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Abstract: The paper proposes a solution for the problem of optimizing medium voltage power
systems which supply, among others, nonlinear loads. It is focused on decision tree (DT) application
for the sizing and allocation of active power filters (APFs), which are the most effective means of
power quality improvement. Propositions of some DT strategies followed by the results have been
described in the paper. On the basis of an example of a medium-voltage network, an analysis of the
selection of the number and allocation of active power filters was carried out in terms of minimizing
losses and costs keeping under control voltage total harmonic distortion (THD) coefficients in the
network nodes. The presented example shows that decision trees allow for the selection of the
optimal solution, depending on assumed limitations, expected effects, and costs.

Keywords: power quality; active power filters; decision trees; power losses; optimization; modeling
and simulation; frequency domain

1. Introduction

These days, when we observe rapid technological progress and constantly increasing
energy consumption, it is necessary to pay attention to responsible energy utilization. Elec-
trical energy supply, especially in highly developed regions, is achieved through energy
transmission. The concept of alternating current (AC) power systems, which was assumed
many years ago, makes the monitoring of some power quality indices below limits neces-
sary. It is more and more challenging as the number of loads having a negative influence on
these indices increases. The distortion of voltage and current waveforms, which is caused
by nonlinear loads and manifests itself through higher harmonics, belongs to the most
important power quality parameters, and it is expressed by the total harmonic distortion
(THD) coefficient. The higher harmonic elimination and, thereby, THD minimization is a
basic task given to power quality improvement systems.

The placement of compensation devices, including active power filters (APFs), in
power networks is one of the key factors in successful power quality improvement not
only from the technical but also from the economical point of view. In many cases, filters
have to be applied in complex and large power networks with several nonlinear loads and
a significant number of nodes. Among these nodes there are numerous ones to which APFs
or other devices ensuring high power quality can be connected. Thus, a system designer
has to be able to solve an optimization problem that consists in location of the devices
ensuring, among others, effective higher harmonic elimination while keeping the solution
costs under control.

The optimization of passive and active power filter parameters and location in power
systems is a common problem among researchers all over the world due to its crucial role
in the attainment of power quality goals. There are many propositions of solutions based
on diverse optimization methods that implement classical algorithms or try to develop
problem specific ones. The proposed solutions differ in complexity, universality, and most
of all the degree to which practical aspects of implementation of power quality systems
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have been taken into account. The simplest approach to filter location is just the iterative
examination of power quality improvement obtained when installing it in successive nodes
one by one [1]. The best solution is chosen by comparison of the results. Such an approach
can be extended to more sophisticated forms based on the adaptive step presented recently
in [2]. The proposed algorithm uses a decision tree and achieves an excellent harmonic
suppression effect for an exemplary circuit using less number and capacity of APFs when
compared with a solution calculated by a traditional method [2]. This paper also follows
this direction in the research aimed at optimal APF location and sizing. In the past, many
approaches have been proposed for solution of the problem under consideration. The
advanced solutions have been based on complex optimization algorithms, e.g., ant colony
system [3], modified harmony search algorithm [4], whale optimization algorithm [5],
gray wolf optimizer [6], and bacterial foraging optimization algorithm [7]. Nevertheless,
the most popular approaches are based on genetic algorithms [8–11] and particle swarm
optimization [12–14].

Among optimization goals, one can find a minimization of the power losses [15–17],
which has been used also in this paper along with an economic criterion expressed by the
relative cost of the solution. The distinctive feature of this paper is minimization of the
power losses caused by the higher harmonics in all system elements (mainly electric cables
and transformers). Such an approach is especially efficient in relatively small networks
working with little power margin and, thus, exposed to overloads or replacements of main
and expensive components, e.g., transformers. The size of the network encouraged us
to check the performance of decision trees as a tool for APF location and sizing. So far,
decision trees in the field of power systems have been applied to:

• optimal phasor measurement unit (PMU) placement for voltage security assess-
ment [18,19], including power system islanding identification [20] and line outage
detection [21–23]—fast and direct measurement results by PMUs combined with
decision trees gives more time for corrective or preventive actions;

• classification and detection of power line faults [24–26];
• detection of power system problems, including power quality disturbances [27], active

power imbalance [28], voltage stability margin [29], and nontechnical losses [30,31];
• fault location in power distribution systems [32–34];
• optimal planning of storage in power systems integrated with wind power genera-

tion [35];
• decision-making in single-device cases [36] as well as in global power plant opera-

tion [37].

