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Abstract: A comprehensive review of different thermal energy storage materials for concentrated
solar power has been conducted. Fifteen candidates were selected due to their nature, thermophysical
properties, and economic impact. Three key energy performance indicators were defined in order to
evaluate the performance of the different molten salts, using Solar Salt as a reference for low and high
temperatures. The analysis provided evidence that nitrate-based materials are the best choice for the
former and chloride-based materials are best for the latter instead of fluoride and carbonate-based
candidates, mainly due to their low cost.

Keywords: thermal energy storage; molten salts; concentrated solar power; sensible heat stor-
age; nanofluids

1. Introduction

Electricity generation is one of the main contributors to greenhouse gas (GHG) emis-
sions due to CO2 being released from fossil fuels; additionally, electricity is also one of the
energy vectors upon which many applications will be transformed in the near future [1,2].
As decarbonization is the objective of future energy systems, its stability and dispatchability
at a reasonable cost must be ensured. Among all those available, solar energy is one of the
most suitable alternatives: it is clean, abundant, and easily obtained anywhere on earth.
Among the different alternatives, concentrated solar power (CSP) in combination with
thermal energy storage (TES) allows for dispatched electricity to match peak demand and
solves the supply−demand coupling problem, allowing energy release and its transforma-
tion to electricity whenever necessary and eluding the inherent instability of solar resource
availability [3].

Although the International Energy Agency (IEA) estimates that CSP will provide 11%
of all global electricity generated by 2050 [4], current plants in operation or in development
mainly use sensible TES systems with nitrate-based materials. Other alternatives must be
explored, since they have the potential to overcome several drawbacks of commercial TES
materials in terms of cost reduction, thermal properties enhancement, and higher/broader
operational. TES, together with CSP, still have a long road ahead of them to be considered
consistent, robust, continuous, and competitive alternatives. Thus, the incorporation of
both into future energy management and generation mix depends greatly upon the future
developments of TES materials.

The authors of this work spot the need to present a comprehensive review of the
most promising next generation TES materials in order to analyze their strengths and
weaknesses, sum up the most relevant thermodynamical properties found in the narrative,
and define and evaluate three different key performance indicators (KPIs) to help make the
most suitable choice for a specific CSP application.
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2. Thermal Energy Storage Materials

High-temperature TES is one of the cheapest forms of energy storage [5]. Although
there are different alternatives, such as latent, thermochemical, or solid sensible heat
storage [6–8], the most common TES materials are molten salts, which are classified as
sensible heat storage [9]. Sensible storage implies that increasing the temperature of a
substance increases its energy content; when the material is cooled, the stored energy is
released, but without a phase change. The following characteristics are desirable in a TES
material [10,11]:

• The energy storage density must be high for a compact design.
• For indirect TES systems, those where the energy storage medium is different from

the heat transfer fluid (HTF) circulating through the solar field, a good heat transfer
between HTF and TES material is needed to optimize the system’s efficiency.

• The TES material should be thermally stable and possess a low vapor pressure in the
operating temperature range to avoid undesirable side effects such as material ageing,
performance decline of the system, or GHG emissions.

• A high thermal, chemical, and cyclic stability for extended plant life should be ex-
pected.

• A non-flammable and non-toxic nature are desirable.
• Inexpensive and abundant.

The following thermal and transport properties are essential for a suitable selection of
the proper material that complies with most of the previously mentioned characteristics:

• Specific heat capacity: this property controls the capacity of the temperature rise that
can be transferred or stored. It improves the TES system efficiency [12].

• Melting temperature: this is directly related to operating and maintenance (O&M)
costs since higher melting points need antifreeze protection.

• Decomposition temperature: this is the theoretical maximum operating temperature
that must not be exceeded in order to keep the TES material operative and in good
condition; the higher the maximum operating temperature, the higher the TES system
efficiency achieved.

• Thermal conductivity: this property is related to the heat transfer behavior. Higher
values are preferred in order to achieve higher heat exchange efficiency.

• Viscosity: this is directly related to the cost of pumping energy through the system,
and lower values are preferable. It is also linked to the previous property, and a
compromise between them should be taken.

