-
free [38–41]. Over the years, various control strategies for solar battery chargers have been
proposed, most of them being based on conventional techniques. They generally use a
classical MPPT algorithm, a linear closed-loop control, or a combination of both, as shown
in [40,42–50]. Conventional MPPT techniques fail under rapid atmospheric changes, which
affect its performance. Moreover, linear control techniques suffer from the non-linearity
of the components of a standalone PV system, and therefore, they may not provide a
desired response for all weather and load conditions. To overcome these disadvantages,
recent works propose to incorporate algorithms based on soft computing; nevertheless,
most research focused on improving the performance of the MPPT technique, as presented
in [51–54].

Taking into account the above, this paper presents a new control strategy for a Buck
converter used as a PV charger of VRLA batteries. The control system proposed here
consists of two FLC. One FLC works as an MPP tracker (FLC-MPPT), while the other
regulates the battery voltage (FLC-VR). A smart algorithm based on battery state of charge
(SoC), according to a three-phase charging scheme, manages the operation of the FLCs.
This control approach allows maximizing of the power supplied by the PV panel, avoiding
overcharging caused by the operation of the MPPT algorithm, thus increasing the life cycle
of the battery. Furthermore, it reduces the drawbacks and limitations of the conventional
solar chargers.

Fuzzy logic is a robust AI method, which can handle the high non-linearities of the
PV standalone systems very well, where accurate mathematical models and parameters of
the system are not required for design. Moreover, it is simpler to implement compared to
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other AI controllers. All these attributes have motivated its choice for the development of
the proposed control strategy.

The FLCs are developed to be programmed in an Arduino Due board. To evaluate
the control system under different weather and load conditions, simulations via MAT-
LAB/Simulink are performed. The performance of the designed FLCs is compared with
conventional methods commonly used and reported in the literature: P&O, IncCond, and
the Proportional-Integral-Derivative (PID) controller. In addition, a prototype hardware
setup is implemented. Experimental and simulated results are discussed to prove the
reliability and validity of the proposed control strategy.

The paper is organized as follows: Section 2 presents the description of the battery
charger system, including the modeling of the PV module, the dc–dc power converter, and
the charging strategy. Section 3 provides a detailed explanation of the design methodology
used for each FLC. Section 4 discusses the simulated results. Section 5 provides the
experimental results and verifies the effectiveness of the proposed control strategy, while
Section 6 summarizes the conclusions of the paper.

2. Description of the Battery Charger System

A schematic diagram of the solar battery charger is shown in Figure 1. A PV panel is
used as a power source, which feeds a VRLA battery. To determine the power of the PV
panel and the SoC of the battery, the current (IPV) and the voltage (VPV) of the panel and the
current (IBAT) and the voltage (VBAT) of the battery are measured. With this information,
the control algorithm determines the appropriate charging mode.
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2.1. Modeling of PV Module

A PV cell can be modeled by an equivalent electrical circuit composed of a current
source in parallel with a diode and a resistor network, as shown in Figure 2 [55], where
Iph represents the current generated by the incident radiation and Id the current at the PN
junction according to the Shockley equation. The parallel RP resistance represents the loss
where a small leakage current flows through the parallel path and RS represents the losses,
which are loss of metal grid, contacts, and current collecting bus.
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Equations (1)–(3) [56] describe the PV cell model, where: Ir is the reverse saturation
current, T is the reference cell operating temperature, β the ideality factor at the junction,
q is the charge of the electron (1.602176 × 10−21 C), ISC is the short circuit current of the
cell, K is the Boltzmann constant (1.38065 × 10−3 J/◦K), α is the temperature coefficient of
the short circuit current of the cell, Tr is the temperature in standard test conditions, Irr is
the reverse saturation current at Tr temperature, EG is the energy of the Silicon band-gap
(1.1 eV), and Psun is the incident radiation. Parameters α and ISC are usually given by the
manufacturer of the solar cell. Parameters β, Irr, RS, and RP can be estimated.

