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Abstract: This study provides insights into the feasibility of a desiccant dehumidification-based
Maisotsenko cycle evaporative cooling (M-DAC) system for greenhouse air-conditioning application.
Conventional cooling techniques include direct evaporative cooling, refrigeration systems, and pas-
sive/active ventilation. which are commonly used in Pakistan; however, they are either not feasible
due to their energy cost, or they cannot efficiently provide an optimum microclimate depending on
the regions, the growing seasons, and the crop being cultivated. The M-DAC system was therefore
proposed and evaluated as an alternative solution for air conditioning to achieve optimum levels
of vapor pressure deficit (VPD) for greenhouse crop production. The objective of this study was
to investigate the thermodynamic performance of the proposed system from the viewpoints of the
temperature gradient, relative humidity level, VPD, and dehumidification gradient. Results showed
that the standalone desiccant air-conditioning (DAC) system created maximum dehumidification
gradient (i.e., 16.8 g/kg) and maximum temperature gradient (i.e., 8.4 ◦C) at 24.3 g/kg and 38.6 ◦C
ambient air conditions, respectively. The DAC coupled with a heat exchanger (DAC+HX) created
a temperature gradient nearly equal to ambient air conditions, which is not in the optimal range
for greenhouse growing conditions. Analysis of the M-DAC system showed that a maximum air
temperature gradient, i.e., 21.9 ◦C at 39.2 ◦C ambient air condition, can be achieved, and is considered
optimal for most greenhouse crops. Results were validated with two microclimate models (OptDeg
and Cft) by taking into account the optimality of VPD at different growth stages of tomato plants.
This study suggests that the M-DAC system is a feasible method to be considered as an efficient
solution for greenhouse air-conditioning under the climate conditions of Multan (Pakistan).

Keywords: desiccant dehumidification; evaporative cooling; Maisotsenko cycle; greenhouse air-
conditioning; Pakistan
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1. Introduction

Closed-field production of crops and vegetables by means of greenhouses with differ-
ent covering materials depends on the efficiency of the climate control system to provide
optimum growth conditions with a reasonable energy cost. The extensive solar radia-
tion during the daytime causes a greenhouse effect, resulting in high air temperature
and relative humidity that can significantly exceed the optimum conditions. This can
lead to a significant loss of yield and fruit quality in the absence of a proper ventilation
and dehumidification system. Additionally, the plants and vegetables are more prone to
pest/fungus/disease attack in higher relative humidity conditions than normal, which
may also affect the production level of the greenhouse. To reduce the impact of suboptimal
microclimate conditions on production, passive and active ventilation, in addition to direct
evaporative cooling systems by means of pad-and-fans or swamp coolers, are convention-
ally used by greenhouse growers in Pakistan. The problem with these solutions is that
they do not allow control over the relative humidity level of the greenhouse environment,
hence leaving the plants and vegetables exposed to pests, fungus, and disease attacks.
Therefore, a more appropriate air-conditioning (AC) solution that is cost-efficient and can
be implemented in large scale commercial production is required. In this regard, desiccant
dehumidification-based indirect evaporative cooling air-conditioning systems are gaining
research attention that needs to be evaluated for AC application in different closed-field
plant production environments.

The focus of this study is the city of Multan, Pakistan, which lies in a warm desert
climate where direct evaporative cooling methods are used in combination with passive
and active ventilation methods inside agricultural greenhouses. For the purpose of this
research, a desiccant dehumidification-based Maisotsenko cycle evaporative cooling (M-
DAC) system is proposed and evaluated as an alternative solution for controlling humidity
levels to achieve the optimum vapor pressure deficit (VPD). The objective was to provide a
systematic thermodynamic analysis of the proposed M-DAC system from the viewpoints
of temperature gradient, relative humidity levels, optimum VPD, and dehumidification
gradient. A review of the relevant published literature is summarized in Section 2 to
identify the most recent achievements and the gaps. Modeling of the M-DAC and dynamic
evaluation by means of the optimality degree and comfort ratio models are described in
Section 3. The proposed solution is validated and discussed in Section 4 based on the
thermodynamic analysis and the microclimate models. Section 5 concludes the study and
highlights the potential aspects for further research and development.