Thus, decision trees are widely used in power systems—they belong to the 10 major
machine learning models frequently used in power systems [38]. However, literature
overview has revealed no evidence regarding the application of decision trees to solve
the problem under consideration, i.e., APF location. The only similar research includes
application of decision trees for the determination of optimal location and rate of series
compensation to increase power system loading margin [39]. The paper [39] is focused
on series compensation of transmission lines, which is one of the most effective means to
increase the loading margin of an interconnected power system. It includes a proposition
of methodology for the identification of the critical transmission lines and their proper
compensation rate with respect to voltage stability using decision trees. It must be stressed
that the application of decision trees in various areas resulted in several descendant meth-
ods, for example, random forest [40] and gradient boosted trees [41]. The random forest,
as a technique consisting in the aggregation of a large number of decision trees, is usually
regarded as a black-box algorithm due to the large number of trees. Gradient-boosted trees
represent another approach, which belongs to the so called “ensemble methods” based
on more than one decision tree. Such methods are especially useful in solving large-scale
problems. They have also been applied in power systems, for example, in the building
load model [42]. In this paper, due to the scale of the problem and its type, which is
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optimization rather than classification or prediction, a classical form of the decision tree
algorithm was used.

In this paper, the authors proposed decision trees as an algorithm to solve the problem
of APF location in medium voltage networks. For a given test system and two goal
functions, the results have been compared with the global optimum obtained by the brute
force algorithm. The paper consists of three sections with an introduction. Section 2
is devoted to APF optimum sizing and location, and it includes the definitions of goal
functions as well as the description of the brute force and decision tree algorithms. Section 3
includes the description of the test system and optimization results for brute force and
decision tree algorithms. Sections 4 and 5 present the result discussion and conclusions.

2. Optimization Problem Definitions and Solution Algorithms
2.1. Goal Functions

This paper proposes optimization of APF placement in power systems based on two
different goal functions. The general denotation, Rk, has been introduced in order to
formalize goal function descriptions, where Rk is k-th element of a set of all possible APF
configurations. It specifies the placement of each APF in the discussed power system in
relation to the list of all APFs denoted by K.

Rk = [s1 s2 · · · si], (1)

where

si—state of the APF in i-th node (1—APF placed, 0—no APF),
for all APF list K = [n1 n2 · · · ni], where ni—denotation of i-th APF.

Along with the goal functions, all optimization processes take into account the maxi-
mum value of voltage total harmonic distortion coefficient (THDV) factor occurring in the
system. A maximum allowed THDV level of 5% has been assumed for all optimization
methods presented in this paper.

2.1.1. Power Losses Criterion

The first implemented goal function is related to criterion of active power losses in
system elements:

min
x

F1(x) : min
Rk

M

∑
m=1

Pm, (2)

where

m—number of power system elements in which power losses occur (transformers, lines,
coils, etc.), m = 1, 2, . . . , M.
Pm—power losses of m-th element.
x—independent variable of the goal function that is subjected to minimization.

The minimization of F1 function allows reduction of power losses related not only
with harmonics but also with reactive power in all system elements excluding loads. Due
to the fact that even with full compensation, loads require power transfer, F1 cannot be
reduced completely to 0.

2.1.2. Cost Criterion

Application of the dispersed power quality improvement system is related with
the necessity of considering many possible solutions that rely on the placement of at
least several APFs. For such an approach, economic criterion is of high importance. A
fundamental factor influencing the costs of a solution consists of a set of rated parameters
of used APFs and results from conditions imposed by the power system. On the grounds
of market recon, public information provided by APF producers and literature overview, a
nonlinear function of APF price has been presented below. It was scaled in order to indicate



Energies 2021, 14, 1173 4 of 24

price relative to the most expensive APF. The bar graph of APF relative cost depending on
the range of rated current has been shown in Figure 1.
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Figure 1. Bar graph of exemplary relative costs of active power filters (APFs) depending on their
rated current.

The cost criterion has been described formally through F2 goal function, formulated
as follows:

min
x

F2(x) : min
Rk

N

∑
i=1

p
(∣∣∣Ik

i

∣∣∣), (3)

where

p(·)—function assigning the cost to i-th APF depending on its RMS current value,
i—APF number, i = 1, 2, . . . , N,∣∣∣Ik

i

∣∣∣—RMS current of i-th APF, calculated as:

∣∣∣Ik
i

∣∣∣ =
√√√√ H

∑
h=1

∣∣Ik
ih

∣∣2, (4)

where∣∣∣Ik
ih

∣∣∣—RMS current of h-th harmonic of i-th APF,

h—harmonic number, h = 1, 2, . . . , H.