In order to obtain more realistic conditions for the simulations to be made in Section 4,
a model for the commercial module used has been developed. The parameters which are
not provided by the manufacturer have been estimated using the procedure described
in [56]. Table 1 presents a summary of the parameters adjusted for the commercial module.
Figure 3 shows the curves obtained for the PV panel at different levels of radiation and
temperature.

Table 1. Electrical characteristics of the commercial PV panel [57].

Parameters Values

Nominal voltage (Vn) 12 V
Maximum power current (IMPP) 3.02 A
Maximum power voltage (VMPP) 18.21 V

Maximum power (PMPP) 55 W
Short circuit current (Isc) 3.28 A

Open circuit voltage (Voc) 22.34 V
Short circuit temperature coefficient (α) +0.04/%/◦C

Diode ideality factor (β) 1.2
Serie resistance (RS) 11.6 mΩ

Parallel resistance (RP) 30 Ω
Reverse saturation current (Irr) 5.9594 × 10−9 (A)
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2.2. Power Converter

A Buck power converter has been chosen as the interface between the PV generator
and the battery. In a Buck converter, the input voltage is greater than the output voltage.
The topology of a Buck converter is shown in Figure 4. The control of the power flow from
the PV module to the battery is performed by adjusting the duty cycle of the electronic
switch of the converter, using a PWM (Pulse Width Modulation) technique. The Buck
converter was chosen in this work for its low cost, simplicity, and high efficiency in PV
applications [58]. In addition, the load control operation remains uninterrupted even when
the PV panel provides a low output current in low radiation conditions. In this case, the
Buck converter is able to increase the required charging current level [59]. As the Buck
converter can provide a low voltage level from a higher voltage PV array and can operate
efficiently at any radiation level, the use of this type of converter in PV applications that
contain low voltage batteries is highly recommended [60]. The average output voltage is
given by Equation (4) [61].

Vo =
ton

Ts
·Vi = D·Vi (4)

where TS is the switching period, ton is the conduction time of the switch, and D is the
duty cycle.
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2.3. Battery Charging Strategy

Most VRLA battery manufacturers recommend dividing the charging process into
three phases, namely: bulk, absorption, and float [62], as shown in Figure 5. When the
battery is used in photovoltaic systems, its charging system requires an elaborate control
strategy, in which the battery should be charged within its allowed current and voltage
limits, as quickly as possible, given that the daily energy generation period is limited and
dependent on weather conditions. In order to reach these goals, a control strategy has
been designed. The flowchart of the proposed control strategy is shown in Figure 6. In the
condition of a discharged battery, an efficient FLC-MPPT must act to extract the highest
power from the panels in order to speed up the charging process. In this bulk phase, IBAT is
limited to the maximum allowed charging current (ICH(max)) to avoid excessive heating and
premature battery wear. At this phase, the battery capacity is usually recovered between
80 and 90% [49]. When VBAT reaches the absorption voltage (VABS), an accurate voltage
controller FLC-VR must act in order to continue the charging process at constant voltage,
thus avoiding overvoltage. In this absorption phase, the charging voltage is fixed in VABS.
This set point is maintained until IBAT drops to the full charge value (IOCT). At this point,
the voltage regulator updates the set point to the float voltage (VFLT). In this float phase, a
very small charging current is generated, responsible for compensating for self-discharge
and ensuring full charge.
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3. Design of the Fuzzy Logic Controllers