2. Background and Literature Review

Evaporative cooling (EC) systems can potentially be classified into direct evaporative
(DEC), indirect evaporative (IEC), and Maisotsenko cycle evaporative (MEC) systems. The
MEC system is widely studied by the research community for heating, ventilation, and
air-conditioning (HVAC) system applications. Pandelidis and Anisimov [1] numerically
studied and compared eight different configurations of a standalone Maisotsenko-cycle
evaporative heat and mass exchanger. Caliskan et al. [2] studied energy and exergy analyses
of the standalone MEC system for building air-conditioning. Zhan et al. [3] studied counter
flow standalone MEC system for building air-conditioning application. Caliskan et al. [4]
compared traditional vapor compression air-conditioning systems with the MEC system
based on energy and exergy analyses. Chua et al. [5] reviewed environment-friendly air-
conditioning options for building applications. Pandelidis et al. [6] numerically simulated
the MEC heat exchanger for different air-conditioning applications. Rogdakis et al. [7]
numerically simulated and experimentally validated the MEC system for building air-
conditioning application for the climatic conditions of Greece. Cui et al. [8] studied the
MEC system for precooling of ambient air as an energy-saving technique for hot and
humid climatic conditions. Riangvilaikul and Kumar [9] numerically investigated the MEC
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system for different inlet conditions. Sultan [10] studied the MEC system for greenhouse
air-conditioning and ventilation applications. Anisimov et al. [11] theoretically and ex-
perimentally analyzed the standalone MEC system for air-conditioning and found the
MEC system to be an efficient way of indirect evaporative cooling. In addition, results
from the study concluded that inlet air velocity impacted the performance of the system.
Zhao et al. [12] numerically investigated the performance of the MEC system for climatic
conditions of the United Kingdom, which resulted in wet-bulb effectiveness of 1.3. Zube
and Gillan [13] experimentally studied a commercial type MEC air-conditioning system
and evaluated heat mass transfer parameters inside a heat exchanger for the first time.
Weerts [14] reported the power-saving potential of commercially available standalone MEC
system compared to the vapor compression air-conditioning (VCAC) system. Maisotsenko
and Treyger [15] also reported the energy-saving potential of the standalone MEC system
compared to standalone VCAC system. Similarly, [16–18] also studied the standalone MEC
system in-depth and concluded that the MEC system can potentially be an environmentally
friendly air-conditioning option compared to the VCAC system.

The standalone desiccant air-conditioning (DAC) system has been extensively studied
in the literature for various applications. Generally, the DAC system better suits regions
with higher relative humidity in the ambient air. The DAC system was studied for the
possible application of vehicular air-conditioning [19]. Additionally, the authors used a
continuous input and output modulator (i.e., proportional-derivative (PD) controller) to
increase the efficiency of the system and concluded that the DAC system coupled with
the PD controller was energy conservative compared to conventional AC systems in vehi-
cles [19]. Moreover, the DAC system was successfully installed in a wet market in Hong
Kong. The authors numerically simulated the energy loads of a hypothetical wet-market
using EnergyPlus for the climatic conditions of Hong Kong and compared results with
the actual wet market [20]. The authors concluded that the DAC could potentially be
used as a replacement for conventional air-conditioning systems in the wet markets. A
solar-assisted open cycle DAC system was experimentally tested for grain storage in Mel-
bourne, Australia [21]. The authors concluded that a 5.85 m3 solar collector area was
sufficient for cooling of up to 200 tonnes of grain. The coefficient of performance (COP)
was a function of surrounding conditions and air mass flow rate. A maximum COP of
86.2 was observed under humid conditions for an air mass flow rate of 0.019 kg/s [21].
The standalone DAC system was studied for a greenhouse air temperature and humidity
control system [22]. Moreover, the authors studied the greenhouse air-conditioning from a
vapor pressure deficit (VPD) point of view. The standalone DAC system with dual desic-
cant wheels was studied for residual waste heat recovery in marine ships [23]. The authors
concluded that the DAC system was 33.4% more power-efficient compared to traditional
air-conditioning systems for marine ships. An EC-coupled DAC system was studied in
two modes (i.e., ventilation and recirculation modes) [24]. The authors concluded that
conventional ventilation mode is more efficient when humidity ratio is below ~10.9 g/kg,
whereas the recirculation mode of the air-conditioning system is more efficient for areas
where humidity ratio is above ~10.9 g/kg, consuming a higher amount of input energy.
Enteria et al. [25] studied the analyses of the first and second law of thermodynamics for a
solar thermal electric desiccant air-conditioning system [25]. A simulated solar-operated
evaporative cooling-assisted solid desiccant air-conditioning system was developed in a
tropical region of Malaysia [26]. The authors used the TRNSYS simulation environment
to simulate the desiccant air-conditioning system for climatic conditions of Malaysia. The
authors concluded that two-stage ventilation mode desiccant air-conditioning system is
better for tropical conditions such as Malaysia, with a temperature gradient of 17.6 ◦C at 30
◦C ambient temperature [26]. Another study investigated a dual-wheel cooling system [27].
Results from the study indicate that higher regeneration temperature (RT) produces higher
total COP at both air mass flow rates (i.e., 100 and 200 m3/h) [27]. Moreover, the perfor-
mance and energy-saving potential of a two-stage solar-driven rotary wheel DAC system
was compared with a conventional vapor compression air-conditioning (VCAC) system
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for building air-conditioning [28]. Building energy performance simulation (BEPS) was
conducted for Berlin and Shanghai. The DAC system was found be to energy-saving and
more efficient for both of the cities compared to VCAC system. However, in the case of
Shanghai, the RT of the DAC system was 30 ◦C higher than that of Berlin [28]. Figure 1
shows the schematic diagram and working principle of a conventional vapor compression
air-conditioning system, and solar thermal liquid desiccant dehumidification-based air-
conditioning system. Moreover, the authors studied desiccant dehumidification systems
and evaporative cooling systems in detail for various applications, including greenhouse
air-conditioning [29–32], building air-conditioning [33], livestock air-conditioning [34], and
agricultural product storage [35–44].

