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Abstract: Hourly global solar irradiance (GSR) data are required for sizing, planning, and modeling
of solar photovoltaic farms. However, operating and controlling such farms exposed to varying
environmental conditions, such as fast passing clouds, necessitates GSR data to be available for
very short time intervals. Classical backpropagation neural networks do not perform satisfactorily
when predicting parameters within short intervals. This paper proposes a hybrid backpropagation
neural networks based on particle swarm optimization. The particle swarm algorithm is used as
an optimization algorithm within the backpropagation neural networks to optimize the number of
hidden layers and neurons used and its learning rate. The proposed model can be used as a reliable
model in predicting changes in the solar irradiance during short time interval in tropical regions such
as Malaysia and other regions. Actual global solar irradiance data of 5-s and 1-min intervals, recorded
by weather stations, are applied to train and test the proposed algorithm. Moreover, to ensure the
adaptability and robustness of the proposed technique, two different cases are evaluated using 1-day
and 3-days profiles, for two different time intervals of 1-min and 5-s each. A set of statistical error
indices have been introduced to evaluate the performance of the proposed algorithm. From the
results obtained, the 3-days profile’s performance evaluation of the BPNN-PSO are 1.7078 of RMSE,
0.7537 of MAE, 0.0292 of MSE, and 31.4348 of MAPE (%), at 5-s time interval, where the obtained
results of 1-min interval are 0.6566 of RMSE, 0.2754 of MAE, 0.0043 of MSE, and 1.4732 of MAPE (%).
The results revealed that proposed model outperformed the standalone backpropagation neural
networks method in predicting global solar irradiance values for extremely short-time intervals.
In addition to that, the proposed model exhibited high level of predictability compared to other
existing models.

Keywords: solar irradiance; short time interval; hybrid AI prediction models; short-term solar
irradiance prediction; energy management

1. Introduction

Sustainable energy sources such as photovoltaics (PV) generation is becoming increas-
ingly important in the current times due to the depletion of natural resources, increasing
energy demand, high cost of new fossil-fuel generation and transmission power system
infrastructure, and worsening greenhouse gas effects. However, PV output power is not
dispatchable in terms of supply and demand because of inherent intermittency in solar
irradiance. Be it large-scale or nanogrid PV generation, energy storage devices such as
batteries and ultracapacitors are required to manage energy and transient power demand,

Energies 2021, 14, 1213. https://doi.org/10.3390/en14041213 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-1368-0215
https://orcid.org/0000-0001-7708-6904
https://doi.org/10.3390/en14041213
https://doi.org/10.3390/en14041213
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14041213
https://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/14/4/1213?type=check_update&version=4


Energies 2021, 14, 1213 2 of 20

respectively [1]. Therefore, prediction of solar irradiance is essential in order to correctly
size a solar PV power plant and energy storage system and to optimize the corresponding
energy management system.

There are many predictive and artificial intelligence (AI) techniques that are proposed
to predict solar irradiance and eliminate the limitations of measuring instrument, which
feature high efficiency, flexibility, consistency, reliability, and so on. To obtain GSR data,
different models are proposed by researchers, such as empirical [2], physical [3], and
machine learning [4] models. Among them, machine learning models, presenting high
accuracy and wider applicability, are widely studied worldwide [5]. Most of the prediction
of GSR using the two methods have been for daily, hourly, or half-hourly time intervals.
There has been no extensive studies on short-time, few minutes or few seconds, interval
GSR prediction, which is advantageous for real-time compensation by energy management
system (EMS) of PV generation and with battery or ultracapacitor.