FLC is one of the AI techniques that provides a convenient method for the design of
non-linear controllers based on heuristic information [63]. This method does not require an
accurate mathematical model of the system to determine the parameters of the controller.
The information needed is obtained by the knowledge of an expert on the system. FLC pro-
vides a simple methodology to represent and implement the human experience, allowing
reasoning, not in numerical variables, but in linguistic variables, which are qualitative [64].
As shown in Figure 7, an FLC includes three steps: fuzzification, the fuzzy inference en-
gine, and defuzzification. In the fuzzification, the numerical input variables are converted
into linguistic variables, based on input membership functions. The inference engine is
responsible for making control decisions considering the knowledge base (rule base) using
a linguistic description in terms of If–Then rules. The most commonly used inference
methods are Mandami and Takagi–Sugeno. In the defuzzification, the linguistic based data
are converted back to numeric data. Center of gravity (CoG) and Mean of Maxima (MoM)
are two methods normally used for defuzzification.
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For the design of the FLCs, the following definitions have been adopted. The control
of the power converter is carried out by adjusting the duty cycle value of the electronic
switch in each switching period. For any pair of discrete input data [x1(n), x2(n)], a set
of triangular membership functions, defined specifically for each FLC, transforms the
numeric data into a fuzzy dataset for each input µ1[x1(n)] and µ2[x2(n)], assigning a certain
degree of belonging to each linguistic variable. Triangular membership functions have
been chosen because they are simple to implement and can reduce the computational cost,
being more suitable for low-cost microcontrollers. Using the Mandami method of fuzzy
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minima implication, the inference engine applies the control rules to the fuzzified inputs,
generating a single set of fuzzy outputs (µ∆D) for each rule. Finally, the numerical value
of the output variable, which corresponds to the size of the duty cycle variations (∆D), is
obtained using the CoG defuzzification method, shown in Equation (5).

∆D(n) =
∑k

i=1 ∆Di·wi

∑k
i=1 wi

(5)

where n is the time at which values are sampled, wi = min {µ1[x1(n)],u2[x2(n)]} is the weight
factor, and ∆Di is the value which corresponds to the membership function of ∆D(n). The
output of the FLC is converted to the duty cycle according to Equation (6).

D(n) = D(n − 1) + ∆D(n) (6)

3.1. Design of FLC-MPPT
3.1.1. Fuzzy Inputs

Design considerations and the effectiveness of a fuzzy MPPT algorithm depends on
the proper selection of the system’s input variables. According to the characteristics of a
PV cell, several types of input variables could be used. In this work, the slope (S) of the
P–V curve and the power variation (∆PPV) have been chosen, as shown in Figure 8. This
approach has the advantage of easily determining whether the operating point (OP) is on
the right or left of the MPP, facilitating the increase or decrease in the converter’s duty cycle.
In addition, for low radiation levels, ∆PPV can be used to detect changes in radiation and
facilitate the tracking speed [65]. ∆PPV and S can be described by Equations (7) and (8),
respectively.

S(n) =
∆PPV(n)
∆VPV(n)

=
IPV(n)·VPV(n)− IPV(n − 1)·VPV(n − 1)

VPV(n)− VPV(n − 1)
(7)

∆PPV(n) = PPV(n)− PPV(n − 1) (8)
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3.1.2. Asymmetrical Membership Functions

In order to optimize the efficiency of the MPPT, asymmetrical triangular membership
functions were used. FLC-MPPT algorithms based on asymmetrical functions have shown
to have better behavior to extract maximum power than those based on conventional
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symmetric functions [25,30]. For both inputs and outputs, the membership functions were
defined in terms of the following linguistic variables: negative big (NB), negative small
(NS), zero (ZO), positive big (PB), and positive small (PS). The ranges for S, ∆PPV, and ∆D
were adjusted to (−55 to 10), (−1 to 1), and (−0.02 to 0.02), respectively. Since there is no
definite systematic method to select gains for an FLC, the membership values have been
determined by trial and error by using the MATLAB Fuzzy Inference System. Figure 9
shows the membership functions for the inputs and output of the controller.

Energies 2021, 14, x  9 of 26 
 

 

 
Figure 9. Membership functions of FLC-MPPT. (a) Input S; (b) Input ΔPPV; (c) Output ΔD. 

3.1.3. Fuzzy Rules 
A DC–DC converter has the characteristic of reflecting in its input the impedance of the 

connected load (ZL). This impedance is reflected as a function of the duty cycle of the con-
verter. Thus, by varying the duty cycle, it is possible to adjust the current and voltage in the 
PV panel, i.e., its OP. In the case of the Buck converter, the reflected input impedance (Zi) is 
given by Equation (9) [66]. If the duty cycle of the Buck converter increases, the input im-
pedance decreases, producing an increase in the current in the PV panel and displacing the 
OP of the panel to the left. In the case where the duty cycle decreases, the opposite effect is 
produced and the OP of the panel is moved to the right, as shown in Figure 10. Z୧ = ZDଶ (9)

Figure 9. Membership functions of FLC-MPPT. (a) Input S; (b) Input ∆PPV; (c) Output ∆D.

