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Abstract: Composting is the natural, exothermic process where the huge amount of heat that is
created is an issue of organic matter decomposition. However, too high temperature can reduce the
microbial activity during the thermophilic composting phase. The aim of this study was to analyze
the effect of heat excess removal from composted materials on the process dynamic. The experiment
was performed in two parallel bioreactors. One of them was equipped with a heat removal system
from the bed of the composted material. Three experiments were carried out with mixtures of
different proportions: biological waste, wheat straw, and spent coffee grounds. The content of each
option was determined based on a previous study of substrates to maintain the C/N ratio for the
right composting process, provide adequate porosity composted material, and enable a proper degree
of aeration. The study showed the possibility of receiving part of the heat from the bed of composted
material during the thermophilic phase of the process without harm both to the course of composting
and the quality of the final product. This shows that at a real scale, it can be possible to recover an
important amount of heat from composted materials as a low-temperature heat source.

Keywords: composting; coffee grounds; heat recovery

1. Introduction
1.1. Composting as an Exothermic Method of Biowaste Processing

Composting is one of the safest and most natural methods for managing biological
waste [1]. The composting process leads to weight and volume reduction of the biological
waste, as it removes pathogens, parasites, and weed seeds [2]. In addition, the end product
of composting is compost rich in organic matter and humic acids, being an excellent nat-
ural fertilizer used in agriculture [3]. It is the biological process of decomposing organic
materials, mainly by bacteria and fungi, which produces carbon dioxide, water vapor, and
a large amount of energy in the form of heat, unlike methane fermentation, where energy is
released in chemical form (in CH4 form) [4]. Composting is one of the best, most effective,
and cheapest methods of managing a wide range of organic waste materials [5]. Unlike an-
other biological process—fermentation, the composting process can also process materials
with a very high content of lignocellulosic compounds—i.e., wood and its waste [1]. In
addition, compost produced from agricultural biomass has a much more positive effect on
the soil characteristics compared to the usage of digestate from biogas plant, which has
reduced organic matter content [6].

However, in order for the composting process to proceed correctly, several conditions
must be met. First of all, the fundamental parameter of an appropriate composting process
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is the occurrence of the so-called thermophilic phase, i.e., a 2–4-week period with the
temperature inside the compost from a given material at a level above 45 ◦C [7]. However,
it should be emphasized that under appropriate conditions, the composted material can
heat up to over 80 ◦C. High temperature during the thermophilic phase causes the decom-
position of materials that are difficult to decompose (e.g., lignin) and affects the loss of
weight due to the intense emission of water vapor and CO2 [8]. It should be emphasized
that elevated temperature also has a hygienic effect on composted waste materials and is
also likely to break down chemical pollutants such as antibiotics, pesticides, hormones,
and drug residues [9].

The correct course of the biological waste composting process depends on many
factors, the most important of which are temperature [10], humidity [11], C/N ratio [12,13],
porosity [14], and aeration [15]. A crucial initial parameter influencing the dynamics of the
composting process is the C/N ratio, because the lack of nitrogen limits the intensity of the
process, while the excess of N affects ammonia’s intensive emission. Many researchers have
underline the crucial influence of C/N ratio on the proper run of the composting process,
showing negative effects of too low as well of too high values of this parameter [16].

The composting process consists of four main phases that are microbiologically differ-
ent, which are identified depending on the temperature. These are the mesophilic phase,
the thermophilic phase, the cooling phase, and the maturing phase [17]. The four phases
may overlap partly. In the thermophilic phase, the highest activity of microorganisms
and therefore the highest degree of degradation of biological material occurs between 50
and 60 ◦C [18]. The thermophilic phase of the composting process involves the action
of microorganisms that process biological material, which generates large amounts of
heat [19]. The temperatures of compost heaps with limited or zero air access can be as high
as 90 ◦C [20]. However, temperatures above 65 ◦C lead to a decrease in microbial activity,
which slows down composting processes and prolongs the biodegradation of waste [21].