Song and Sobhani [45] studied solar-assisted desiccant air-conditioning system cou-
pled with a Maisotsenko evaporative cooling system and phase change material for build-
ing air-conditioning application. The authors concluded that the maximum total COP
of 0.404 was achieved using a solar-operated desiccant air-conditioning system coupled
with a Maisotsenko evaporative cooler using a phase change material for air-conditioning
of an official building in Iran. In another study, a Maisotsenko cycle-assisted desiccant
air-conditioning system was studied for the climatic conditions of Japan [46]. Pandelidis
et al. [47] numerically studied the Maisotsenko cycle-assisted desiccant air-conditioning
system with two modifications, i.e., bypass and bypass with rotary sensible heat exchanger.
The authors concluded that all the configurations successfully managed the sensible load
of the environment while being highly dependent on the humidity ratio of ambient air.
The addition of a rotary sensible heat exchanger in system configuration 3 increased the
cooling capacity up to ~2.35 kW at 40 ◦C ambient temperature generating ~17.25 ◦C supply
air temperature at the same ambient conditions [47]. Table 1 shows the summary of differ-
ent desiccant-based Maisotsenko cycle evaporative cooling systems for air-conditioning
applications. From Table 1 and the reviewed literature, it is evident that there is a gap in
the literature regarding OptDeg and Cft plant thermal comfort indices for the proposed
M-DAC system. Moreover, this study aims to use a low and easily achievable regeneration
temperature (i.e., 50 ◦C) coupled with different comfort levels of plant growth stages, which
is lacking in previous studies.

Table 1. Summary of different desiccant-based Maisotsenko cycle evaporative cooling systems for air-conditioning applica-
tions.

System Findings Regeneration Temperature Ref.

Desiccant based indirect
evaporative cooling

For 70 ◦C Tregen, supply flow ratio 0.67, indirect EC flow ratio
0.3 results in maximum performance i.e., COP higher than 20 70 ◦C [48]

Maisotsenko cycle desiccant
evaporative cooling

For outside conditions of 25 ◦C, lowest temperature gradient
was 14.9 ◦C 70 ◦C [1]

Standalone MEC For Greek climate conditions, MEC system achieved
maximum temperature gradient of 20.4 ◦C in Athens – [7]

Maisotsenko cycle desiccant
evaporative cooling

Different desiccant materials studied for greenhouse
air-conditioning, only limitation was integration of OptDeg

and Cft models for different growth stages of crops

Different regeneration
temperatures [10]

Standalone DAC system
Polymer-based sorbents PS-I and PS-II are studied at

regeneration temperatures 50 and 80 ◦C for greenhouse
air-conditioning

Different regeneration
temperatures [30]

Standalone DAC system

Activated carbon powder (ACP) and activated carbon fiber
(ACF) were studied for greenhouse air-conditioning at

regeneration temperatures 41 to 75 ◦C, only limitation was
the detailed analysis of crop growth and plant comfort

indices

Different regeneration
temperatures [49]

The study area (i.e., Multan) lies in a warm desert climate of the Köppen–Geiger
climatic classification (Figure 2). Therefore, this justifies the need for an air-conditioning
system for greenhouses. Usually, pad-type direct evaporative cooling or natural/forced
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ventilation systems are used for greenhouse air-conditioning. These systems are not
feasible throughout the year and fail to achieve the required optimum temperature and
relative humidity conditions inside a greenhouse. Moreover, the DEC system fails to
handle humidity inside the greenhouse environment, which is crucial to the vapor pressure
deficit. The desiccant-based hybrid evaporative cooling systems have not been explored
for greenhouse air-conditioning applications in Pakistan.
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Figure 1. Schematic diagram and working principle of (a) conventional vapor compression air-
conditioning system, and (b) solar thermal liquid desiccant dehumidification-based air-conditioning
system, reproduced from [50].