• Density: this directly affects the specific energy that a selected TES material can store
per unit of volume. The amount of heat carried by the HTF at working temperature
relates to the density of a material and its specific heat capacity. Higher values are
recommended.

Sensible TES has other relevant properties: the specific heat, the temperature variation
of the material (see Equation (1)), as well as conductivity, diffusivity, thermal stability,
vapor pressure, and the cost and compatibility of materials. Its main drawbacks are
the temperature stability and its energy storage density, which is lower than latent and
thermochemical TES [13].

Q = mcp∆T = ρVcp∆T (1)

For high temperature applications, such as CSP, molten salts are the most widely used
material. This is due to their high volumetric heat capacity, a high boiling point, high
temperature stability, and their vapor pressure being close to zero. Additionally, they are
relatively cheap, readily available, neither toxic nor flammable, and can act as an HTF as
well as a TES material. However, they have certain disadvantages: they have a relatively
high melting point (generally > 200 ◦C), which results in them solidifying in pipes in the
absence of a heat source and thus necessitates the installation of antifreeze systems; they
also have high viscosity and low thermal conductivity compared to other fluids [9,13].
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Focusing on reducing the levelized cost of electricity (LCOE) for CSP plants, which
is currently slightly higher than other renewable alternatives [14], there is presently a
strong interest in developing higher temperature power systems (around 700 ◦C) with
better efficiency, such as supercritical CO2 Brayton cycles [15]. Current CSP plants are
limited to relatively low temperatures (below 600 ◦C), which means they are enough for
parabolic through collector (PTC) or linear Fresnel reflector (LFR) plants. However, they
are inadequate for higher temperatures (up to 950 ◦C) that can be achieved in central
tower (CT) plants [16]. Hence, there is substantial potential to increase the operating
temperatures (increasing the Carnot efficiency) and the heat-to-electricity efficiency for
the next CSP generation. Replacing commercial nitrate-based molten salts with other TES
materials such as chloride, fluoride, or carbonate-based materials will achieve this [17,18].
Tables 1 and 2 summarize the TES materials analyzed in the present work along with their
thermal properties.

Table 1. Composition, fusion, and decomposition temperatures for selected molten salt thermal energy storage (TES)
materials.

%Weight Fusion
Temperature (◦C)

Decomposition
Temperature (◦C) References

Nitrate-based
Solar Salt 60 NaNO3–40 KNO3 240 565 [19]

Hitec 7 NaNO3–53 KNO3–40 NaNO2 142 450 [20]
Hitec XL 15 NaNO3–43 KNO3–42 Ca(NO3)2 130 450 [21,22]

LiNaKNO3 30 LiNO3–18 NaNO3–52 KNO3 118 550 [23,24]
LiNaKCaNO3 15.5 LiNO3–8.2 NaNO3–54.3 KNO3–22 Ca(NO3)2 93 450 [25]

LiNaKNO3NO2 9 LiNO3–42.3 NaNO3–33.6 KNO3–15.1 KNO2 97 450 [26]

Chloride-based
KMgCl 62.5 KCl–37.5 MgCl2 430 >700 [27]

NaKMgCl 20.5 NaCl–30.9 KCl–48.6 MgCl2 383 >700 [27,28]
NaMgCaCl 39.6 NaCl–39 MgCl2–21.4 CaCl2 407 650 [29–31]
NaKZnCl 7.5 NaCl–23.9 KCl–68.6 ZnCl2 204 >700 [31,32]
KMgZnCl 49.4 KCl–15.5 MgCl2–35.1 ZnCl2 356 >700 [31,32]

Fluoride-based
LiNaKF 29.2 LiF–11.7 NaF–59.1 KF 454 >700 [33]

NaBF 3 NaF–97 NaBF4 385 >700 [34]
KBF 13 KF–87 KBF4 460 >700 [35]
KZrF 32.5 KF–67.5 ZrF4 420 >700 [34]

Carbonate-based
LiNaKCO3 32.1 Li2CO3–33.4 Na2CO3–34.5 K2CO3 397 670 [36]

Table 2. Properties of selected molten salt TES materials.