3.1.3. Fuzzy Rules

A DC–DC converter has the characteristic of reflecting in its input the impedance of
the connected load (ZL). This impedance is reflected as a function of the duty cycle of the
converter. Thus, by varying the duty cycle, it is possible to adjust the current and voltage
in the PV panel, i.e., its OP. In the case of the Buck converter, the reflected input impedance
(Zi) is given by Equation (9) [66]. If the duty cycle of the Buck converter increases, the input
impedance decreases, producing an increase in the current in the PV panel and displacing
the OP of the panel to the left. In the case where the duty cycle decreases, the opposite
effect is produced and the OP of the panel is moved to the right, as shown in Figure 10.

Zi =
ZL

D2 (9)
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Fuzzy rules have been developed according to the relationship between the chosen
input variables and their behavior in the PV panel’s P–V characteristic (Figure 8). Six
operating criteria have been addressed:

(1) If S is positive and ∆PPV is positive, it means that the OP is on the left side of the MPP
and approaching it; then, ∆D must be negative to continue in the same direction.

(2) If S is positive and ∆PPV is negative, it means that the OP is on the left side of the MPP
and the OP is moving away from it; then, ∆D must be negative to change direction.

(3) If S is negative and ∆PPV is positive, it means that the OP is on the right side of the
MPP and approaching it; then, ∆D must be positive to continue in the same direction.

(4) If S is negative and ∆PPV is negative, it means that the OP is on the right side of the
MPP and moving away from it; then, ∆D must be positive to change direction.

(5) If ∆PPV is zero, it means that the OP could be very close to the MPP. Here, two
situations could happen: In the case of S being negative, it means that the OP is on
the right side of the MPP; then, ∆D must be positive to move the OP to the left. In the
case of S being positive, it means that the OP is on the left side of the MPP; then, ∆D
must be negative to move the OP to the right.

(6) If S is zero, it means that the MPP has been reached; then, ∆D must be zero.

Table 2 shows the summary of the proposed rules for the FLC-MPPT. The control
surface is shown in Figure 11.

Table 2. Rules for the FLC-MPPT.

S
∆PPV

NB NS ZO PS PB

NB PB PS ZO NS NB
NS PB PS ZO NS NB
ZO PS PS ZO NS NS
PS PB PS ZO NS NB
PB PB PS ZO NS NB
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3.2. Design of FLC-VR
3.2.1. Fuzzy Inputs

To design the voltage controller, two input variables have been chosen: the error (E)
and the error change (∆E); the sampled values of these variables are described in Equations
(10) and (11), respectively.

E(n) = VREF − VBAT(n) (10)

∆E(n) = E(n)− E(n − 1) (11)

where VREF corresponds to the desired charging voltage.

3.2.2. Symmetrical Membership Functions

For the fuzzification process, symmetric triangular membership functions were used.
For the entries, the following linguistic variables were defined: negative big (NB), negative
mean (NM), zero (ZO), positive big (PB), and positive mean (PM). The range for E and ∆E
were adjusted to (−15 to 15) and (−0.025 to 0.025), respectively. In order to improve the
accuracy of the controller, two more linguistic variables for the ∆D output function can be
added: positive small (PS) and negative small (NS) [67]. The range of ∆D was adjusted to
(−0.05 to 0.05). Figure 12 shows the membership functions for the inputs and output of
the controller.
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3.2.3. Fuzzy Rules

The derivation of the control rules has been based on six criteria [68]:

(1) If E is large (positive or negative), then ∆D change must be large in order to bring
VBAT quickly to VREF.