Figure 3 shows the ambient climatic conditions of Multan (Pakistan) and the green-
house optimum temperature and relative humidity zone. Figure 3 was made using Lady-
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bug Rhino v6 for the climatic conditions of Multan (Pakistan). A typical meteorological
EnergyPlus weather file was used in Ladybug Rhino to represent the hourly weather
conditions. In Figure 3, the light fill area shows the average hourly variation, whereas the
lines show the average daily variation in climatic parameters. From the viewpoint of the
literature reviewed above, pad-type direct evaporative cooling systems are only suitable
for controlling the temperature, and fail to achieve the optimum humidity level inside
the greenhouse. To overcome this issue, an indirect evaporative cooling system could be
used, which provides a sensibly cooled product air with no latent transfer from the wet
to dry channels of the IEC system. However, due to the low wet bulb effectiveness of the
system, it cannot be considered a suitable option for achieving the required temperature
level inside the greenhouse. Additionally, higher levels of humidity inside the greenhouse
can potentially result in pest, fungus, and disease attacks on the plants and vegetables.
Therefore, in this study, a desiccant dehumidification-based Maisotsenko cycle evapora-
tive cooling air-conditioning (M-DAC) system was thermodynamically analyzed for the
climatic conditions of Multan (Pakistan). The performance of the system was analyzed
for optimum greenhouse air-conditioning conditions from the viewpoints of temperature
gradient, relative humidity level, and wet bulb effectiveness of the systems.
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3. Materials and Methods
3.1. Modelling M-DAC System

A general working principle of the M-DAC system is first shown in Figure 4, followed
by a schematic representation in Figure 5 that demonstrates the application of the proposed
system for greenhouse air-conditioning for a possible higher yield. Taking into account the
climatic conditions of Multan (Pakistan), the performance of a silica gel-based desiccant
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wheel for M-DAC system was investigated using Equations (1)–(4), as described in the
literature [52,53].

F1,ip =
A1(

Tip + 273.15
)1.49 + B1

( wip

1000

)C1

(1)

F2,ip =

(
Tip + 273.15

)1.49

A2
− B2

( wip

1000

)C2

(2)

ηF1 =
F1,2 − F1,1

F1,8 − F1,1
(3)

ηF2 =
F2,2 − F2,1

F2,8 − F2,1
(4)

where F1,ip and F2,ip represent the combined potential as a function of the humidity ratio in
kg/kg and temperature in ◦C of the solid desiccant-based air-conditioning system. ηF1 and
ηF2 represent the efficiencies of the system correlating to the combined potentials. ηF1 and
ηF2 have typical values of 0.05 and 0.95 for a high-efficiency silica gel-based solid desiccant
wheel air-conditioning system. The coefficients A, B, and C are presented in Table 2.
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In comparison with the conventional vapor compression air-conditioning systems, the
desiccant dehumidification-assisted evaporative cooling air-conditioning system consumes
less energy due to the absence of compressor work and is able to operate at lower regenera-
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tion temperatures (i.e., 50–90 ◦C), which are easily attainable using solar thermal, biogas,
and waste heat sources. The Maisotsenko cycle evaporative cooling system was modeled
using the model of [32]. Equation (5) shows the performance model of the Maisotsenko
cycle evaporative cooling system.

Table 2. Coefficients used in the Jurinak model (Equations (1)–(4)).

Coefficient Value

A1 −2865
B1 4.344
C1 0.8624
A2 6360
B2 1.127
C2 0.07969

Tout = 6.70 + 0.2630(Tin) + 0.5298(win) (5)

where Tin represents the inlet temperature of the process air in ◦C and win represents the
inlet humidity ratio of the process air in kg/kg. Equation (5) models the temperature of
product air produced from the Maisotsenko cycle evaporative cooling system. The model
was developed by [32] using experimental data of a developed Maisotsenko cycle based
evaporative cooling system [11].

The sensible heat exchanger (HX) used in this study was modeled using the heat
exchanger standard equation (Equation (6)) provided in the literature by The American
Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) [54].

T3 = T2 − εHX(T2 − T1) (6)

where T3 represents the outlet temperature of the sensibly cooled process air resulting
from the heat exchanger, T2 represents the outlet temperature of heated and dehumidified
air resulted from the desiccant air-conditioning system, εHX represents the sensible heat
exchange efficiency of the heat exchanger (assumed as 0.9), and T1 represents the dry bulb
temperature of the ambient air inlet into the desiccant air-conditioning system. Figure 5
shows the working principle and schematic of the sensible heat exchanger. Regeneration of
the desiccant is done usually through regeneration air at higher than ambient temperature.
To heat the regeneration air, the air passes through the heat exchanger which sensibly heats
the air to a certain limit. For further heating of the regeneration air before entering the
desiccant, a heating unit/source is used. This heating source could be a heating electric
coil, solar heater, or biogas-operated thermal heat source. Waste heat from a condenser or
any other source in industrial uses can also be used to regenerate the desiccant material
and absorb its moisture. For this study, a regeneration temperature of 50 ◦C was used. This
relatively lower temperature is achievable through a solar thermal system, biogas-operated
thermal heat source, or waste heat. A flat plate solar collector and heat exchanger were
used for this study to provide the required regeneration temperature (i.e., 50 ◦C). Figure 5
shows the working principle and schematic of a solar thermal heating source.