2.2. Brute Force Algorithm

The problem of APF sizing and allocation has been solved using a brute force (BF)
algorithm, which due to computation times is especially useful in the case of small-scale
problems. In this paper, the BF algorithm allows us to find all solutions, including the
global minimum, and evaluate the quality of solutions obtained by the decision tree (DT)
algorithm. The block diagram of the BF algorithm has been presented in Figure 2.
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The BF algorithm is very straightforward and consists in checking every combination
representing in our case different allocations of APFs in the power system. If the power
system has n nodes (the number of nodes in which APFs can be connected, not the total
number of nodes), the number of k-combinations is equal to the binomial coefficient:

Ck
n =

(
n
k

)
=

n!
k!(n − k)!

. (5)

In successive steps of the BF algorithm, values of the given goal function (2) or (3)
are calculated. The algorithm can be terminated before analyzing all combinations if the
goal function value drops below the assumed threshold value—in this case there is no
guarantee that the global minimum has been reached. Otherwise, it is terminated if all
combinations have been checked. Afterward, the best solution is chosen.

2.3. Optimization with Decision Trees

The application of decision trees is the most popular in classification problems in
which an algorithm uses a set of features that can be checked one by one. Such a method is
efficient and allows the effective solving of similar issues. However, classification problems
are not the only one class of problems that can be addressed with decision trees, and this
method can be also applied in general combinatorial optimization. This paper proposes
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a solution for the application of decision trees in the optimization of APF placement in
power systems. Such an issue can be formulated as the problem of deciding where APFs
should be placed in order to get the best possible results in terms of previously defined
goal functions.

An implemented decision tree algorithm works iteratively by checking which step
should be taken next in order to reduce the current value of the minimized goal function.
The APF combination through which the algorithm passes is coded in a vector representing
the state of each APF (1).

The algorithm operation begins with a state in which only one APF is placed in the
power system, on a previously defined starting position. In the next steps, the algorithm
makes a decision whether the current APF should be moved to the next or the previous
node from Rk vector or whether it should remain in the current position and another
one should be placed additionally. There is also a possibility to terminate the decision
tree’s operation if any of the aforementioned options does not provide a better outcome.
The criterion of the decision-making process can be formulated through the difference
between the current value of the goal function and a value that could be reached by each
possible decision:

min(∆ f+, ∆ f−, ∆ fadd, ∆ f0) (6)

where

∆ f+—difference between goal function values for the current state and a state after moving
the APF to the next node,
∆ f−—difference between goal function values for the current state and a state after moving
the APF to the previous node,
∆ fadd—difference between goal function values for the current state and a state after adding
a new APF, modified by the correctional coefficient, Wcorr,
∆ f0—zero value connected with staying in the current state.

In order to keep the balance between the advantages and disadvantages of adding a
new APF, the decision tree algorithm was also fitted with a correctional coefficient, Wcorr,
which allows the regulation of how many times benefits from adding a new APF should be
higher than benefits from moving it in order to make such a decision. With appropriate
configuration, this coefficient prevents a cost increase, which would occur due to the
tendency for adding new APFs in each step while reducing power losses.

The schematic of the recurring element of the decision tree has been presented in
Figure 3. The components of this diagram can only be modified in border cases related to
reaching the maximum allowed number of APFs, or the lack of movement possibilities—in
all other cases, the structure repeats itself until the termination of the algorithm. Such
conditions, limiting decision tree’s options, include also the THDV value. The whole
optimization process is related to improving power quality quantities such as THDV along
with the minimized function. In order to guarantee such improvement, only solutions that
result in a THDV value below 5% can be accepted. The decision tree can only terminate its
action if the THDV is below this level, otherwise it continues its search.
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3. Optimization Results
3.1. Test System

In this paper, a test system was adopted based on the power supply scheme of an
extended ski station. The data on the system and its topology have been taken from
the documentation of the PCFLO simulation software [43] and are often used in other
papers [9,44,45]. The advantages of the selected test system are its complexity, the presence
of nonlinear loads, access to complete information on its components, and medium voltage
for which there are technical solutions of APF systems. The diagram of the system with
marked potential connection points of active power filters is presented in Figure 4.

It should be noted that despite the series connection of APFs (F1–F14) in the test power
system, the APF itself is constructed as parallel, based on a current-controlled current
source (Figure 5). The nonlinear loads in the presented system are six pulse rectifiers,
which are the cause of current and voltage waveform distortions in the entire circuit. The
modeling and simulation software based on the iterative method in the frequency domain
described in [46] was used for calculations. In this case, a simple, without losses, ideal
model of the active power filter was used in the simulations (Figure 5).