The possibilities of receiving heat from the composting process have long been known,
beginning with the systems used in China 2000 years ago. Smith et al., 2017 [22] carried
out an extensive review of the structure of systems, the recovery factor, and the use
of heat recovered from composting. There are three approaches to obtaining heat from
composting: the direct utilization of heat from compost steam, heating by the conduction
of heat exchangers inside a stack [23], and capturing latent heat using compost steam and
a condenser heat exchanger [24]. Commercial applications of energy recovery from the
composting process and the use of heat have been described in several articles [23,25]. In
the practice found on a real-scale composting plant, researchers found that during the
winter, heat recovered from working reactors is used to increase the temperature of air
pumped to starting reactors in order to accelerate the process.

1.2. Materials for Composting

Composting is a process that allows the processing of a very wide range of different
types of biological materials [26]. This process is particularly dedicated to processing vari-
ous types of more or less burdensome organic waste into a stabilized and environmentally
friendly compost [27]. It is worth emphasizing that composting is a very stable process,
and microorganisms are resistant to various contamination types in organic waste [28].
Therefore, this process is dedicated to processing such waste materials as municipal sewage
sludge, kitchen waste, expired and spoiled food, animal excrement, and even carcass
(outside the EU, where the disposal of the carcass in the composting process is not pro-
hibited) [29,30]. Many examples from economic practice show that the management of
nuisance waste in the composting process can bring companies many financial benefits—on
the one hand, thanks to the fees for taking the waste, and on the other hand, thanks to
the revenues for selling the compost [31,32]. However, it should be noted that the price of
compost is related to accessible nutrients and organic matter content [33].

In practice, the right solution is to compost materials with different parameters,
i.e., substrates with high and low nitrogen content (such as poultry manure and wood
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chips), moist and dry (such as stillage and onion husk with the addition of maize straw), or
also with high and low bulk density (e.g., sewage sludge and straw) [34,35].

The physicochemical properties of composted biological waste necessitate the use
of various natural additives to improve the composting process [36]. Different organic
compositions, such as biochar, wood bark, straw, leaves, spent coffee grounds, and inor-
ganic materials, such as zeolites, lime, and minerals, are added to the compost as bulking
agents [37–39].

Coffee is one of the most popular beverages in the world and the second most traded
commodity after crude oil [40]. In 2018/19 (crop year), global coffee production exceeded
10.26 million tons [41]. One kilogram of coffee beans generates 0.91–1.2 kg of spent grounds,
depending on the brewing method [42]. Such a large quantity of coffee waste generates
significant environmental consequences on a global scale [43]. Coffee is brewed with the
use of various methods in households and catering outlets, and pure grounds are rarely
produced. In most cases, spent coffee grounds are mixed with other biological wastes from
restaurants and households, which makes them a suitable material for composting.

The composition of the coffee grounds is as follows (as reference value [g/100 g dry matter
(DM)]): total carbon—47.8–58.9 [44,45]; total nitrogen—1.9–2.7 [46,47]; cellulose—8.6–12.4 [46,48];
hemicellulose—39.1 [46]; lignin—23.9–33.6 [46,49]; fat—2.29 [46]; ash—1.3–1.43 [46,49] and
protein (g protein/100 g)—6.7–17.44 [46,50].

Coffee grounds are abundant in organic compounds, which makes them suitable
material for a variety of applications, including:

• Composting [12,51,52],
• Biodiesel production [53,54],
• Pellets and briquettes production [55–57],
• Source of sugar [58],
• Production of activated carbon [59],
• Sorbent for removing metal ions [60,61],
• Ethanol production [62,63], and
• Mushroom growing medium [64,65].

Spent coffee grounds constitute organic waste whose decomposition requires signifi-
cant quantities of oxygen, thus posing a considerable burden on the natural environment.
Coffee grounds can be partially toxic due to the presence of polyphenols, caffeine, and tan-
nins. Composted coffee grounds undergo fermentation due to their high moisture content,
which increases the risk of spontaneous ignition [66]. Coffee grounds should be processed
to prevent environmental hazards. The addition of non-composted spent coffee grounds
may adversely affect the activity of microorganisms in the soil [67].