3.2. Optimality Degree and Comfort Ratio Model

Dynamic assessment of the proposed M-DAC system for greenhouse crop production
application was carried out by means of two microclimate models, namely, OptDeg [55] and
Cft-ratio [56] that take into account VPD measurements as inputs. The output of the first
model, optimality degree of VPD, denoted by Opt(VPD)GS, (Light) = α : VPD → [0, 1] is
a quantitative value between 0 and 1 that represents how close a VPD reading inside the
greenhouse is to the optimum value (0 ≤ α ≤ 1) at a specific growth stage (GS) and light
condition. Graphical representation of the membership functions for defining Opt(VPD)
under different conditions is provided in Figure 6. In this model, a VPD measurement
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in the greenhouse is first calculated from Equation (7) at the time tm,n (where m and n
refer to a specific minute and date of the growing stage), and is then mapped to a value
between 0 and 1 that quantifies the optimality degree of the microclimate for greenhouse
production. In other words, an optimality-degree equal to 1 refers to a high potential yield
with marketable value and high-quality fruit.

VPDtm,n= f
(
Ttm,n , RHtm,n , τtm,n

)
=

Cg10(7.5τtm,n )/(237.3+τtm,n )

1000

−
Cg10(7.5Ttm,n )/(237.3+Ttm,n )

1000
RHtm,n

100

(7)

Energies 2021, 14, x FOR PEER REVIEW 11 of 23 
 

 

 
Figure 6. Membership functions for defining optimality degrees of vapor pressure deficit at different light condition and 
growth stages, reproduced from [40]. 

The OptDeg model determines the variation of a single VPD measurement from the 
optimal references in an instant time. Although this model can provide an overview of the 
performance of the M-DAC system in sample time, a different model called comfort ratio, 
denoted by Cft-ratio, that incorporates a sample time frame, such as 24 h was used. The 
comfort ratio of VPD, denoted by ܦܸܲ)ݐ݂ܥ, ,ݐ ௦)ீௌߙ =  represents the percent of vapor ,ߚ
pressure deficit at a specific time ݐ and growth stage, which lies between the reference 
conditions of vapor pressure deficit related to ߙ௦. Ideal microclimate conditions inside a 
greenhouse could potentially be defined as ܦܸܲ)ݐ݂ܥ, ,ݐ 1) = 1. Self-adjusted optimality 
degree is denoted by ߙ௦ to define the reference conditions required for performance eval-
uation of the proposed M-DAC system or control for microclimate evaluation. The set of 
Simulink blocks that were implemented to determine the Cft-ratio of the VPD values for 
different ߙ௦ generated from the M-DAC system are shown in Figure 7. For this research, 
we selected three levels of ߙ௦ as 0, 0.5, and 1, representing failure, marginal, and ideal 
production. It is worth mentioning that OptDeg and Cft-ratio models were derived with 
a prime focus on improved fruit quality and yield. The derivations at the back of the mod-
els (which can be found in published literature) for greenhouse tomato production were 
condensed for the sake of simplicity in this study. 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.200.10.20.30.40.50.60.70.80.91

VPD (kPa)

Opt(VP
D) Early growth[All lights]

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.400.10.20.30.40.50.60.70.80.91

VPD (kPa)

O
pt

(V
PD

)

Vegetative[Sun]

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.400.10.20.30.40.50.60.70.80.91

VPD (kPa)

O
pt

(V
PD

)

Vegetative[Cloud]

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.400.10.20.30.40.50.60.70.80.91

VPD (kPa)

O
pt

(V
PD

)
Vegetative[Night]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5.200.10.20.30.40.50.60.70.80.91

VPD (kPa)

O
pt

(V
PD

)

Flowering tomature fruiting[Sun]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5.200.10.20.30.40.50.60.70.80.91

VPD (kPa)

O
pt

(V
PD

)

Flowering tomature fruiting[Cloud]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5.200.10.20.30.40.50.60.70.80.91

VPD (kPa)

O
pt

(V
PD

)

Flowering tomature fruiting[Night]

Figure 6. Membership functions for defining optimality degrees of vapor pressure deficit at different light condition and
growth stages, reproduced from [40].