Table 1 summarizes the voltage total harmonic distortion coefficients (THDVs) for
all nodes and the current total harmonic distortion coefficients (THDIs) for all lines of the
analyzed system in the case without APFs.
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Table 1. Values of voltage total harmonic distortion coefficients (THDVs) for all voltage nodes and
current total harmonic distortion coefficients (THDIs) for all line currents.

Node Name Node Number THDV, % Line THDI, %
Sub 12.47 kV 1 11.3 20-1 11.0
Near Sub S 2 11.4 1-2 11.0
Near Sub N 3 11.4 1-3 11.0

PBS 4 11.7 2-4 10.9
PBN 5 11.7 3-5 10.9
Base 6 11.9 4-6 12.2
Star 7 12.4 5-6 12.2

Wilderness 8 12.5 6-7 22.3
Dorsey 9 12.4 6-9 19.3
Taylor 10 12.4 7-16 3.4
Longs 11 12.5 7-15 30.7
Apollo 12 13.1 7-8 16.7
Jupiter 13 12.8 8-9 40.2

WipeOut 14 12.7 8-14 32.8
BigBoss 15 13.0 8-13 23.0

Shop 16 12.4 13-12 29.7
Sub 138 kV 20 3.3 9-10 6.9

10-11 6.1

As can be seen in Table 1, the THDV and THDI values are significant and can poten-
tially cause power losses and power quality problems in the analyzed system. Distortion is
also visible in the transformer current and voltage waveforms, which have been shown in
Figures 6 and 7, respectively. The voltage waveform shows instantaneous voltage drops,
which increase the THD coefficient. These drops are due to the high steepness of the
transformer output current. The oscillations around these drops result directly from the
used model of nonlinear receivers and the simulation method in the frequency domain.
The presented waveforms are a combination of a finite number of harmonics obtained as a
result of simulations and not measured waveforms.
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Figure 7. Voltage waveform of the secondary side of the transformer in the analyzed system.

3.2. Brute Force Results

As a part of the work, optimization by means of the brute force method was carried
out in order to compare results with those of the proposed method based on decision
trees. The obtained results have been analyzed and presented below. The first aspect
related to the operation of the algorithm is the calculation time, which in the case of the
complete solution set search method may be long enough to prevent the efficient use of the
software. Along with the increase in the number of possible cases according to Equation (5),
the time needed to analyze all the combinations increased. Figure 8 presents both the
aforementioned quantities as a function of the number of APFs, the arrangement of which
was optimized. The obtained results confirm that such an approach, when applied to
complex problems, despite its high effectiveness, may not be the optimal choice.
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Figure 8. Dependence of the number of cases and the calculation time of the brute force algorithm on the APF number.

Table 2 contains the APF connection cases, which were selected by the software as
the best in terms of minimizing each of the considered goal functions with the limitation
related to the maximum THDV coefficient. From these data, it can be seen that the best
solutions for a small number of APFs are in most cases the solutions for a larger number
of APFs.
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Table 2. List of cases meeting the minimum criterion of the analyzed goal functions, taking into
account the assumed maximum of THDVs.

APF Numbers
Number of APFs

For a Minimum of F1

1 2
2 3 10
3 2 8 10
4 3 5 8 10
5 2 6 8 10 11
6 2 3 4 8 10 13
7 1 2 4 6 8 10 11

For a Minimum of F2

1 1
2 4 10
3 4 10 13
4 4 8 10 12
5 4 8 9 10 14
6 2 3 4 8 10 13
7 4 7 8 9 10 12 13

The impact of placing subsequent APFs on the values achieved by the individual goal
functions in the cases selected as optimal was also analyzed. The results were presented
for the group with the limitation resulting from the maximum allowable THDV level.
The results of this analysis have been shown in Figure 9. For the goal function F1, the
increase in the number of APFs results in a clear decrease in power losses, which is natural
and results directly from the concept of an APF, i.e., harmonic reduction and reactive
power compensation. In the case of the goal function F2, the relative value (related to
the maximum APF cost) was used. With the assumption of limiting the THDV factor, the
minimum costs for the case with two APFs is visible. Reaching the required maximum
THDV in the system is, therefore, the most cost effective when using two APFs. Any other
solution is more expensive.

Energies 2021, 14, 1173 11 of 25 
 

 

Table 2. List of cases meeting the minimum criterion of the analyzed goal functions, taking into 
account the assumed maximum of THDVs. 