Heat is partially accumulated in waste, and it increases the temperature of composted
material. A drop in the warmth of composted matter by several to more than ten degrees
(while maintaining the lowest temperature threshold for the thermophilic phase at 55 ◦C)
does not inhibit the composting process. It supports partial heat recovery [68]. Maintaining
the temperature value has a positive effect on the speed of the composting process. Receiv-
ing too much heat can cool the compost pile and slow down the degradation of biological
material [69].

The aim of this study is to analyze the effect of heat removal during the thermophilic
phase on the energetic aspects of the biowaste composting process. The basic tested materi-
als were cabbage leaves with wheat straw, and this mixture was supplemented by different
additions of spent coffee grounds. Knowing that composting is a strongly exothermic
process, we can assume that in the real-scale installation, it could be possible to recover the
significant amount of ecologic heat, which actually is practically never used.

2. Materials and Methods

The experiment was performed in two parallel bioreactors. Adiabatic sealed bioreac-
tors with a working volume of 30 dm3 each, equipped with a controlled aeration system,
were used in the experiment. The bioreactors were provided with a sensor system for
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controlling temperature distribution in the analyzed compost heap and measuring the
moisture content of emitted gases. The content of oxygen, carbon dioxide, methane, sul-
fur compounds, and nitrogen compounds were measured with a portable gas analyzer
(GA5000, Geotech), and the results were automatically recorded in a computerized data
acquisition system. One of the bioreactors was equipped with a dedicated heat removal
system where the heat exchanger was designed to evenly receive heat from composting
material during the thermophilic phase of the process (Figure 1). It has to be underline that
this heat removal system was the key element for the realization of the planned experiment
in order to reach the aim of the study.

Figure 1. Schematic diagram of the system for laboratory composting with heat collection capabil-
ity. 1—bioreactor, 2—compostable materials, 3—temperature sensors, 4—flow meter, 5—air pump
with flow regulator, 6—air cooler, 7 and 8—condensate and leachate collectors, 9—gas analyzer,
10—perforated plate, 11—heat exchanger, 12—system of circulation and measurement of collected heat.

The heat removal system consists of a heat exchanger placed inside the composted
material in the form of properly shaped tubes. Water with a variable flow rate is pumped
through the heat exchanger. The flow rate depends on the temperature inside the bed of
the composted material. We measured the temperature difference (with accuracy ±0.5◦) of
water at the outlet and at the inlet of the heat exchanger. The temperature difference and
the amount of water flowing made it possible to calculate the amount of heat received.

Data from the literature [70,71] were used to set the optimal temperature at which
heat can be received without compromising the composting process or the quality of the
produced humus. The amount of received heat was computed by the metering system.
Błaszczyk and Fit [71] and Neugebauer et al. [72] processed the results of several studies
investigating the rate of carbon dioxide production, oxygen consumption, and biomass
loss during composting at different temperatures. The microbial activity was highest at a
temperature of 55–65 ◦C. Błaszczyk and Fit [71] indicate that this is the optimal temperature
range for most thermophilic microorganisms.

The materials used in the described research were analyzed before the experiment
within the following methods (always in three repetitions): Total Solids—TS, within the
Polish Norm PN-75 C-04616/01 (drying in 105 ◦C by 24 h), organic matter (Volatile Solids,
VS) content was analyzed within the norm PN-Z-15011-3 by combustion in 525 ◦C by 3 h
and pH within the norm PN-90 C-04540/01. Total carbon (C) and total nitrogen (N), which
are indispensable for C/N ratio calculation, were determined using a Perkin Elmer Series
II 2400 autoanalyzer with a thermal conductivity detector (TCD). The basic characteristics
of the materials used in the composting experiments are presented in Table 1.
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Table 1. Characteristics of materials used in composting experiments.

TS (%
FM)

VS
(%TS)

Nitrogen
(g/kg TS) pH C/N

Ratio (-)

Cabbage leaves 9.11 90.3 21.0 5.91 20
Wheat straw 95.3 88.9 3.4 6.96 125

Coffee grounds 49.3 48.4 27.3 6.20 21

Three experiments were conducted simultaneously with three batches of mixed bi-
ological waste composed of cabbage leaves, wheat straw, and coffee grounds. Identical
biomass mixtures (MIX1, MIX2, and MIX3) were composted simultaneously in two biore-
actors (bioreactor one, without heat removal system and bioreactor two, with heat removal
system). The composition of each mixture presented in Table 2.