It should be noted that there are various functions for calculating VPD that take into
accounts different assumptions and constants; however, that presented in Equation (7) is
widely accepted and used by meteorologists and commercial greenhouse growers [34].
The first part of Equation (7) represents the vapor pressure of the saturated environment
(i.e., the leaf of the plant) in kPa, Cg denotes a coefficient that is equal to 610.7, and τ
represents the surface temperature of the leaf, which is usually measured by means of
an infrared gun for such experiments. For the sake of simplicity, this parameter was
assumed to be equal to the temperature of the air inside the greenhouse at both ambient
and evaporative assisted desiccant air-conditioning system supply air temperature. In fact,
assuming leaf temperature equal to the surrounding air temperature is normal practice
of greenhouse growers. The second part of Equation (7) represents the vapor pressure of
the air inside the greenhouse in kPa, T represents the temperature of the air inside the
greenhouse in ◦C, and RH represents the relative humidity of the air inside the greenhouse
in (%). Because VPD is the function of temperature of the leaf surface, air temperature,
and relative humidity, any slight variation in one of the parameters from the optimal
values results in restricted growth of the plants, and can have significant consequences on
reducing the overall yield and quality.
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The OptDeg model determines the variation of a single VPD measurement from the
optimal references in an instant time. Although this model can provide an overview of the
performance of the M-DAC system in sample time, a different model called comfort ratio,
denoted by Cft-ratio, that incorporates a sample time frame, such as 24 h was used. The
comfort ratio of VPD, denoted by C f t(VPD, t, αs)GS = β, represents the percent of vapor
pressure deficit at a specific time t and growth stage, which lies between the reference
conditions of vapor pressure deficit related to αs. Ideal microclimate conditions inside a
greenhouse could potentially be defined as C f t(VPD, t, 1) = 1. Self-adjusted optimality
degree is denoted by αs to define the reference conditions required for performance evalu-
ation of the proposed M-DAC system or control for microclimate evaluation. The set of
Simulink blocks that were implemented to determine the Cft-ratio of the VPD values for
different αs generated from the M-DAC system are shown in Figure 7. For this research,
we selected three levels of αs as 0, 0.5, and 1, representing failure, marginal, and ideal
production. It is worth mentioning that OptDeg and Cft-ratio models were derived with
a prime focus on improved fruit quality and yield. The derivations at the back of the
models (which can be found in published literature) for greenhouse tomato production
were condensed for the sake of simplicity in this study.Energies 2021, 14, x FOR PEER REVIEW 12 of 23 
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Figure 7. Implementation of the Cft-ratio model using Simulink blocks for validating the performance
of the desiccant dehumidification Maisotsenko cycle evaporative cooling (M-DAC) system based on
comfort ratios of vapor pressure deficit (VPD) for greenhouse production, reproduced from [56].
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4. Results and Discussion
4.1. Validation Based on Thermodynamic Analysis

Figure 8 shows the annual profile of the climatic ambient air conditions of Multan
(Pakistan). The daily, hourly, and monthly variation of dry-bulb temperature shows that
cooling inside the greenhouse environment is mostly required in summer months (i.e.,
May to August). However, the applicability of standalone pad-type direct evaporative
cooling systems is limited during the monsoon (heavy rainfall season, i.e., July to August,
shown in Figure 8, humidity ratio (HR)) which results in excess relative humidity in the
air. Consequently, a desiccant dehumidification-based Maisotsenko cycle evaporative
cooling system was thermodynamically analyzed for the climatic conditions of Multan.
Accordingly, results from the study are presented in Figures 8–13, which show the annual
representation of the performance of the proposed system and the profile of the vapor
pressure deficit inside the greenhouse.
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Figure 8. Profile of annual climatic ambient air conditions of Multan (Pakistan).

The standalone DAC system created a maximum temperature gradient, i.e., 8.4 ◦C
more at ambient conditions of 38.6 ◦C with a humidity ratio of 21.6 g/kg at ambient condi-
tions of 25 g/kg, which lies well outside the required greenhouse optimum temperature
and humidity conditions (Figure 9a). It is worth mentioning that the temperature gradient
is defined as the difference between the dry bulb temperature of the ambient air and the
dry bulb temperature of the product air at the system outlet node. The studied standalone
DAC system created unsuitable thermal and humidity conditions inside the greenhouse
throughout the year due to a relatively higher temperature and very dehumidified air
(Figure 9a). According to Figure 9b, the standalone DAC system coupled with a sensible
heat exchanger (DAC+HX) (working efficiency assumed to be 0.9) created a maximum
temperature gradient, i.e., 0.77 ◦C more at ambient conditions of 39.2 ◦C with a humidity
ratio of 16.8 g/kg at ambient conditions of 24.3 g/kg, which lies slightly outside the re-
quired greenhouse optimum temperature and humidity conditions (Figure 9b), and is very
close to ambient air conditions. The studied DAC+HX system created very close thermal
and humidity conditions to ambient conditions inside the greenhouse throughout the year.
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Figure 9c shows the psychrometric profile of temperature and relative humidity of the
desiccant dehumidification-based Maisotsenko cycle evaporative cooling (M-DAC) system
for the climatic conditions of Multan (Pakistan). According to Figure 9c, most of the hourly
points of the M-DAC system lie inside the required thermal and humidity conditions of the
greenhouse environment. The M-DAC system created a maximum temperature gradient
i.e., 21.98 ◦C. According to Figure 9c, the M-DAC system coupled with a sensible heat
exchanger (working efficiency assumed to be 0.9) created a maximum temperature gradient
i.e., 21.9 ◦C more at ambient conditions of 39.2 ◦C with a humidity ratio of 16.8 g/kg at
ambient conditions of 19.6 g/kg, which lies well inside the required thermal and humidity
conditions inside the greenhouse environment (Figure 9c).
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Figure 9. Profile of annual temperature and relative humidity of (a) standalone desiccant air-conditioning (DAC) system,
(b) desiccant air-conditioning coupled with sensible heat exchanger (DAC+HX) system, and (c) desiccant dehumidification
Maisotsenko cycle evaporative cooling (M-DAC) system, for greenhouse air-conditioning.