In classical modelling methods, GSR are structured as standalone models. Artificial
neural network is one of the more common AI technique that is used for prediction of
GSR [6–8]. They include a variety of models such as multilayer perception neural networks
(MLP-NNs) [9], radial basis function neural networks (RBF-NNs) [10], generalized regres-
sion neural networks (GR-NNs) [11], extreme learning machines [12], deep learning neural
networks [13], convolutional neural networks [14], and so on. For example, authors of [15]
compared MLP-NNs, RBF-NNs, and GR-NNs for daily global solar radiation estimation in
three climate zones of China, illustrating that MLP-NNs and RBF-NNs performed much
better than GR-NNs. Authors of [16] used latitude, longitude, and altitude geographical
parameters and meteorological parameters like relative humidity, air pressure, clearness
index (Kt), and average temperature (Ta) as inputs of ANN models to predict the GSR of
stations in Zimbabwe. The results showed that Kt is the most effective feature to predict
the GSR. Authors of [17] evaluated the performance of GSR prediction over other ANN
techniques and architectures such as multilayer perceptron neural network, a neural net-
work using wavelet transform, Elman Neural Network, and radial basis neural network.
The performance of GSR prediction using other AI techniques such as support vector
machine (SVM) [18], adaptive neuro-fuzzy inference system (ANFIS) [19], kernel-based
nonlinear extension of Arps decline model and gradient boosting with categorical features
support [20], and support vector regression [21] have also been investigated. Empirical
methods are also widely discussed and evaluated as a predictive model of GSR in many
countries [22]. Authors of [23], developed an empirical model for GSR in southwest Turkey
where two models, cubic and quadratic are found to be the appropriate models. The
drawbacks and limitations of these standalone and classical models are the insufficient
capacity to capture and ascertain the deterministic features of meteorological data. The
utilization of the temperature as a crucial input key features in ANN model is suggested
by some researchers to have a high predictive performance [24].

Hybrid models are implemented as data-driven models to enhance and increase the
capability of GSR prediction. Ibrahim and Tamer proposed a hybrid RF technique-based
firefly algorithm (FFA) for predicting hourly GSR [25]. FFA is used to optimize the number
of trees and leaves of a random forest (RF) technique. The RF technique is compared with
different standalone and hybrid prediction models like ANN and ANN based FFA, respec-
tively. The Mycielski-Makrov hybrid model is proposed to predict solar irradiance by using
historical solar irradiance data without needing any other parameters [26]. The results
of the model achieved better accuracy when it is compared with standalone Mycielski
model. In [27], the solar irradiance performance and efficiency of hybrid model using
auto-regressive average moving (ARMA) and feed-forward time-delay neural network
showed improvement in prediction accuracy compared with classical ARMA model. In a
similar manner, a number of independent hybrid day-of-the-year based models such as
ANFIS with chaotic firefly algorithm and ANFIS with whale optimization algorithm with
simulated annealing and roulette wheel selection have been employed in estimating GSR
in China, where the variability of climate is wide-ranging [28]. The hybrid methods would
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increase the estimation accuracy of GSR despite the wide-ranging climate variability. Im-
provement in GSR prediction is also performed by hybridizing extreme-learning-machine
and neural-grouping genetic algorithms into a single model, where optimal feature selec-
tion is achieved [29].

This study aims to overcome the drawback of standalone AI models by examining
the adaptability, efficiency and accuracy of the hybrid backpropagation neural network
and particle swarm optimization (BPNN-PSO) method for prediction of solar irradiance
in very short-time intervals and fast changing climate conditions as there has been no
extensive studies on prediction of GSR in those conditions in a tropical country. This paper
also designs and develops a high-efficiency prediction model through the use of the actual
meteorological data from Kajang, Malaysia. The meteorological data include pressure,
humidity, temperature, wind speed, wind direction, and diffuse and direct irradiances.

The proposed PSO is used inside the BPNN to improve the prediction performance by
reducing the error with actual data and improving the convergence rate by minimizing the
objective function. The PSO optimizes hidden layers, neurons, and learning rate of BPNN
architecture. The best minimized combination value of these three parameters in BPNN
is the main objective function. The accuracy of the developed hybrid BPNN-PSO model
is compared and evaluated with other existing model using reliable statistical indicators,
such as root mean square error (RMSE), mean squared error (MSE), mean absolute error
(MAE), and mean absolute percentage error (MAPE).