Density (kg/m3) Specific Heat Capacity (J/kg◦C) References

Nitrate-based
Solar Salt 2090 − 0.636T 1443 + 0.172T [37]

Hitec 1938 − 0.732T 1560 − 0.001T [34,38]
Hitec XL 2240 − 0.827T 1542.3 − 0.322T [39]

LiNaKNO3 2088 − 0.612T 1580 [40]
LiNaKCaNO3 1993 − 0.700T 1518 [41,42]

LiNaKNO3NO2 2074 − 0.720T 1135.3 + 0.071T [26]

Chloride-based
KMgCl 2125.1 − 0.474T 999 [32,43]

NaKMgCl 1899.2 − 0.4253T 1023.8 [27]
NaMgCaCl 4020.57 − 2.7697T 12,382.2 + 0.040568Tˆ2–42.78T [29,30]
NaKZnCl 2625.44 − 0.926T 911.4 − 0.0227T [32,44]
KMgZnCl 2169.6 − 0.5926T 866.4 [27]
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Table 2. Cont.

Density (kg/m3) Specific Heat Capacity (J/kg◦C) References

Fluoride-based
LiNaKF 2530 − 0.73T 976.78 + 1.0634T [33,45]

NaBF 2252.1 − 0.711T 1506.0 [34]
KBF 2258 − 0.8026T 1305.4 [35]
KZrF 3041.3 − 0.6453T 1000 [34]

Carbonate-based
LiNaKCO3 2270 − 0.434T 1610 [36]

2.1. Nitrate-Based Materials

The most popular TES material used in CSP is Solar Salt: a non-eutectic mixture
of 60% NaNO3–40% KNO3 (wt%), which has been investigated since the 1980s [46,47].
However, there are other candidates, mostly derived from Solar Salt. The main reasons
for its popularity are its relatively low cost, its good chemical safety (it is neither toxic
nor flammable), and its reasonable material compatibility which allows standard stainless
steels to be used without incurring high corrosion rates [48,49]. However, its operating
temperature range is restricted by a crystallization temperature of around 240 ◦C and a
maximum operating temperature of around 565 ◦C, after which decomposition and salt
degradation reactions begin [19,50]. In general, when considering an alkaline and alkaline
earth nitrate generic mixture, the following main decomposition reactions can occur [21,51]:

MNO3 ↔ MNO2 +
1
2

O2 (2)

5 MNO2 → 3 MNO3 + M2O + N2 (3)

M′(NO3)2 → M′O + N2 +
5
2

O2 (4)

M′(NO3)2 → M′O + NO2 + NO + O2 (5)

Being M alkaline and M′ alkaline earth metals. Oxides can be produced [20] and
nitrates can in turn react with the atmospheric humidity and carbon dioxide:

M2O + H2O↔ 2MOH (6)

M2O + CO2 ↔ M2CO3 (7)

M′O + H2O→ M′(OH)2 (8)

M′(NO3)2 + CO2 → M′CO3 + N2 +
5
2

O2 (9)

A realistic principle to determine the stability of nitrate mixtures is to measure the
occurrence of reactions (3), (4) and (6)–(9) where oxides, hydroxides, and carbonates are
produced [52]. In fact, the formation of nitrites from the equilibrium in reaction (2) does
not prejudice neither the thermophysical properties of the mixtures nor the compatibility
properties [51]. On the other hand, the solubility of oxides, hydroxides, and carbonates
is limited so solids can be produced and, moreover, the corrosion phenomena from the
thermal fluid are more acute [21]. From several investigations of different mixtures of
alkaline and alkaline earth nitrates, the following considerations can be made:

• If only sodium and potassium nitrates are present, the thermal stability limit is around
600 ◦C [51,53–57].

• The presence of lithium nitrate leads to a thermal stability limit between 550 and
600 ◦C [51,58].

• The addition of calcium nitrate produces a drastic decrease in long-term stability; an
upper temperature value of around 450 ◦C has been proposed [21,22].
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• The presence of nitrites limits the thermal stability at about 450 ◦C under air atmo-
sphere [59,60].

• The decomposition kinetics depends on the concentration of chemical species; with
respect to the nitrate mole fraction, a first order kinetics was found for sodium and
potassium nitrates’ decomposition into nitrites [53,57].

• The kinetics degradation is also related to the surrounding atmosphere, its humidity,
and CO2 content [52].