Figure 10 shows the vapor pressure deficit (VPD) profile and growth stages of plants
inside a greenhouse (for the temperature of the leaf equal to the temperature of the air
inside the greenhouse environment). According to Figure 10, the VPD of <0.4>1.6 kPa
is considered an extremely dangerous zone for over/under transpiration. The VPD of
0.4–0.8 kPa is considered a slightly low transpiration zone (propagation/early vegetative
growth of the plants). The VPD of 0.8–1.2 kPa is considered a healthy transpiration zone
(late vegetation/early flowering stage of the plants). The VPD of 1.2–1.6 kPa is considered
a high transpiration zone (mid/late flowering stage of the plants).
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Figure 10. Vapor pressure deficit (VPD) profile and growth stages of plants inside a greenhouse.

Figure 11 shows the temperature profile of the studied systems against the ambi-
ent air conditions of Multan (Pakistan) for greenhouse air-conditioning application. The
ambient air conditions lie outside the required temperature conditions (marked by the
dotted red line, Figure 11) from April to September (i.e., typical summer months) of Mul-
tan. Air-conditioning is required inside the greenhouse environment during the summer
months. Only M-DAC system created a uniform temperature gradient which lies well
inside the required temperature conditions (marked in dotted red line, Figure 11) of the
greenhouse environment. Figure 12 shows the temperature gradient of the DAC, DAC+HX,
and M-DAC system in the summer months (i.e., May to August) for the greenhouse air-
conditioning for the climatic conditions of Multan (Pakistan). The DAC system created
higher than ambient temperature conditions throughout the summer months, which is
unsuitable for greenhouse air-conditioning requirements (Figure 12). The DAC + HX sys-
tem created slightly higher/very close to ambient temperature conditions throughout the
summer months, which is also not suitable for greenhouse air-conditioning requirements
(Figure 12). The M-DAC system created a temperature gradient which is highly suitable
for the required temperature conditions throughout the summer months for greenhouse
air-conditioning application (Figure 12).

Figure 13 shows the dehumidification profile of the desiccant dehumidification unit
of the proposed system for the summer months (i.e., May to August) for the climatic
conditions of Multan (Pakistan). The desiccant dehumidification unit created a maximum
dehumidification gradient of the ambient air, i.e., 6.61 g/kg at ambient conditions of
14.14 g/kg. It is worth mentioning that the dehumidification gradient is defined as the
difference between the ambient air humidity ratio and the humidity ratio of the product air
exiting the outlet of the proposed system. Compared to current proposed passive cooling
techniques for greenhouse air-conditioning (i.e., pad-and-fan type systems for greenhouse
air-conditioning systems), the proposed M-DAC system has the ability to manipulate the
moisture inside the greenhouse environment, which is a key factor in defining the vapor
pressure deficit inside the greenhouse. In turn, this defines the growth rate and ultimately
results in better yield and fruit quality. Moreover, the M-DAC system can easily achieve
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the required temperature conditions inside a greenhouse compared to passive cooling
techniques, i.e., pad-and-fan type AC systems.
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Figure 11. Annual profile of thermodynamic performance of the proposed M-DAC system for greenhouse air-conditioning
for the climatic conditions of Multan (Pakistan).
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Figure 12. Performance profile of the proposed M-DAC system’s temperature gradient in summer months of Multan
(Pakistan) for greenhouse air-conditioning application.