APF Numbers 
Number of APFs 

For a Minimum of F1 
1 2       
2 3 10      
3 2 8 10     
4 3 5 8 10    
5 2 6 8 10 11   
6 2 3 4 8 10 13  
7 1 2 4 6 8 10 11 
 For a Minimum of F2  
1 1       
2 4 10      
3 4 10 13     
4 4 8 10 12    
5 4 8 9 10 14   
6 2 3 4 8 10 13  
7 4 7 8 9 10 12 13 

The impact of placing subsequent APFs on the values achieved by the individual goal 
functions in the cases selected as optimal was also analyzed. The results were presented 
for the group with the limitation resulting from the maximum allowable THDV level. The 
results of this analysis have been shown in Figure 9. For the goal function F1, the increase 
in the number of APFs results in a clear decrease in power losses, which is natural and 
results directly from the concept of an APF, i.e., harmonic reduction and reactive power 
compensation. In the case of the goal function F2, the relative value (related to the maxi-
mum APF cost) was used. With the assumption of limiting the THDV factor, the minimum 
costs for the case with two APFs is visible. Reaching the required maximum THDV in the 
system is, therefore, the most cost effective when using two APFs. Any other solution is 
more expensive. 

 
(a) 

95

100

105

110

115

1 2 3 4 5 6 7

F 1
va

lu
e,

 p
ow

er
 lo

ss
es

, k
W

APFs number

Figure 9. Cont.



Energies 2021, 14, 1173 12 of 24Energies 2021, 14, 1173 12 of 25 
 

 

 
(b) 

Figure 9. Values of the goal functions depending on the number of optimally placed APFs; (a) for 
F1; (b) for F2. 

All the results obtained by applying the brute force algorithm, even before the anal-
ysis in terms of finding the minimum for the individual goal functions, are in the form of 
a set of values of these functions associated with each possible solution. For a larger num-
ber of APFs, the number of cases is so large that the graphical representation becomes 
unclear, therefore an example bar graph of the maximum THDV value in the system for 
selecting the position of only two APFs has been presented below (Figure 10). This graph 
shows how large the variability of the maximum THDV is for the analyzed cases. 

 
Figure 10. Bar chart of the maximum THDV value among all network nodes for the allocation of 
two APFs. 

In order to illustrate the results from a wider perspective, for the case of three APFs 
in the system, all feasible solutions have been presented in Figure 11. As can be read, for 
191 solutions out of 364 (see Figure 8) the constraint on the THDV coefficient (less or equal 
5%) is fulfilled. Moreover, the Pareto frontier includes five solutions for which the objec-
tive functions given by (2) and (3) take approximately the values between 102 and 112 kW 
for F1 and between 0.30 and 0.60 for F2. These solutions are optimal in the Pareto sense 
and the choice of the one to be implemented depends on other aspects, e.g., easier APF 
allocation in some nodes or long-term financial analysis. Therefore, selection of the opti-
mum solution can vary among decision-makers because it is based on their preferences 
and criteria. 

0.0

0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7

F 2
va

lu
e,

 re
la

tiv
e 

co
st

APFs number

0

2

4

6

8

10

12

14

1 15 29 44 58 72 86

M
ax

im
um

 T
H

D
V

, %

Case number

Figure 9. Values of the goal functions depending on the number of optimally placed APFs; (a) for F1;
(b) for F2.

All the results obtained by applying the brute force algorithm, even before the analysis
in terms of finding the minimum for the individual goal functions, are in the form of a set
of values of these functions associated with each possible solution. For a larger number of
APFs, the number of cases is so large that the graphical representation becomes unclear,
therefore an example bar graph of the maximum THDV value in the system for selecting
the position of only two APFs has been presented below (Figure 10). This graph shows
how large the variability of the maximum THDV is for the analyzed cases.
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Figure 10. Bar chart of the maximum THDV value among all network nodes for the allocation of
two APFs.

In order to illustrate the results from a wider perspective, for the case of three APFs in
the system, all feasible solutions have been presented in Figure 11. As can be read, for 191
solutions out of 364 (see Figure 8) the constraint on the THDV coefficient (less or equal 5%)
is fulfilled. Moreover, the Pareto frontier includes five solutions for which the objective
functions given by (2) and (3) take approximately the values between 102 and 112 kW for
F1 and between 0.30 and 0.60 for F2. These solutions are optimal in the Pareto sense and the
choice of the one to be implemented depends on other aspects, e.g., easier APF allocation
in some nodes or long-term financial analysis. Therefore, selection of the optimum solution
can vary among decision-makers because it is based on their preferences and criteria.