Little effort has been devoted to increasing the stability limit of the upper temperature
of nitrates, the chemical nature of the stability loss, nor the long periods of time in which
the maximum temperature must be maintained. In addition, the results obtained using
other cations different from alkali metals lead to a decrease in thermal stability [52,61,62].
To overcome this problem, some authors have proposed confinement of the molten salt in a
controlled atmosphere that allows for an increase of the partial pressure of oxygen and for a
shift to the nitrate side the reaction number 2 in order to decrease the nitrite concentrations
at the same temperature [63]. Nonetheless, the current research into these materials is
focused on decreasing the crystallization points of the mixtures and adding other alkali
(i.e., lithium) or alkaline earth (i.e., calcium) cations, or other anions (i.e., nitrite) [51].

Regarding lithium nitrate, mixtures have been proposed in combination with sodium
and potassium nitrates whose crystallization points can be found below 130 ◦C and report
thermophysical properties comparable to those presented by Solar Salt [47,51,58,64–67].
Concerning calcium nitrate, several formulations related to its addition to sodium and
potassium nitrates have been proposed [47,62,67,68]. The most researched is the one
marketed as Hitec XL (15% NaNO3–43% KNO3–42% Ca(NO3)2 wt%), which closely corre-
sponds to the ternary eutectic point of the published phase diagrams [68,69]. However, the
presence of Ca(NO3)2 makes it difficult to accurately determine the crystallization point
by calorimetric methods (around 130 ◦C) given the presence of slow transitions with low
enthalpies [68], which explains the uncertainties and disparities presented in the literature.
Similarly, the maximum operating temperature presents discrepancies in the published
articles due to decomposition reactions [62,67,68]. On the other hand, Ca(NO3)2 increases
the viscosity up to three times in comparison to the reference values of Solar Salt and
this compromises the application of these mixtures at very low temperatures [62]. Both
previously described nitrates have also been proposed to be used together, especially in
ternary mixtures that include KNO3 [22,58,65,67].

The only anion proposed for these mixtures and applications with nitrate is nitrite,
mainly sodium nitrite in a ternary mixture with sodium and potassium nitrates, and the
composition most widely studied and used is the eutectic one (7% NaNO3–53% KNO3–40%
NaNO2 wt%), also known as Hitec [20]. The use of nitrites leads to a decrease in the melting
point of the liquid, but its presence limits the thermal stability at about 450 ◦C under air
atmosphere due to decomposition and degradation reactions, limiting its application to
mid-temperature applications [59,60].

Other high-order mixtures constituted by alkaline nitrates [20,26,47,58] or nitrate−
nitrite mixtures [25,26,65] have been proposed, but they have received little attention, and
as of yet there is no evidence of any commercial application.

2.2. Chloride-Based Materials

Molten mixtures of chlorides have been considered as coolants in nuclear reac-
tor designs where fluids operate at about 525 ◦C and are stable at temperatures above
800 ◦C [45,70,71]. Due to their low cost, high decomposition temperatures, and natural
abundance, molten chlorides are considered good TES material candidates even if their
melting temperatures are generally higher than those of nitrate salts, but typically lower
than fluoride and carbonate-based TES materials [72]. In recent years, research has focused
on the development of multicomponent mixtures of lithium, sodium, potassium, mag-
nesium, calcium, and zinc chlorides. Nonetheless, although lithium and zinc chlorides
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offer the mixtures the lowest melting point, their high cost implies a major disadvan-
tage [15,72,73].

Regarding binary mixtures, the KCl–MgCl2 eutectic composition has the lowest melt-
ing temperature among all possible binaries considered above [27,74] and has been widely
studied as a primary coolant in nuclear power [75]. Its vapor pressure is very low, even at
high temperatures, resulting in good thermal stability [43]. In addition, if NaCl is added to
the mixture, the melting temperature of the ternary eutectic is about 50 ◦C lower, which
allows the thermal properties to remain almost unchanged [28].