This paper is organized as follows: first, a literature review is presented. In Section 2,
the BPNN algorithm is presented. In Section 3, data preparation for training and testing
the PSO algorithm working concepts, and the performance evaluation of the model is
discussed. In Section 4, the simulations results are analyzed. Finally, the achievements of
the proposed method are highlighted in the conclusion.

2. Theory of Backpropagation Neural Network Structure

The ANN models nonlinear systems and make every effort to create the function
of the human brain in a simulation environment through distributed processing. The
ANN consists of neurons, which are simple connected elements that have the advantage in
solving complex nonlinear relationship between system input and output [30,31].

Figure 1 shows the structure of the BPNN model employed. The model consists
of seven meteorological inputs that are obtained from Kajang, Malaysia, which include
pressure (P), temperature (T), humidity (H), wind speed (WS), wind direction (WD), ir-
radiance direct (IDR), and irradiance diffuse (IDF), a few hidden layers and one GSR as
output parameter. In order to predict GSR, this paper employs the Levenberg-Marquardt
backpropagation algorithm to train the multi-layer perceptron of the ANN model in Matlab.
The Levenberg-Marquardt algorithm has been selected due to its minimal localization error
as well as its efficiency and speed [32]. The training of ANN using Levenberg-Marquardt
back propagation algorithm involves three phases: (a) The feedforward phase, (b) the
computation and backpropagation of the associated error, and (c) the adjustment of the
weights. All inputs and outputs of the BPNN are expressed by the following equations:

Input =


T1
T2
...

Tn

H1
H2
...

Tn

P1
P2
...

Pn

WS1
WS2

...
WSn

WD1
WD2

...
WDn

IDR1
IDR2

...
IDRn

IDF1
IDF2

...
IDFn

 (1)

Output =


GSR1
GSR2

...
GSRn

 (2)

where GSR is the global solar irradiance of the meteorological datasets.
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Figure 1. Backpropagation neural networks (BPNN) structure with seven inputs, one output, and multi hidden nodes.

During the feed-forward phase of ANN training, data samples consisting of seven
input values (P, T, H, WS, WD, IDR, and IDF) and one output or target value GSR are
presented into the ANN. The explanation of BPNN working progress is summarized in the
following steps:

Step 1: The weight and bias are randomly initialized.
Step 2: The input layer relays the input signals to the hidden nodes. Then, the

variables in the hidden nodes are calculated by using [33],

net = Zin_j = Pw1j + Tw1j + Hw1j + WSw1j + WDw1j + IDRw1j + IDFw1j (3)

where Zin the input of the hidden nodes, and j is the number of hidden nodes that is
calculated by using the PSO and w is the weight factor.

Step 3: The hidden layer is calculated by using the sigmoid function and it is given by,

Z(net) =
2

1 + e−net − 1 (4)

For input pattern p, the i-th input layer node holds xp,i. Net input to j-th node in the
hidden layer is,

netj =
n

∑
i=0

(
wj,ixp,i + θj,i

)
(5)

where, wj,i is the weight from the input layer to the hidden layer, θj,i represents the bias
from the input layer to the hidden layer. Output of j-th node in the hidden layer is,

xp,j = Zj

(
n

∑
i=0

(
wj,ixp,i + θj,i

))
(6)

Net input to k-th node in the output layer is,

netk = ∑
j

(
wk,jxp,k + θk,j

)
(7)
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where, wk,i, θk,j, are the weight and bias from the hidden layer to the output layer, respec-
tively. Output of k-th node in the output layer is,

Op,k = Zk

(
∑

j

(
wk,jxp,k + θk,j

))
(8)

Step 4: In the BPNN training, after executing the feed-forward phase, the next phases
are to compute the backpropagation of the associated error and then adjust the weights.
During training, the GSR is compared with its target value in the sample data to determine
the associated error (e). Based on this error, factor δk that is used to distribute the error at
the output layer back to all hidden nodes is given by,

δk = Zk(1 − Zk)(Tk − Zk) (9)

where Tk is the true output (GSR). The error in the hidden layer is calculated as