(2) If E is decreasing, then a small change in ∆D is necessary.
(3) If E is zero and ∆E is not zero (VBAT keeps changing), then a small change in ∆D is

necessary to prevent the VBAT from moving away from VREF.
(4) If E is zero and ∆E is zero, then ∆D must remain unchanged.
(5) If E is positive, then the sign of the ∆D change must be negative.
(6) If E is negative, then the sign of the ∆D must be positive.

Table 3 shows the summary of the proposed control rules. Figure 13 shows the control
surface of the FLC-VR.

Table 3. Rules for the FLC-VR.

E
∆E NB NM ZO PM PB

NB NB NB NM NS PM
NM NB NM NS NS PB
ZO NB NS ZO PS PB
PM NB NS PS PM PB
PB NM PS PM PB PB
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4. Simulations

In this section, the results of the simulations assembled in Simulink are presented. The
fuzzy algorithms were implemented using the Toolbox Fuzzy Logic Designer. The model
developed for the commercial module presented in Section 2.1 is represented by the Solar
Panel function block. The battery behavior has been represented by the generic model for
lead-acid batteries available on Power System Toolbox. The values for the power converter
are those used in the experimental prototype.

4.1. FLC-MPPT

Figure 14 shows the scheme implemented to analyze the performance of the FLC-
MPPT algorithm. A radiation profile with abrupt changes and constant temperature was
applied as the input of the PV panel, as shown in Figure 15. The transient behavior
and the steady-state tracking efficiency of the MPPT were determined, and their results
compared with two popular conventional MPPT techniques: P&O and IncCond. Details
of these techniques can be found in [6]. The calculation of efficiency (η) in Equation (12)
and the convergence time (τ), determined as the time in which the system reaches 95%
of the MPP, as recommended in [69], were calculated. Figure 16 shows the behavior of
the MPPT algorithms for each radiation level; the results for the obtained efficiencies are
summarized in Table 4. It can be observed that, compared to P&O and IncCond, the
FLC-MPPT presented the highest average efficiency and the smallest steady-state ripple of
power, for all radiation levels tested. Table 5 shows the convergence times for each MPPT
method, where the FLC-MPPT presented the fastest transient response.

η =

∫ t
0 PPV∫ t

0 PMPP
× 100 ∼= ∑n

i=1 PPV

∑n
i=1 PMPP

× 100 (12)
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Figure 16. Performance comparison of the MPPT methods for variable radiation.

Table 4. Efficiency comparison of the MPPT methods for variable radiation.

S = 500 W/m2

PMPP=27.16 W
S = 750 W/m2

PMPP=41.18 W
S = 1000 W/m2

PMPP=55 W

IncCond P&O FLC MPPT IncCond P&O FLC MPPT IncCond P&O FLC MPPT
η (%) 99.92 99.79 99.93 99.90 99.84 99.96 99.92 99.89 99.99

Ripple of
power (mW) 70 80 3 120 190 5 150 200 2

Table 5. Convergence time of the MPPT methods.

IncCond P&O FLC-MPPT

τ (ms) 240 216 212

4.2. FLC-VR

To evaluate the performance of the FLC-VR, the scheme of Figure 17 was implemented.
Two typical tests to analyze the functioning of a feedback control were carried out. The
results obtained for the FLC-VR have been compared with the behavior of a classic PID
controller, which has been tuned by the Ziegler–Nichols method [70]. The adjusted param-
eters of the PID controller are shown in Table 6. First, a step in the reference voltage from
13.5 to 14.4 V was applied at t = 0.02 s. Then, a step in the load current from 4 to 6.7 A
was applied at t = 0.04 s. Figure 18 shows the system response for each controller. The
performance parameters—settling time and overshoot—were summarized in Table 7. It
can be seen that the FLC-VR presented a better behavior than the PID controller, with a
shorter settling time to reach the new set point and correct the battery voltage in the event
of load disturbances, in addition to the considerable decrease in overshoot.
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Table 6. Performance parameters of the voltage controllers.