Energies 2021, 14, 1173 13 of 24

Energies 2021, 14, x FOR PEER REVIEW 13 of 25 
 

 

 
Figure 10. Bar chart of the maximum THDV value among all network nodes for the allocation of 
two APFs. 

In order to illustrate the results from a wider perspective, for the case of three APFs 
in the system, all feasible solutions have been presented in Figure 11. As can be read, for 
191 solutions out of 364 (see Figure 8) the constraint on the THDV coefficient (less or equal 
5%) is fulfilled. Moreover, the Pareto frontier includes five solutions for which the objec-
tive functions given by (2) and (3) take approximately the values between 102 and 112 kW 
for F1 and between 0.30 and 0.60 for F2. These solutions are optimal in the Pareto sense 
and the choice of the one to be implemented depends on other aspects, e.g., easier APF 
allocation in some nodes or long-term financial analysis. Therefore, selection of the opti-
mum solution can vary among decision-makers because it is based on their preferences 
and criteria. 

 

 
Figure 11. Objective function values for all feasible solutions in the case of three APFs installed in 
the system (MTHDV—number of feasible solutions, MNP—number of noninferior points). 

All solutions for three APFs presented in Figure 12 allow us to have a deeper insight 
into this example. The Pareto frontier in such a case consists of eight points representing 
the optimum solutions for the unconstrained problem. The feasible points presented in 
Figure 11, for which THDV ≤ 5%, have been also marked out in Figure 12. The same data 
have been presented in 3D space in Figure 13. 

0

2

4

6

8

10

12

14

1 15 29 44 58 72 86

M
ax

im
um

 T
H

D
V

, %

Case number

Figure 11. Objective function values for all feasible solutions in the case of three APFs installed in
the system (MTHDV—number of feasible solutions, MNP—number of noninferior points).

All solutions for three APFs presented in Figure 12 allow us to have a deeper insight
into this example. The Pareto frontier in such a case consists of eight points representing
the optimum solutions for the unconstrained problem. The feasible points presented in
Figure 11, for which THDV ≤ 5%, have been also marked out in Figure 12. The same data
have been presented in 3D space in Figure 13.
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3.3. Decision Tree Results

Optimization with the decision tree algorithm is challenging considering how complex
the hierarchical structure of the power system is. The first factor affecting the decision-
making process is the algorithm’s starting point. The decision tree is highly sensitive to
the choice of the starting point because it determines the position of the first APFs that
are going to be checked. Consequently, different parts of the simulated power system
can be examined at the beginning. The mentioned problem is only a specific case of the
more general issue of arrangement of APF combination in a single solution vector, Rk. In
a particular case, it only results in the change of the starting point. Considering the high
importance of APF arrangement, and therefore the algorithm’s route, different strategies of
its setup have been examined. The optimization has been conducted for both F1 and F2
goal functions with differences between routes that arise from different methods of sorting
the APFs in Rk vector. The research assumes three sorting strategies: by node THDV
value (descending), by APF current value (ascending), and by APF number (descending).
Another factor differentiating tested routes is the Wcorr coefficient, which has been included
and excluded in turns, for the consecutive algorithm workflows. The results for all tested
approaches have been presented in Table 3.

Table 3. List of route parameters and results of the decision tree algorithm applied for F1 and F2 minimization.

Index Minimized
Function

Route
Sorted by Wcorr F1, kW F2

Calculation
Time, s

APF
Number

Number of Installed
APFs

A F1 THDV Yes 111.8 0.32 1.4 3 10, 7, 11
B F1 THDV No 100.4 0.69 1.3 7 8, 10, 7, 11, 9, 6, 3

C F1
Number of

APF Yes 103.0 0.46 1.4 3 10, 7, 3

D F1
Number of

APF No 99.4 1.23 4.3 14 14, 13, 12, 11, 10, 9, 8, 7, 6,
5, 4, 3, 2, 1

E F2 THDV Both 111.8 0.32 0.7 3 10, 7, 11

F F2
Number of

APF Both 105.6 0.54 2.1 6 13, 12, 11, 10, 9, 8

G F1 Current Yes 108.7 0.40 1.3 4 13, 10, 11, 7

H F1 Current No 99.4 1.15 3.9 13 12, 14, 9, 13, 6, 8, 10, 11, 7,
5, 4, 1, 2

I F2 Current Both 110.1 0.54 2.2 6 14, 9, 13, 6, 8, 10
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As presented, different routes result in a different number of placed APFs and op-
timization efficiency. The application of this method highly reduces computation time
in comparison to the brute force algorithm. The calculation time mostly depends on the
number of steps taken by the decision tree, because in each step, before the decision, the
algorithm repeats simulation the same number of times. The only exceptions occur if the
algorithm encounters a position where the number of possible choices is limited, and in
that case, there is no need for repeating the simulation for every option.