The NaCl–MgCl2–CaCl2 mixture has been proposed due to its relatively low-temper-
ature melting point (424 ◦C) and because it has a heat capacity higher than all the alkaline
and alkaline earth chloride binary mixtures, excluding the ones with lithium chloride [29].
Moreover, the addition of potassium chloride to the latter mixture diminishes the melting
point to 385 ◦C and increases the heat capacity by more than 25% [76]. By contrast,
calcium chloride mixtures lack the same thermal stability as other chlorides, resulting in an
operating temperature gap lower than other chloride mixtures [29].

Mixtures containing zinc chloride are very interesting due to the low melting temper-
ature achieved. The NaCl–KCl–ZnCl2 mixture is one of the most promising candidates
given its eutectic has a very low melting temperature of 204 ◦C [32]. The KCl–MgCl2–ZnCl2
mixture eutectic also has a reasonably low melting temperature of 356 ◦C [62] and high
thermal stability of up to 730 ◦C [77]. However, as was mentioned earlier, the high cost of
zinc chloride makes these mixtures less attractive.

Nevertheless, their main drawback is corrosion: the corrosion mechanisms are com-
plex, with different interactions between atmosphere, molten salts, outer and inner corro-
sion layers, and the matrix of metallic alloys [78–81]. Chloride melts facilitate corrosion
of steels in air, and this fact should be considered in the development of corrosion mit-
igation methods, such as inert atmospheres and gas purification of the melts prior to
its operation [82]. Container materials should be nickel-based superalloys which have
better corrosion resistance than stainless steels [83]. However, this leads to a more ex-
pensive solution for nitrate-based TES materials and should be taken into account for
future applications.

2.3. Fluoride and Carbonate-Based Materials

Fluoride-based molten salts have been used as nuclear coolant fluids due to their
relatively high specific heat capacity, thermal conductivity, and thermal stability compared
to other molten salts, including experimental reactors on a megawatt scale and in test loops
for hundreds of thousands of hours [33,71]. On the other hand, carbonate-based materials
are widely used in fuel cells, operating between 600–700 ◦C [84], and for cleaning and
processing uranium-containing alloys in the nuclear power industry [85].

In general, fluorides tend to be better HTF than chlorides and carbonates [45,70]
and possess almost the same thermal stability over 700 ◦C [86]. It has been stated that at
operating temperatures, the thermophysical properties of liquid fluoride-based salts are
similar to those of room temperature water except for their very low vapor pressure [33].
However, carbonate-based TES materials are generally more stable; a limit decomposition
temperature under air of 670 ◦C, 700 ◦C under argon, and no sign of decomposition under
CO2 atmosphere, even at 1000 ◦C, has been reported [86].

The first fluoride material presented in this work is the ternary eutectic mixture of
LiF–NaF–KF, which has good thermal properties, but a high melting temperature (see
Table 2). This is also a problem for other fluoride-based mixtures, but fluoroborates mix-
tures can slightly decrease the melting temperature and maintain other thermal proper-
ties [34,35]. In addition, compositions based on zinc fluorides can reduce the temperature
even further and present figures similar to those of chloride-based salts [34,35]. Other fluo-
rides, such as beryllium fluoride, demonstrate good performance and different mixtures
have been proposed, but their high cost makes them inappropriate for this application [87].
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Single and binary mixtures of carbonate salts have high melting points above
500 ◦C [88]. However, the ternary eutectic mixture Li2CO3–Na2CO3–K2CO3 has been
proposed as a TES material with a melting temperature of 397 ◦C [36]. In particular, the
richer the potassium carbonate mixtures are, the higher the temperature value they will
have (more than three times that of Solar Salt) [18]. Finally, some authors suggest mixtures
of fluorides with carbonates or other fluorides, carbonates, and chlorides, but they have
received little attention [89,90].

The main drawback for fluoride-based molten salt is corrosion, which is much lower
in carbonate and chloride salt mixtures. They should be thermodynamically stable relative
to the confinement materials because they tend to rapidly dissolve many of their oxide
protective layers, which limits choices [33,91]. By contrast, it has been stated that carbonates
are much less corrosive than fluorides and commercial stainless steels can be used in most
practical situations [18,92]. Nevertheless, viscosity is their main problem, as it is higher in
general than the other proposed salt mixtures in this work and therefore, its suitability for
this application, due to pumping issues, must be revised [93].