Reference Change Load Change

FLC-VR PID FLC-VR PID
Convergence

time (ms) 3.5 4.5 4 6

Overshoot (mV) 0 290 20 190
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5. Experimental Results and Discussion
5.1. Implemented System Description

Figure 19 shows the experimental setup implemented to validate the performance
of the control strategy. The system consists of monocrystalline WANT-M55W PV panels,
a NIMAC VRLA 12 V/10 Ah battery, and the prototype of the charge controller, which
contains three main circuits: the Buck converter, a signal measurement and conditioning
board, and the Arduino Due board where the developed C code was implemented. The
high performance, low power, flexibility, the simplicity of its hardware and software, and
low cost of the Arduino Due microcontroller has motivated its use in this work. Data
collection was performed using the DAQ USB 6009 system from National Instruments and
the Tektronic TDS2012B digital oscilloscope. Table 8 presents the main components used
to build the Buck converter. Table 9 presents the main technical data of the Arduino Due
microcontroller. All experimental tests have been carried out on the premises of Arturo
Prat University in Iquique, Chile.
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Table 8. Buck converter components.

Component Values

Mosfet IRF540Z (100 V/36 A)
Diode MBR20100CT (80 V/20 A)

Capacitor Epcos B41856 (220 µF/50 V)
Inductor Coilcraft PCV-2-564-08L (560 mH/7 A)
Driver TCA 4432

Frequency 20 kHz
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Table 9. Main technical specifications of the Arduino Due board.

Characteristic Values

Clock speed 84 Mhz
Operating Voltage 3.3 V

Architecture ARM 32bit
ADC/DAC resolution 12 bits

Microcontroller AT91SAM3X8E

5.2. MPPT-FLC Performance

To analyze the dynamic response of the FLC-MPPT, a test was conceived. With the
control operating in the Bulk region, and under approximately constant conditions of
radiation and temperature, a situation that can be verified during a time interval of a few
seconds on a clear day. A step in the charging current of the battery of 10% was applied.
This was performed connecting a resistor in parallel to the battery. Figure 20 shows that
the power on the PV panel initially has a reduction of 18% (46 to 38 W) due to the current
change. Then, the control algorithm quickly acts to reduce the voltage of the PV module in
order to compensate for the current increase and takes the operating point around the MPP
again, reaching a convergence time of 1.93 s. On the same day, aiming to determine the
average steady-state efficiency of the FLC-MPPT, three other tests were carried out. They
were performed at different times in order to achieve very different radiation levels. The
FLC-MPPT presented an excellent performance, reaching efficiencies greater than 97.87% in
all cases analyzed, as shown in Figure 21. The results obtained are summarized in Table 10.
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Table 10. Average efficiency of the FLC-MPPT.

Low Radiation Medium Radiation High Radiation

η (%) 97.87 98.02 98.22
Average power (w) 11.99 27.32 50.47

Maximum power ripple (w) 0.47 1.05 1.31

In order to test the behavior of the FLC-MPPT in complete cycles of daily radiation,
four tests were performed. In all of them, the battery was replaced by a resistor. The value
of the resistive load has been carefully chosen. If the maximum power voltage (VMPP)
and maximum power current (IMPP) values of the commercial PV panel are considered
for an incident radiation of 1000 W/m2 and temperature of 25 ◦C, weather conditions
known as standard test conditions (STC) (Table 1), then the theoretical value of the resistor
that guarantees MPP in this climatic condition can be determined as RMPP = VMPP/IMPP
= 18.21 V/3.02 A = 6 Ω. On the other hand, according to Equation (9), note that the Buck
converter has an inability to reflect impedances less than the load on its input. Therefore,
the impedance connected to the output of the power converter must be less than RMPP.
In order to achieve the widest possible range for adjusting the duty cycle, a load resistor
RL = 1 Ω was chosen. Therefore, for example, for the STC, the duty cycle according to (9)
should be D = (1/RMPP)(1/2) = 0.4, which is almost at the center of the allowable range for
D (0 to 1).