Figures 14 and 15 present THDV, F1, and F2 values for each step of the decision tree
algorithm. Results were grouped in such a way that each axis contains a representation
of routes differing from each other only by presence of the Wcorr coefficient. Figure 14
shows routes for F1 minimization and Figure 15 for F2 minimization. In the case of F1,
every solution shows a clear tendency of reducing power losses in the system for each step
taken. This effect is connected with placing additional APFs or with moving APFs to better
positions. The requirement of reducing the THDV coefficient below 5% level enforces
placing more than one APF, which consequently raises the cost of the solution. It is worth
stressing that the THDV limitation requirement also causes the algorithm to increase the
cost of the solution by placing another APF even during F2 minimization. The reduction of
costs can only be achieved and is visible in cases when the THDV requirements are met.
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Figure 15. Maximum THDV, F1, and F2 values for each decision tree algorithm step for F2 minimiza-
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The decision tree algorithm is much faster compared to the brute force algorithm,
especially for complex systems, but computation speed is achieved at the price of reduced
quality of optimization. Although the decision tree provides results close to globally
optimal (see DT solutions in Figure 12), it does not guarantee finding them exactly. Final
optimized values of F1 and F2 functions for each route, along with the number of placed
APFs required for obtaining them, have been presented in Figure 16. As shown, there are
solutions that reduce the goal functions highly, but in order to accomplish that effect, a
large number of APFs have to be placed in the system. On the other hand, solutions that
minimize the goal functions similarly can be found. In this case, the number of required
APFs is significantly smaller.
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Figure 16. Optimized values of F1 and F2 functions for each route A–H (Table 3) along with the
number of placed APFs required for obtaining them.

From the set of all examined routes, two examples were chosen in order to provide
a more detailed analysis of the decision tree algorithm workflow. The chosen C and E
routes are the best compromise between the number of APFs and the goal function values.
Each step and the decision made by the algorithm for those routes have been presented
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in Table 4. Additionally, all steps taken by the decision tree have been also superimposed
graphically on the power system schematic in Figure 17. Both ways of presenting the data
provide a clear view on the capabilities of the decision tree algorithm implementation.
Although C and E routes result in placing three APFs, they vary by APF sorting method
and final results. The different sorting also causes E route to turn around at some point
in order to examine a previously checked position but with the first APF already placed.
Such behavior was not necessary in C route. Those examples represent different strategies
that can be applied by the algorithm during the optimization process.
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Table 4. Details of decisions taken by the decision tree algorithm within C and E routes.

F1 Minimization with C Route F2 Minimization with E Route

Step Number of APF Decision Number of APF Decision

1 14 Next 8 Next
2 13 Next 10 Place APF
3 12 Next 7 Previous
4 11 Next 8 Next
5 10 Place APF 7 Place APF
6 9 Next 11 Place APF
7 8 Next Terminate algorithm
8 7 Place APF
9 6 Next
10 5 Next
11 4 Next
12 3 Place APF
13 Terminate algorithm

Table 5 summarizes the voltage total harmonic distortion coefficients (THDVs) for
all nodes and current total harmonic distortion coefficients (THDIs) for all lines of the
analyzed system in the case of optimization using the decision tree algorithm within C and
E routes. A clear improvement of THDVs for all nodes as compared to results without APF
(Table 1) can be noticed. However, the results for the optimization within the E road are
slightly worse because it was associated with cost minimization (F2).

Table 5. Values of THDVs for all node voltages and THDIs for all line currents for C and E route.

Node THDV, % C
Route

THDV, % E
Route Line THDI, % C

Route
THDI, % E

Route

1 0.6 3.3 20-1 0.7 11.0
2 0.6 3.3 1-2 0.7 11.0
3 0.6 3.3 1-3 0.7 11.0
4 0.6 3.4 2-4 0.7 10.9
5 0.6 3.4 3-5 0.7 10.9
6 0.6 3.5 4-6 0.8 12.2
7 0.6 3.7 5-6 0.8 12.2
8 0.6 3.8 6-7 0.0 22.3
9 0.7 3.8 6-9 2.3 19.3

10 0.7 3.8 7-16 0.6 3.4
11 0.9 4.0 7-15 0.0 30.7
12 1.4 4.2 7-8 0.0 16.7
13 0.9 3.8 8-9 12.6 40.2
14 0.8 4.0 8-14 32.8 32.8
15 0.6 3.7 8-13 13.9 23.0
16 0.6 3.7 13-12 29.7 29.7
20 0.1 0.8 9-10 6.9 6.9