3. Molten Salts Properties Enhancement

One of the main reasons to advocate for the use of the molten salts in CSP plants and
other industrial facilities is their properties’ enhancement. This can be done by adding
nanoparticles (NPs) to the fused system in order to create a nanofluid (NF) [94]. The
basis for this solution is simple: the NPs can increase the specific heat capacity, precisely
one of the main properties that is relatively low in all molten salts in comparison with
other fluid-sensible materials like water or liquid metals, and therefore, it enhances the
overall CSP efficiency [95–97]. However, the rheological behavior of NFs is a limiting factor
because the viscosity of particulate suspensions increases as a function of particle volume
fraction. Consequently, a maximum number of NPs can be added to the fluid without
compromising the performance of the system exits [98,99].

Because of the high operating temperatures and aggressive nature of molten salts, the
main requirements of NP are to be stable at high temperatures and to have a strong affinity
to the adsorbate [100]. In addition, it is essential that they do not suffer deformations
and/or chemical degradation in order to conserve the NF design features.

NFs’ complex nature implies that many factors affect their thermal behavior [101–105]:

• Particle concentration, typically lower than 2%;
• Particle size, from 2 to 90 nm;
• Particle shape, mainly spherical or cylindrical;
• Particle type, oxides being the most popular, followed by carbon-based materials such

as graphite or multi-walled carbon nanotubes (MWCNTs) and solid metals;
• Interaction between liquid and particles.

Among nitrate-based molten salts, Solar Salt is the most investigated base fluid.
Different types and sizes of NPs like alumina, silica, iron, titanium, and copper or zinc
oxides have been investigated [106–109], reporting a maximum specific heat capacity
enhancement of 31.1% with 0.5%wt of silica NP [110]. Other nitrated-based mixtures
mentioned in this work have also been studied, mainly silica NPs, and the authors reported
similar enhancements compared to those obtained in the Solar Salt case [94,100–112].

Two different chloride-based NFs have been proposed. First, BaCl2–NaCl–CaCl2 mix-
tures with 1%wt of silica 20–30 nm NPs, which obtain a specific heat capacity enhancement
of about 14.5% [94]. Second, KCl–CaCl2–LiCl mixtures have been proposed with 1%wt of
silica 10 nm NPs that give a specific heat capacity enhancement of about 7.6% [113].

Regarding carbonate-based molten salts, the most investigated is the Li2CO3–K2CO3
eutectic mixture. It has been enhanced with silica, MWCNT, alumina, graphite, and TiO2
NPs [99,100,114–120] with different types and sizes. There is reportedly a very low specific
heat capacity increase of about 1–2% in various composition ranges with silica, but up to
17% in mixtures containing ≥0.5% of MWCNT NPs [99,121]. Until now, no fluoride-based
materials have been reported in the literature as NF candidates.
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4. Energy and Cost Analysis of TES Materials

Many economic assessments have been made elsewhere both for CSP plants and TES
systems [114,115,117,119,122–124], and it has been demonstrated that a CSP plant is more
cost-effective if it has a TES system [125,126]. There are many key parameter indicators
(KPIs) that can be used to carry out the techno-economic analysis for TES materials, and in
this work, the following were used:

• Specific mass energy density Em (in MJ/kg): quantifies the amount of energy stored
by the TES material in its operating temperature range and is defined in Equation (9).

• Specific volumetric energy density Ev (in MJ/m3): quantifies the same energy as the
previous KPI, but in terms of volume (its definition is given in Equation (10)). This is
helpful when estimating other KPIs in the TES system (i.e., confinement, land-area
dimensions, and cost) and is useful in determining the flow rate and if it was going to
be used as HTF.

• Energy storage cost Ec (in $/MJ): represents the direct cost of the stored energy and is
defined in Equation (11).

Em =
∫ Tdec

Tf us

cpdT (10)

Ev =
∫ Tdec

Tf us

ρcpdT (11)

Ec =
C

Em (12)

where Tfus and Tdec are the fusion and decomposition temperatures (in ◦C), ρ is the density
(in kg/m3), cp is the specific heat (in J/kg ◦C), and C is the cost (in $/kg) of the molten
salts. In this analysis, the temperature range considered will always be higher than
real ones and narrower due to safety considerations such as avoiding solidification and
decomposition. The values for the selected TES materials in this work are presented in
Table 3. In this analysis, Solar Salt was used as a reference for comparison issues, and
700 ◦C was considered the maximum temperature allowed.