In each test, power data on the panel with 10-second intervals were collected, starting
from 8:00 a.m. to 8:00 p.m., local time. As a comparison, the power data of another
PV panel with identical characteristics operating without the MPPT algorithm and with
different RL values were also collected simultaneously. Figure 22 shows how the daily
energy production of the PV panel was effectively maximized by FLC-MPPT. Table 11
summarizes the obtained results. Figure 23 shows the duty cycle in PWM form, generated
at certain times during the test on January 31, and obtained directly from the drain source
voltage in the Buck converter’s Mosfet.
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Table 11. Daily energy produced by FLC-MPPT on different clear sky days.

01/31/2020 02/02/2020 02/03/2020 02/05/2020

FLC-MPPT
RL = 1 Ω

Without MPPT
RL = 7.5 Ω

FLC-MPPT
RL = 1 Ω

Without MPPT
RL = 4 Ω

FLC-MPPT
RL = 1 Ω

Without MPPT
RL = 11.5 Ω

FLC-MPPT
RL = 1 Ω

Without MPPT
RL = 2 Ω

Energy produced
(Wh) 330.2 284.9 326.2 158.2 341.5 258.4 346.5 69.2



Energies 2021, 14, 1001 21 of 27

5.3. FLC-VR Performance

To analyze the performance of the voltage control, a test was carried out, consisting of
adjusting the controller set point to 14.4 V, using a resistor as a load. With the control in
progress, steps in the load current were applied, alternating the load resistor between 15
and 7.5 Ω. When the disturbances were applied, both the current in the load and the power
supplied by the PV panel reached new levels, while the controller quickly adjusted the duty
cycle of the converter to bring the output voltage to the reference. In the case of current
increase, the voltage stabilization time was 1.24 s and in the case of current reduction,
the voltage stabilization time was 0.93 s, as shown in Figure 24. The results obtained
demonstrate the robustness of the FLC-VR to regulate the load voltage in the presence
of abrupt current variations, which normally occurs in situations of abrupt changes in
incident radiation.
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5.4. Performance of the Three-Stage Charging Process

In order to validate the battery charger control’s global strategy, a final test was car-
ried out. Experimental data were collected every 10 seconds between 12:00 and 19:45 h.
The control flowchart parameters of Figure 5 were fixed as: VABS = 14.4 V, VFLT = 13.5 V,
ICH(max) = 3A, and IOCT = 0.3 A, agreeing with the parameters suggested by the manufac-
turer of the commercial battery [71]. When starting the test, the battery was sufficiently
discharged with a voltage of 13.1 V. Figure 25 shows the results obtained for the charging
process. It is observed that between 12:00 h and 13:27 h, in the condition of discharged
battery, the FLC-MPPT acts to maximize the power provided by the PV panel. The power
increases while the available radiation grows as time advances. In this Bulk charging phase,
the current in the battery remains constant around IBAT = 2.6 A and VBAT increases gradu-
ally until reaching the absorption value VABS = 14.4 V. At this threshold, the FLC-MPPT
is switched off and the FLC-VR starts to adjust the absorption voltage. At this stage, IBAT
begins to decrease, and consequently, also the current and power on the panel; the charger
operates in this absorption phase between 13:24 h and 18:14 h. When IBAT reaches the full
charge value IOCT = 0.3 A, the FLC-VR changes its reference, and the charge continues at
the float voltage VFLT = 13.5 V, until the end of the test. In this final charging phase, only a
small current is generated to avoid self-discharge and ensure 100% charge.
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6. Conclusions

This work has presented and tested the design of a new digital control strategy im-
plemented in the Arduino Due microcontroller for a Buck power converter used as a
solar charger of VRLA batteries. The strategy combines both MPPT and output voltage
regulation by using two precise fuzzy logic controllers (FLC-MPPT and FLC-VR), which
operate adjusting the optimal increment of the converter duty cycle according to a smart
three-stage charging algorithm. To evaluate the performance of the designed FLCs, simula-
tions by MATLAB/Simulink were carried out. The results have shown that the FLC-MPPT
operating under abrupt changes in incident radiation achieves higher MPPT efficiency,
smaller steady-state ripple, and shorter convergence time compared to conventional MPPT
techniques commonly reported in the literature: P&O and IncCond (Tables 4 and 5). Fur-
thermore, the FLC-VR presents smaller transitory voltage overshoot and faster transient
response compared to a standard PID controller (Table 6). In addition, a prototype hard-
ware setup was implemented. The experimental tests have proved that in the Bulk charging
region, the energy produced by the PV panel is maximized in different weather conditions,
with efficiency of the FLC-MPPT being between 97.87 and 98.22% with a convergence time
of 1.93 s. Moreover, in the absorption and float charging regions, the FLC-VR is able to
stabilize the voltage against abrupt variations in the charging current, with setting times
between 0.93 and 1.24 s.