δj = Zj
(
1 − Zj

)
δkwk,j (10)

Step 5: BPNN in this phase, updates error and biases. Weights are updated using the
following equations

∆wk,j = αδkSj (11)

wk,j = wk,i + ∆wk,j (12)

∆wj,i = αδkxp (13)

wj,i = wj,i + ∆wj,i (14)

where α is the learning rate which can be assigned values between 0 and 1.
Biases are updated using the following equations

∆θk,j = αδk (15)

θk,j = θk,j + ∆θk,j (16)

∆θj,i = αδj (17)

θj,i = θj,i + ∆θj,i (18)

The adjustment of the weights from the input to the hidden layer is based on factor
δj in (10) and the activation of the input features. Using (4) to (18), the BPNN process
is repeated for all the data set samples to achieve one epoch. The training process will
continue until the error goal or the predefined epoch is achieved. After the training process,
the ANN can be utilized to generate the reference GSR with new input data.

3. Methodology Proposed Hybrid BPNN-PSO for Predicting GSR

The BPNN architecture is implemented at the process of training the GSR due to its
capability to minimize output error by optimizing the input weight values of the output
layer. However, three significant parameters in BPNN architecture namely hidden layers
(HL), number of neurons (Ne), and learning rate (LR) are normally set based on trial and
error method, which is time consuming. In order to further enhance the performance of the
GSR prediction and overcome the time-consuming process of trial and error method, the
PSO algorithm is utilized to find the optimal best combination of the dimension array. In
addition, PSO is used to give reliable GSR prediction with less variance, less error, and the
best fitting for the prediction function. Figure 2 shows the schematic diagram for prediction
GSR using BPNN based PSO. The process is categorized into three phases which are clearly
illustrated as follows:
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Figure 2. The structure of the proposed backpropagation neural network based on Particle Swarm Optimization Algorithm
(PSO) algorithm.

Phase I: This phase begins with the collection of seven input variables at 5-s and
1-min time intervals. This study has included two profiles for the reason of improving
the prediction performance by capturing the nonlinear association of patterns between
different meteorological parameters, such as temperature, pressure, humidity, wind speed,
wind direction, irradiance direct, and irradiance diffuse. After that, the sample data is
moved through the normalization method.

Phase II and III: In these phases, 10-fold cross validation method is used for data
pre-processing and division into training and testing observations. Then, the BPNN model
is used for GSR prediction where the optimal number of hidden layer neurons and learning
rate of BPNN model are computed based on PSO algorithm to enhance the accuracy of GSR.

3.1. Particle Swarm Optimization Algorithm

PSO is a heuristic optimization technique, which is based on population inspired by
bird flocking and fish schooling for solving nonlinear problems with both discrete and
continuous variables. The PSO algorithm is robust and easy to implement with global
exploration capability in various applications [34]. In PSO, the potential solution to the
problem being considered is randomly generated though a population individual particles
also known as “swarm”. Each particle will move at arbitrary velocity across a dimensional
search space to find two locations. The swarm will keep two locations. The first location
is the best position in the current iteration also known as the local best, and the second
location is the best point found in all previous iterations also known as the global best. The
velocity and position factors are updated as [35]:

Vd
i (t + 1) = wVd

i (t) + c1r1

(
Pd

i (t)− Xd
i (t)

)
+ c2r2

(
Pd

t (t)− Xd
i (t)

)
(19)

Xd
i (t + 1) = Xd

i (t) + Vd
i (t + 1) (20)
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where c1 is the social rate, and c2 is the cognitive rate. r1 and r2 denote the randomness in
the interval (0,1), V is the velocity factor of agent i at iteration d, t is the present iteration, w
is the inertia factor, and X is the position factor.