Table 2. Composition of composted biological material.

Cabbage Leaves
(kg)

Wheat Straw
(kg)

Coffee
Grounds (kg)

C/N
Ratio (-)

MIX1 10.0 1.0 0.0 35
MIX2 10.0 1.0 1.0 29
MIX3 10.0 1.0 2.0 27

Before composting, biological wastes were ground and mixed to increase their poros-
ity and promote aeration. Moisture content was determined using a moisture analyzer
RADWAG MAC 50/NH. The moisture content of the composted batches ranged from 62%
to 68%. The composted material had a C/N ratio of 27 to 35 (Table 2). The heat recovery sys-
tem installed in one of the bioreactors was automatically activated when the temperature
inside the compost heap exceeded 55 ◦C. The coolant flow rate increased with temperature.
The heat recovery system was automatically shut down when the temperature dropped
below 55 ◦C. The level of aeration was determined based on the literature [39,72]. All
batches were supplied with air at the rate of 0.15 m3 · h−1, and external temperature was
determined at 20 ◦C.

It has to be underlined that at the real industrial scale, the high costs of biowaste
treatment by the composting process can be reduced if the heat generated during the ther-
mophilic phase of the process can be recovered and used as a low-temperature heat source.

3. Results
3.1. Temperature

Microorganisms decomposing organic matter produce significant quantities of carbon
dioxide and heat. The temperatures in each bioreactor filled with various types of biologi-
cal wastes are presented in Figures 2–4. The temperature in the bioreactor without heat
recovery is denoted as Series1, and the temperature in the bioreactor with heat recovery
is denoted as Series2. In bioreactors without heat recovery, temperatures similar to those
presented in the literature were reported [72,73]. In each case, a significant influence of
coffee grounds addition on the composting process was observed, especially on the dy-
namics of temperature increase in the initial phase of the composting process. In the case
of the MIX2, the temperature of 55 ◦C was recorded as early as on the sixth day of the
experiment, when for MIX3, it was on the eighth day, and for MIX1, respectively, it was
on the ninth day of research (Figures 2–4). There were also significant differences in the
maximum temperatures that were noted in the bioreactors without a heat collection system:
MIX2—80 ◦C, MIX3—75 ◦C, MIX1—64 ◦C. The results of the experiment indicate that the
addition of coffee grounds to biological material can stimulate the composting process. In
the case of the MIX2, the addition of 1 kg of ground coffee increased the maximum temper-
ature during the thermophilic phase by 23 ◦C compared to the maximum temperature for
MIX1. For MIX3, the maximum temperature during the thermophilic phase was only 10 ◦C
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higher than for MIX1, suggesting that the addition of 2 kg of ground coffee was excessive,
resulting in a less favorable C/N ratio than in MIX2.

In all three mixtures, the thermophilic phase of the composted material was prolonged
when the composted mixture was cooled and maintained at a temperature of 55–65 ◦C: one
day for MIX1 and MIX3, and two days for MIX2.

Figure 2. Changes in temperature during the composting of MIX1.

Figure 3. Changes in temperature during the composting of MIX2.
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Figure 4. Changes in temperature during the composting of MIX3.

3.2. Carbon Dioxide Emissions

The amount of carbon dioxide in gas emitted from composted waste is an indicator
of the activity of thermophilic microorganisms, which metabolize biomass by consuming
oxygen and producing carbon dioxide. The content of carbon dioxide in the exhaust gas
produced by each bioreactor for each type of composted waste is shown in Figures 5–7.
Series1 represents the content of carbon dioxide in exhaust gas produced by the bioreactor
without heat recovery, and Series2 denotes the amount of carbon dioxide in exhaust gas
from the bioreactor with heat recovery.

Figure 5. Changes in content CO2 during the composting of MIX1.
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Figure 6. Changes in content CO2 during the composting of MIX2.