The simulated and experimental results validate the robustness and reliability of the
control strategy. The charging system delivers maximum power from the PV source to
the battery and avoids overcharging, thereby ensuring an efficient, fast, and safe charging
process. Moreover, it overcomes the drawbacks of the conventional PV charges, is feasible
to implement in low-cost microcontrollers, and does not require any mathematical model.
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Nomenclature

Abbreviations
VRLA Valve-Regulated Lead Acid
FLC Fuzzy logic controller
FLC-MPPT Fuzzy logic controller-maximum power point tracking
FLC-VR Fuzzy logic controller-voltage regulator
PV Photovoltaic
MPP Maximum power point
MPPT Maximum power point tracking
FOCV Fractional open circuit voltage
FSCC Fractional short circuit current
HC Hill Climbing
P&O Perturb and observe
IncCond Incremental conductance
AI Artificial intelligence
ANN Artificial neural networks
PID Proportional–Integral–Derivative
SoC State of charge
PWM Pulse width modulation
CoG Center of gravity method
MoM Mean of maxima method
OP Operating point of the PV panel
NB Negative big
NS Negative small
ZO Zero
PB Positive big
PS Positive small
NM Negative mean
PM Positive mean
STC Standard test conditions
SMC Sliding mode control
Symbols
VPV Panel PV voltage (V)
VBAT Battery voltage (V)
IPV Panel PV current (A)
IBAT Current battery (A)
Iph Cell PV current (A)
Vi Input voltage of the power converter (V)
Vo Output voltage of the power converter (V)
RS Series resistance of the PV cell (Ω)
RP Parallel resistance of the PV cell (Ω)
Id Current at the PN junction of the PV cell (A)
Ir Reverse saturation current of the PV cell (A)
T Reference cell operating temperature (◦K)
β Ideality factor at the PV cell junction
q Charge of the electron (1.602176 × 10−21 C)
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ISC Short circuit current of the PV panel (A)
k Boltzmann constant (1.38065 × 10−3 J/◦K)
α Temperature coefficient of the PV cell (%/◦C)
Tr Temperature in standard test conditions (◦K)
Irr Reverse saturation current at Tr temperature (A)
EG Energy of the Silicon band-gap (1.1 eV)
Vn Nominal voltage of the PV panel (V)
IMPP Maximum power current of the PV panel (A)
PMPP Maximum power of the PV panel (W)
Voc Open circuit voltage of the PV panel (V)
D Duty cycle of the power converter
TS Switching period of the power converter (s)
ton Conduction time of the switch (s)
VABS Absorption voltage of the battery (V)
ICH(max) Maximum charging current of the battery (A)
IOCT Full charge current value of the battery (A)
VFLT Float voltage of the battery (V)
µ∆D Set of fuzzy outputs
∆D Size of the duty cycle variations
Xi(n) The Ith discrete input data
µi Fuzzy data set for the Ith discrete input data
Wi Weight factor for CoG defuzzification method
n Sample n
n-1 Sample n-1
S Slope of the P-V curve
∆PPV Power variation of the PV panel (W)
∆VPV Voltage variation of the PV panel (V)
ZL Impedance of the connected load (Ω)
Zi Reflected input impedance (Ω)
E Error (V)
VREF Set point of the charging voltage (V)
η Efficiency (%)
τ Convergence time (s)
RMPP Maximum power point apparent resistor (Ω)
VMPP Maximum power voltage of the PV panel (V)
Psun Incident radiation (W/m2)
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