3.2. Performance Evaluation

To investigate the performance and validate the accuracy of each model, four statistical
index errors are implemented. In addition, a previous benchmark study at different sites
are compared with the proposed hybrid model. There are various statistical indices that
have been used by other researchers [36]. However, MSE, MAE, and MAPE are the most
common statistical error indexes [37]. Therefore, in this study, the performance evolution
of the proposed techniques are investigated through the following indexes:

MAE =
n

∑
i=1

1
n

x
∣∣GSRAi − GSRPi

∣∣ W m−2 (21)

RMSE =

√
1
n

n

∑
i=1

(
GSRAi − GSRPi

)2 W m−2 (22)

MSE =
1
n

n

∑
i=1

(
GSRAi − GSRPi

)2
(W m−2

)2

(23)

MAPE =
1
n

n

∑
i=1

∣∣∣∣GSRAi − GSRPi

GSRPi

∣∣∣∣% (24)

where error = GSRAi − GSRPi , GSRAi is the state of charge of the actual data, and GSRPi is
the state of charge of the predicted data, and n is the number of samples.

3.3. Data Preparation and Model Execution

The prediction of the GSR for one-day and three-day profiles begins with the collection
of seven input variables at 5-s and 1-min time intervals. This study has included two
profiles for the reason of improving the prediction performance by capturing the nonlinear
association of patterns between different meteorological parameters, such as temperature,
pressure, humidity, wind speed, wind direction, irradiance direct, and irradiance diffuse.
At the first stage, the data have been collected from the TNBR—Solar Resource Monitoring
Station, located in Kajang, Malaysia, with different time intervals. The data is collected
from 1 March 2013 to 15 February 2014 using a high sampling data logger at a sampling
rate of 5 and 30 s for 1, 5, 30, and 60 min interval. This measurement was taken as part
of a Seeding Fund Project TNBR/SF140/2010 entitled “Development of Solar Research
Facility for studies of Grid Connection of Utility Scale Solar Power Plant”. The Solar
Resource Measurement was performed as follow: (a) GSR was measured by a CMP11
pyranometer, (b) Diffuse irradiance was measured by a CMP11 pyranometer and shaded by
a shading ball attached, and (c) Direct irradiance was measured by a CHP1 pyrheliometer.
The irradiance and temperature were measured using a solar pyranometer sensor and a
temperature sensor, respectively. All measurements were performed instantaneously for
every 5-s and 1-min time intervals and the measurements were recorded using the DT80
data logger.

The available meteorological data features would guarantee a high efficiency predic-
tion of the solar irradiance during the short time intervals (5-s and 1-min) without any new
features. Moreover, to increase and improve the accuracy of the output GSR parameter, all
other possible data features that may have a direct effect on the output parameter perfor-
mance are included in the predictive models. All the saved input datasets are normalized
before being trained by BPNN model to increase the robustness and efficiency of the system.
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Besides, it enhances the convergence rate of the predicted GSR. In this study, the data
normalization range is from 0 to 1 and is determined as:

Norm =

((
Data − Datamin

Datamax − Datamin

)
× 0.9

)
+ 0.1 (25)

where the Datamax and Datamin are the maximum and minimum value of the BPNN trained
dataset. The testing dataset is also normalized with the same range limit. The trained
dataset has been divided to 70% for training and 30% for testing, where 10-fold cross
validation method is implemented in all input arrays.

Figure 3 shows the flowchart of the proposed hybrid BPNN-PSO implementation for
predicting the PV GSR in detail. The implementation procedure of the proposed hybrid
technique in determining the optimum number of hidden neurons (Ne), hidden layers
(HL), and learning rate (LR).

Figure 3. Flowchart of the proposed hybrid backpropagation neural network based on particle
swarm optimization algorithm (BPNN-PSO) model.
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Table 1 presents the parameters used in the initialization of the algorithm. Then the
initial local and global best positions, Pbest and Gbest are randomly generated. In order to
train the ANN and evaluate the fitness value, the number of learning rate, hidden neurons,
and layers should be selected. The objective function MAE is evaluated based on (21)
and the new Pbest and Gbest are updated. The velocity and position are computed and
updated using (19) and (20). If the position is rejected, other combinations have to be
identified. Training of ANN and evaluation of MAE should be repeated until the maximum
population size is reached or when Pbest is lower than Gbest. If the local best value is less
than global best value, the previous is updated as the global best value. The process is
iterated until the stop criterion is reached so as to obtain the optimal hidden layers and
hidden neurons.