4.2. Validation Based on Optimality Degree and Comfort Ratio

Validation of the performance of the proposed M-DC system with respect to the
required optimal influential parameters of the greenhouse microclimate (i.e., temperature
of the air, inside RH, and vapor pressure deficit) is shown in the plots of Figure 14 for
24 h. Results clearly show that the output of the M-DAC system was very close to the
requirement microclimate data generated by the OptDeg model for the vegetative to mature
fruiting growth stages. Moreover, the VPD plot implies that during the mid-day hours
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(i.e., 13:00–17:00) when the air temperature was at the highest peak and relative humidity
had the lowest values, the VPD increased to 2 kPa, which is consistent with the output
of the M-DAC system. Results of the VPD data generated from the OptDeg model for
actual greenhouse tomato cultivation in 130 days versus the simulated VPD data generated
from the M-DAC system are plotted in Figure 15. The first derivative of the VPD data
sets, plotted in Figure 15a, shows that the optimum VPD values from the OptDeg model
and the VPD values from the M-DAC system are not significantly different. This finding
was also verified using the one-way analysis of variance (ANOVA) test for each of the five
growth stages. Figure 15b shows the deviation of the VPD data of the M-DAC system from
100% optimal condition (α = 1), and compares that with actual VPD data of a commercial
greenhouse that operated with ventilation and a pad-and-fan evaporative cooling system.
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A more in-depth result for comparing the performance of the M-DAC system and
evaporative pad-and-fan system in a random day of cultivation under fruit formation
growth stage is provided by means of the Cft-ratio model in the plots of Figure 16. In
Figure 16, the reference conditions related to the optimal, marginal, and failure vapor
pressure deficit (i.e., αs = 1, 0.5, and 0, respectively) are presented with a green solid
line, blue solid line, and red solid line, respectively. The Cft-ratio Simulink model then
determined the percentage of VPD data of each case, shown in Figure 16 that were inside
each reference border. From the graphical presentation, it is evident that the VPD data
from the M-DAC system resulted in a higher comfort ratio than those from the evaporative
pad-and-fan system. In detail, VPD values resulting from the M-DAC system never crossed
the marginal reference border, whereas for the conventional pad-and-fan case, during the
hours of 13:30–14:30, VPD exceeded this border and increased to 3 kPa, which is considered
a failure value for greenhouse production. Sample results of the comfort ratio model for
comparing the performance of the evaporative system and M-DAC system in providing
optimum vapor pressure deficit for greenhouse production are given in Table 3 for two
different growth stages of the tomato plant.
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Table 3. Performance validation of the proposed M-DAC system with the comfort ratio model at αs

= 1 in comparison with experimental data from a tomato greenhouse with evaporative pad-and-fan
system [57] for 11 days under different growth stages.

Days

Vegetative Growth Stage Flowering to Mature Fruiting

Pad-and-fan
Ref. [57]

M-DAC
(This Study)

Pad-and-Fan
Ref. [57]

M-DAC
(this Study)

1 8.6 21.2 11.1 24.7
2 4.9 17.2 19.6 26.7
3 27 11.9 31.9 18.2
4 13.5 20.4 32.1 24.9
5 21.9 16.4 40.9 31.0
6 25.2 36.0 27.5 43.4
7 4.6 17.5 25.8 39.0
8 32.3 51.4 36.3 65.2
9 5 6.4 8.8 25.5
10 4.3 46.8 8.3 51.0
11 18.8 20.5 32.2 29.4

Mean 15.1 24.1 24.9 34.5
SD 10.4 14.3 11.4 14.0

Min 4.3 6.4 8.3 18.2
Max 32.3 51.4 40.9 65.2

5. Conclusions

The present study aimed to investigate the applicability of desiccant dehumidification-
based Maisotsenko cycle evaporative cooling (M-DAC) system for greenhouse air-conditioning
application for the climatic conditions of Multan (Pakistan). The study area (i.e., Multan)
lies in a warm desert climate of the Köppen–Geiger climatic classification. In this regard,
air-conditioning is required in greenhouses to optimize the temperature and humidity
conditions, which could potentially increase the production level. Therefore, the present
study proposed a desiccant dehumidification-based Maisotsenko cycle evaporative cooling
system (M-DAC) for greenhouse air-conditioning application. The standalone DAC system
created a (maximum) dehumidification gradient (i.e., 16.8 g/kg) at 24.3 g/kg ambient
air conditions, and a (maximum) temperature gradient (i.e., 8.4 ◦C) at 38.6 ◦C ambient
air conditions. The DAC+HX system created a temperature gradient roughly equal to
the ambient air conditions, which are unsuitable for greenhouse air-conditioning. The
M-DAC system created a (maximum) temperature gradient (i.e., 21.9 ◦C) at 39.2 ◦C ambient
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air conditions, which lies well within the required optimum temperature conditions of
the greenhouse air-conditioning. Additionally, the M-DAC created a dehumidification
gradient (i.e., 16.8 g/kg) at 24 g/kg ambient conditions, which also lies inside the range of
optimum humidity conditions inside the greenhouse. Moreover, the vapor pressure deficit
(VPD) profile of the greenhouse environment related to the growth of plants indicated
that a VPD of 0.8–1.2 kPa (for leaf temperature equal to surrounding air temperature) is
most suitable for healthy transpiration from the plant leaves at late vegetation and early
flowering stages. These results were validated with OptDeg and Cft-ratio microclimate
models, which showed that the M-DAC system maintained the VPD of the product air
inside the healthy transpiration zone throughout most of the summer months (i.e., May to
August). Moreover, the comfort ratio model results of the proposed M-DAC system were
compared with experimental results from a tomato greenhouse, indicating that the M-DAC
system could potentially achieve the required comfort level compared to a pad-and-fan
type air-conditioning system. Thus, the study indicates the M-DAC system is a feasible
option for greenhouse air-conditioning for the climatic conditions of Multan (Pakistan).
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