Table 3. Specific cost and energy of selected molten salt TES materials.

Specific Cost
$/kg

Em

MJ/kg
Ev

MJ/m3
E

$/MJ References

Nitrate-based
Solar Salt 1.3 0.491 901.1 2.65 [127]

Hitec 1.93 0.480 826.9 4.02 [127]
Hitec XL 1.66 0.464 928.1 3.58 [127]

LiNaKNO3 1.1 0.683 1285.7 1.61 [56]
LiNaKCaNO3 0.7 0.542 977.1 1.29 [56]
LiNaKNO3NO2 N/A 0.408 764.9 N/A -

Chloride-based
KMgCl 0.35 0.271 431.3 1.29 [48]

NaKMgCl 0.22 0.325 541.6 0.68 [48]
NaMgCaCl 0.17 0.289 739.7 0.57 [128]
NaKZnCl 0.8 0.447 986.6 1.79 [48]
KMgZnCl 1 0.298 553.4 3.36 [48]

Fluoride-based
LiNaKF 2 0.391 824.1 5.11 [128]

NaBF 4.88 0.474 885.4 10.29 [129]
KBF 3.68 0.313 833.3 11.75 [129]
KZrF 4.85 0.280 750.3 17.32 [129]

Carbonate-based
LiNaKCO3 2.02 0.448 9912 4.15 [18]
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It is clear that for low temperature applications like PTC or LFR, nitrated-based
TES materials are the only ones suitable, while the rest are reserved for high temper-
ature CT plants operating up to 700 ◦C. Figures 1 and 2 gathers KPIs comparison for
selected candidates.

Figure 1. Nitrate-based TES materials KPIs comparison (Solar Salt = 1).

Figure 2. Chloride-based TES materials KPIs comparison (Solar Salt = 1).

Regarding specific mass energy density, values for nitrate-based materials are the most
attractive closely followed by carbonates, whereas chlorides and fluorides are in general
relatively less interesting. It is worth to point out that Solar Salt has one of the highest
values, only surpassed by nitrate mixtures containing lithium or lithium and calcium. In
the case of other mixtures, LiNaKCO3, NaKZnCl, and NaBF have very close values to
those reported for Solar Salt, giving high-temperature applications almost the same mass
energy density. For specific volume energy density, the values are very similar to the
previous ones; however, fluoride-based materials enhance their figures, almost to the same
level as the nitrates, whereas LiNaKCO3 has an improved performance compared to Solar
Salt. Finally, KPIs of previous chloride-based materials perform poorly in comparison to
the other candidates, but its specific energy costs are more than half the Solar Salt ones,
even achieving a reduction over 75%. This makes them one of the best choices for future
high-temperature applications over fluorides and carbonate-based materials.
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5. Conclusions

A comprehensive review of different thermal energy storage (TES) materials for
concentrated solar power (CSP) has been completed: fifteen selected materials have been
studied and compared and their nature, thermophysical properties, and economic impact
have been considered. Three energy key performance indicators (KPIs) have been defined
in order to evaluate the performance of the different molten salts by using Solar Salt as
a reference.

The results of this analysis reveal that the most popular and sensible TES material,
Solar Salt, scores reasonably well in comparison with other nitrate-based materials in
terms of energy density and cost for its temperature interval of operation. However, other
nitrate-based materials achieve almost the same figures, but their broader temperature
ranges have the potential to be more interesting for very low-temperature applications.

In general, the studied chloride-based materials seem to be the favorite candidates for
high-temperature applications compared to other fluoride and carbonate-based options.
This is due to their very attractive low cost (excluding KMgZnCl), as even their energy
KPIs give lower values than Solar Salt (except NaKZnCl).

For low-temperature applications, nitrate-based materials are more suitable due
to their low melting temperature and good energy KPIs. On the other hand, for high-
temperature applications, chloride-based materials are better choices over fluorides and
carbonates, mainly due to their lower cost. However, the drawback that still remains is the
corrosion of these materials, and this must be solved if they are to be the next generation of
TES materials.
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