Table 1. PSO algorithm initialization parameters.

Parameters Symbol Value

Population Size N 10
No. of Dimensions D 5

No. of Iterations T 500
Maximum Weight Wmax 0.9
Minimum Weight Wmin 0.4

Acceleration Coefficient c1, c2 2

4. Discussion and Results
4.1. Objective Function Performance of PV Solar Irradiance

Figures 4 and 5 depict solar irradiance convergence results using BPNN with the
assistance of PSO algorithm, which are evaluated under different time intervals of 5-s
and 1-min for both 1-day and 3-days profiles. The performance evaluation is represented
by statistical index error or objective function (MAE), which compares the simulation
convergence results over 100 iterations. The optimization parameters of population size and
the iteration numbers are standardized with 4 and 100 maximum iterations, respectively. In
Figure 4, the proposed hybrid algorithm BPNN-PSO shows less error compared to actual
GSR data, where the minimum objective function MAE values obtained from 3-Days profile
for 5-s and 1-min time intervals are 0.7537, and 0.2754, respectively. Figure 5 presents the
one-day profile with better convergence rate over the 3-days profile for both time intervals
of 5-s and 1-min with 0.1000 and 0.0956, respectively.

Figure 4. The convergence performance curves of solar irradiance prediction for 3-days, with 1-min
and 5-s time interval.
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Figure 5. The convergence performance curves of solar irradiance prediction for 1-Day, with 1-min
and 5-s time interval.

Other statistical index errors like MSE, RMSE, and MAPE are used to give more
extensive analysis of the output performance for both profiles in 1 day and 3 days as
shown in Table 2. Under the nonlinearity behaviors of GSR, the proposed predictive
hybrid technique is investigated with the aforementioned analytical index error tools,
where all other statistical index errors like RMSE, MSE, and MAPE, show the superiority
of the proposed BPNN-PSO technique in 3-days profile with 1.7078, 0.0292, and 31.4348
for 5-s, and 0.6566, 0.0043, and 1.4732 for 1-min time intervals, respectively. Likewise, the
1-day profile shows the superior performance of the proposed hybrid model with 0.1911
(RMSE), 0.0004 (MSE), and 0.7484 (MAPE) for 5-s, and 0.2032, 0.0004, and 1.1271 for 1-min
time intervals.

Table 2. Performance comparison using statistical index errors of the 1-day and 3-days profiles.

Type of Profile Time Intervals RMSE × 10−2

(W m−2)
MAE × 10−2

(W m−2) MSE × 10−2 MAPE [%]

3-Days Profile 5-s 1.7078 0.7537 0.0292 31.4348
1 min 0.6566 0.2754 0.0043 1.4732

1-Day Profile 5-s 0.1911 0.1000 0.0004 0.7484
1 min 0.2032 0.0956 0.0004 1.1271

4.2. PV Solar Irradiance Optimal Parameters

The optimal parameters HL, Ne, and LR, acquired after implementing the heuristic
optimization algorithms PSO for the 1-day and 3-days profiles are shown in Table 3. In the
3-days profile, the BPNN-PSO algorithm attains hidden layers of 1 (7 Ne) and 2 (14 and
9 Ne) after 22 and 35 iterations for 5-s and 1-min time intervals. In the 1-day profile, the
proposed BPNN-PSO achieved the optimal value of hidden layers of 2 (8 and 2 Ne) and
(9 and 11 Ne) after 76 and 91 iterations for 5-s and 1-min time intervals, respectively. In
contrast, the best learning rate values of 3-days and 1-day profiles are 0.1295, 0.7373, 0.5946,
and 0.6481 during both time intervals of 5-s and 1-min, respectively.

4.3. PV Solar Irradiance Prediction

The input parameters considered during the training process of BPNN and PSO are
the seven input as shown in Figure 2. The selection of the input features is set to seven after
conducting a set of trial-and-error tests to the predictive models, the increase of the input
features from one to seven increases the performance of the proposed predictive model
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BPNN-PSO. Any further increase in the number of input features after seven did not show
further increase in the performance of the BPNN and PSO.