10-11 6.1 6.1

Figures 18–21 show the current (sum of currents of line 1-2 and 1-3) and voltage (node
no. 1) waveforms of the transformer secondary side. These waveforms can be compared
with the waveforms in Figures 6 and 7.
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case of optimization using the decision tree algorithm within C route.
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Figure 19. Voltage waveform of the secondary side of the transformer in the analyzed system in the
case of optimization using the decision tree algorithm within C route.
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case of optimization using the decision tree algorithm within E route.
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4. Discussion

This paper addresses the problem of optimization of APF placement in an exemplary
power system. However, the presented solutions are universal and can be applied to
any power system in which the necessity of improvement of power quality occurs due to
nonlinear loads or reactive power issues. The research concerned various strategies of the
best way of designing a dispersed power quality improvement system. The test circuit
used in this paper fulfilled its role in terms of sufficient structural complexity and presence
of current and voltage distortions.

The validity of used goal functions was verified. The minimization of power losses
has a direct positive effect on power quality in modeled systems. The reduction of power
losses through elimination of higher harmonics and reactive power compensation leads
to a decrease in THDV levels. This fact contributes to an improvement in economic
factors related to excessive power consumption, viability, or restrictions imposed by energy
providers. The minimization of power losses along with THDV limitation is connected
with the need to install several APFs, which should be placed optimally in order to prevent
an unnecessary increase in costs. The minimization of costs is in turn related with the
pricing of APFs available in the market. Total costs of a solution depend on rated currents
of every APF included in the system, which on the other hand depend on the harmonic
distortions and amount of reactive power. Those parameters are strictly connected with
placement of APFs in the circuit, and for some solutions, total costs can be the factor that
prejudge the final decisions about the power quality improvement system. However, in
order to find the best possible outcome, a multi-criterion analysis is necessary. As presented
in this paper, there are solutions located in the Pareto frontier that represent a compromise
between high price and proper power loss reduction.

The optimization of APF placement described in this paper was conducted using
two different methods. The first one is a method consisting in a complete search through
all possible solutions (brute force algorithm). Such an approach is the least complex one
and has exemplary effectiveness—it always leads to finding the best possible outcome.
Despite its efficacy, it is also linked to the necessity of simulating the power system for
every possible combination of APF placement, which requires large computation power
and time, especially for complex circuits. The second used method was implemented with
a premise of reduction of time and algorithm steps leading to a final conclusion. It uses
a decision tree algorithm with sorting of the algorithm’s planned route. This approach is
highly sensitive for its starting point and configuration of following steps in general. Due
to its sensitivity, this paper shows results of analysis for different route sorting strategies.
In case of good conditioning of the planned route, the decision tree finds a solution very
quickly. The reason is that in comparison to brute force, there are very few simulations
that need to be conducted in order to find the best outcome. However, such an outcome
may not be the best globally, but as presented in previous chapters, decision tree results are
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placed close to the Pareto frontier of all solutions in multi-criterion analysis. This paper
presents the application of three different approaches to route design for the decision tree.
The first is based on indexes assigned to APFs on the schematic and can be captious if the
system is designed in an unstructured way. The second one relates to THDV values of
nodes where APFs can be installed and sorts them in descending order. The final sorting
method relies on the ascending order of APFs currents. As presented, each approach can
lead to good results of optimization. Implementing additional conditions regulating the
balance between the decision of adding a new APF, instead of moving the current one into
better placement, further improves decision tree results. Due to that fact, there is no risk
of obtaining trivial solutions such as placing APFs in every possible location in order to
minimize power losses as much as possible.

5. Conclusions

The problem of the optimization of harmonic filter allocation in terms of reducing
power losses and costs of APFs has been presented in this paper. The emphasis was put on
the decision tree algorithm, which is widely known in different research areas, although up
to now it has not been commonly applied for power filter allocation in medium-voltage
networks. For comparison purposes, a simple brute force algorithm was also implemented.
Results indicate that application of the decision tree provide very fast and well-optimized
solutions on condition that a route of the algorithm is appropriate. Due to the fact the
that decision tree is highly sensitive to its route design, three different approaches of its
arrangement have been examined. They consist in sequential analysis of APFs sorted by
node THDV value (descending order), APF current value (ascending order), and random
manner, which in this case was APF numbers on the schematic (ascending order). The best
results obtained from the decision tree were located closely to the Pareto frontier of both
power losses and solution cost reduction.
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