Figure 7. Changes in content CO2 during the composting of MIX3.

The data shown in Figures 5–7 indicate that the content of carbon dioxide in exhaust
gas was highly correlated with temperature in all bioreactors. Lower temperatures during
the thermophilic phase in bioreactors with heat recovery did not decrease the amount of
carbon dioxide in the exhaust gas, but in contrary, CO2 emission was higher and more
intensive. The above phenomena indicate that thermophilic microorganisms remained
highly active when the composted material was cooled and maintained at a temperature
of 55–65 ◦C. In Figure 6 (MIX2), carbon dioxide concentrations in exhaust gas are higher
than in the remaining cases, which indicates that MIX2 was characterized by the most
satisfactory C/N ratio and the decomposition process during the thermophilic phase was
run in the optimum temperature (55–65 ◦C) (Figure 3).
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3.3. Heat Recovery

In each case of composted mixtures, the heat recovery system worked properly. In the
case of MIX1, the heat recovery system operated for 173 h; for MIX2, it operated for 236 h;
and for MIX3, it operated for 188 h (Figures 2–4). The calculated amount of heat obtained
per kilogram of the dry mass of the composted material was respectively for the mixture
1—855 kJ · kg−1, mixture 2—1950 kJ · kg−1, mixture 3—1455 kJ · kg−1. It should be noted
that the highest heat production (in case of mixture II) was obtained in the case of 1 kg of
spent coffee ground addition, which was 10% of the initial mass prepared for composting.
No addition as well as a higher addition (20%, 2 kg) of coffee spent grounds led to obtaining
a lower amount of heat generated during the thermophilic composting phase.

Comparing the obtained results, we can observe the relation of the recovered heat
with CO2 emission, which is related to the high activity of thermophilic microorganisms
decomposing organic matter.

4. Discussion

Talking about the reliability of the obtained results, it has to be underlined that
the volume of used bioreactors (30 dm3 of working space) is bigger than those mostly
found in the literature (5–15 dm3) [74,75]. Additionally, the thermal insulation of the
bioreactor chambers has guaranteed the reduction of heat losses by walls. The bioreactors
design is quite similar to the construction of large-scale industrial bioreactors for biowaste
composting. Thus, we assume that the obtained results can be applied in the commercial-
scale plants in order to recover the heat generated during the thermophilic phase of
composting. This can change the composting plant into the very modern and energy-
efficient factories, which are characteristic for the coming Industry 4.0 [76]. The better
energy efficiency of industrial plants and agriculture is one of the European Green Deal
(EGD) policy elements currently being implemented in the EU [77]. This research, indicating
the possibility of improving the composting process’s efficiency by managing some of the
heat generated (previously lost to the atmosphere), fits in with the recommendations of the
new EGD policy.

Due to the highly diversified structure, chemical composition, and humidity, additives
must be used to compost most biological waste. These additives impact improving the
C/N ratio, porosity, or moisture of the composted biological material [78,79]. It is necessary
to use additives while composting wastes with high humidity and low carbon content [80].
In the case of composting sewage sludge, additives can be, for example, barley straw [81],
maize straw [82], or wood chips and sawdust [83]. The above-used additives improve the
composted material’s porosity, which facilitates the access of oxygen necessary for the
metabolism of thermophilic microorganisms that degrade biological waste [84]. An equally
important reason for the use of composting additives is to reduce ammonia emissions.
Many publications show very high ammonia emissions when composting materials with a
low C/N ratio [85,86]. One way to reduce this emission is to use various types of additives:
materials rich in organic carbon, substances with high absorption capacity (e.g., wood
bark), or biochar [30]. Many studies have shown that various materials added to composted
waste can significantly reduce NH3 emissions [87,88].