Table 3. Optimal parameters of 1 and 3-Days profile at 5-s and 1-min time intervals.

Profile Time Interval Hidden Layers Neuron 1 Neuron 2 Neuron 3 Learning Rate Number of
Iterations

3-Days 5-s 1 7 0 0 0.1295 22
1-min 2 14 9 0 0.7373 35

1-Day 5-s 2 8 2 0 0.5946 76
1-min 2 9 11 0 0.6481 91

Figures 6 and 7 present the predicted solar irradiance using the proposed hybrid
BPNN-PSO algorithm and compare the predicted GSR with the reference or actual data. In
the figures, the red line represents the actual global solar irradiance data obtained from
Kajang, Malaysia, while the blue line is the solar irradiance prediction of the proposed
hybrid BPNN-PSO algorithm. It is clearly observed that the performance of the BPNN-PSO
over-classed other techniques in both 3-days and 1-day profiles, In Figures 6a and 7a, the
predicted solar irradiance of BPNN-PSO is almost aligned with the actual data in both
profiles. The time domain response agrees well with the different statistical index errors in
Table 2, which proves the superior performance of the proposed technique over the other
conventional test techniques under the two time intervals of 5-s and 1-min, respectively.
From Figure 7a, it is also noticeable that the results obtained from the proposed BPNN-PSO
technique is robust and able to track the fast variation of the actual environmental data.
The absolute error between predicted and actual values of 3-Days profile at 5-s and 1-min
intervals is represented with the enlarged visual box to provide more clarity on the GSR
prediction results, as depicted in Figures 6b and 7b.

Moreover, the 1-day profile is also tested to investigate the ability and adaptability
of predictive models under low data set and fast nonlinear environmental change of the
solar irradiance. The 1-day profile are used to train the BPNN-PSO with the meteorological
data obtained from Kajang, Malaysia, which were recorded on 22 February 2014. The
predicted GSR of the proposed BPNN-PSO technique is compared at 5-s and 1-min time
intervals. The BPNN-PSO model has a good alignment with the actual data, as depicted in
Figures 8a and 9a. The absolute error between predicted values of GSR using the proposed
model with the target test values is presented in both 5-s and 1-min time intervals, respec-
tively, as shown in Figures 8b and 9b. The maximum error is approximately 8%, which
is negligible.

4.4. Performance Comparison Using Regression Coefficient

The regression coefficient (R) is used as an indicator of the predictive model’s training
process performance. The predicted data is displayed in black circle, while the blue line
represents the reference value (Actual target). The regression coefficient results are very
close to unity, which validates the accuracy of the model. The regression values of 3-Days
profile with 5-s and 1-min time interval are 0.99951 and 0.99993, as shown in Figure 10.
Moreover, Figure 11 shows that the 1-day profile have regression coefficients of 0.99999 at
5-s and 1-min intervals, respectively.
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Figure 7. The photovoltaics prediction results using 3-days profile with 1-min time interval. (a) Solar irradiance prediction.
(b) Solar irradiance prediction error.
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Figure 9. The prediction results using 1-day profile with 1-min time interval. (a) Photovoltaics (PV) solar irradiance
prediction. (b) Photovoltaics (PV) solar irradiance prediction error.



Energies 2021, 14, 1213 16 of 20

Figure 10. Regression performance of 3-days profile (a) BPNN-PSO, with 5-s time interval. (b) BPNN-PSO, with 1-min
time interval.

Figure 11. Regression performance of 1-day profile. (a) BPNN-PSO with 5-s time interval. (b) BPNN-PSO with 1-min
time interval.
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5. Model Validation with the Existing Methods

Table 4 presents the GSR prediction results of the proposed method that are bench-
marked with existing results. The proposed hybrid model is compared with various
empirical techniques, artificial intelligence, and hybrid artificial intelligence. The pre-
diction accuracy of the proposed and existing methods is investigated through the four
statistical index errors RMSE, MSE, MAE, and MAPE, respectively. The results obtained
from the proposed study show greater performance in terms of predictability and improved
forecasting capability as compared with the rest of the other methods.