The crucial role of C/N in the composting process can be also noticed when the described
research studies are compared with quite similar experiments done by Santos et al. [51].
The optimal initial C/N ratio is often fixed as between 25:1 and 30:1. In the described
experiments, the MIX1 with the highest C/N ratio (35:1) has reached the lowest maximum
temperature (65 ◦C), whereas MIX2 and MIX3 (C/N close to optimal—29 and 27:1) have
reached the temperatures of 80 and 75 ◦C. This means that in MIX1, the lack of nitrogen
can become a limitation factor for the strong dynamic of microbes growth. However, in the
experiments with coffee grounds described by Santos et al. [51], the mixtures had an initial
C/N ratio between 18.7:1 and 22.2:1, which seemed too low for initial composting. As a
consequence, the maximum temperature during the thermophilic phase never reached
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even 60 ◦C. This can result in a limited availability of organic carbon compounds, which
are indispensable for reaching the dynamic thermophilic phase and strong CO2 emission.

On the other hand, in the described research, the influence of the addition of coffee
grounds on the heating intensity of the composted mixture (vegetable waste and straw)
was investigated, as well as the influence of heat recovery during the process on the most
intensive heating of the compost, the length of the thermophilic phase, and CO2 emission.
It should be emphasized that the composting process generates significant amounts of heat,
especially as a result of metabolic processes of thermophilic microorganisms [89]. In the
case of composting systems with bed aeration, in most cases, the heat is removed with the
outgoing air, and it is not used anywhere [90]. Single systems that use the air heat from the
aeration of compost piles are created in closed bio-waste treatment systems [25]. There are
also systems using the heat of composting as the lower source of an absorption heat pump
in large systems of biological waste utilization by the composting method [91], or heat
collection systems using thermoelectric generators converting the low-temperature heat of
the bioreactor housing and converting it into electricity [92]. It should be noted that un-
controlled heat consumption may slow down and sometimes stop the composting process
(especially in the range over 80 ◦C). In this case, heat collection systems should be used
that ensure the maintenance of the optimal composting temperature in the thermophilic
range of the 5–65 ◦C process.

5. Conclusions

Based on the described experiment results, we can formulate following conclusions:

1. The addition of spent coffee grounds (10%) for the composting of green bio-waste
materials (cabbage leaves with straw addition) increases the effectiveness of the
composting process.

2. In each of all the investigated cases, the discharge of heat excess by the refrigeration
system caused a prolongation of the thermophilic phase. Presumably, this shows that
temperatures in the range 55–65 ◦C create the best thermal comfort for the growth of
the microorganisms and decomposition of organic material, which was also confirmed
by the increased emission of carbon dioxide from the cooled composts with added
coffee grounds (MIX2 and MIX3).

3. Heat recovery during the most intense part of the thermophilic phase has provided
thermal comfort for the microorganisms by keeping the temperature in the range of
55–65 ◦C. The effect was the higher CO2 emission from cooled materials, which is an
effect of higher microbial activity.

4. The amount of heat recovered, even in the case of MIX2 (1950 kJ · kg−1 dry matter), is
not high, but for large installations for biological waste composting, it can be used,
for example, to heat the batch in the following bioreactors in winter conditions or for
other similar purposes.
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35. Czekała, W.; Malińska, K.; Cáceres, R.; Janczak, D.; Dach, J.; Lewicki, A. Co-composting of poultry manure mixtures amended
with biochar—The effect of biochar on temperature and C-CO2 emission. Bioresour. Technol. 2016, 200, 921–927. [CrossRef]
[PubMed]

36. Aviani, I.; Laor, Y.; Medina, S.; Krassnovsky, A.; Raviv, M. Co-composting of solid and liquid olive mill wastes: Management
aspects and the horticultural value of the resulting composts. Bioresour. Technol. 2010, 101, 6699–6706. [CrossRef]

37. Yang, Y.; Du, W.; Ren, X.; Cui, Z.; Zhou, W.; Lv, J. Effect of bean dregs amendment on the organic matter degradation, humification,
maturity and stability of pig manure composting. Sci. Total Environ. 2020, 708, 134623. [CrossRef]

38. Hashemi, S.; Boudaghpour, S.; Han, M. Evaluation of different natural additives effects on the composting process of source
separated feces in resource-oriented sanitation systems. Ecotoxicol. Environ. Saf. 2019, 185. [CrossRef] [PubMed]
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