Table 4. Comparison of statistical index errors between proposed method and other existing methods.

Model Time Interval
Statistical Error Indexes Study Location

RMSE
(MJ/m2/day)

MAE
(MJ/m2/day) MSE MAPE (%)

ANN, Genetic
Programming (GP)

[38]
1 h 1.613,

2.142
1.146,
1.629 − − Australia

ANN [39] 1 h − − − 3.288 Turkey (Mersin)
SVR [40] 1 h 2.5243 − − − Iran

Empirical [41] 1 h 2.522 − − 16.078
Mexico

(Yucatan Penin-
sula/Calakmut)

RF-FFA [24] 1 h 18.9797 − − 6.3826 Malaysia
Generalized
Models [42] 1 h 1.7925 1.3800 − − India

ANFIS
[18] 1 h 1.0482 − − 4.6402 Iran

SVM-FFA [43] 1 h 0.6988 − − 6.1768 Nigeria

MLFFNN [44] 1 h 0.3214
(kWh/m2/day) 0.2531 0.1033

(kWh/m2/day) 3.316 Iran

ANFIS,
ANFIS-PSO,
ANFIS-GA,

ANFIS-DE [45]

1 h

0.3712,
0.3121,
0.3285,
0.3765

− − − Malaysia

BPNN-PSO
(Proposed Model) 5 s, 1 min 0.1911, 0.2032 0.1000, 0.0956 0.0004, 0.0004 0.7484, 1.1271 Malaysia

6. Conclusions

This paper has presented a hybrid prediction model using BPNN based PSO for the
enhancement the GSR prediction performance. Two profiles, 3-days and 1-day have been
investigated during training and validation process. The main contribution of this paper
is developing a robust and consistent BPNN-PSO model for prediction of global solar
irradiance at tropical country like Malaysia in extremely short-time intervals. Secondly,
the implementation of PSO algorithm has significantly enhanced the classical BPNN
architecture, by finding the optimal values of the architecture parameters, namely, hidden
layers, neurons, and learning rate. The performance results of the proposed BPNN-PSO
model have been compared with other widely used neural network models. Statistical error
indicators RMSE, MAE, MSE, and MAPE have been used for performance and precision
evaluation of all models. When the proposed model is used to predict solar irradiance
based on the dataset of one region in Malaysia, the developed model has shown remarkable
prediction improvements, proving that the model is superior to other techniques in terms
of reliability, adaptability, and accurate correlation in GSR prediction of fast, short-time
intervals, and nonlinear nature. From the results obtained, the 3-days profile performance
evaluation of the BPNN-PSO are 1.7078 of RMSE, 0.7537 of MAE, 0.0292 of MSE, and
31.4348 of MAPE (%), at 5-s time interval, whereas the obtained results of 1-min interval
are 0.6566 of RMSE, 0.2754 of MAE, 0.0043 of MSE, and 1.4732 of MAPE (%). In contrast,
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the 1-day profile performance evaluation of the proposed method are 0.1911 of RMSE,
0.1000 of MAE, 0.0004 of MSE, and 0.7484 of MAPE (%), at 5-s time interval, whereas the
obtained results of 1-min interval are 0.2032 of RMSE, 0.0956 of MAE, 0.0004 of MSE, and
1.1271 of MAPE (%). Even with the high accuracy performance of the model in different
time intervals, the high performance is restricted to the availability of the aforementioned
meteorological parameters. Moreover, the execution of the model needs to be extended
to include spatial database using the proposed model for GSR prediction in short-time
intervals. In addition, the optimization and calibration of the model could be proposed for
the future work to make the model adaptable in different world regions.
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GSR Global solar irradiance
BPNN Backpropagation neural network
PSO Particle swarm optimization
PV Photovoltaics
ANN Artificial neural network
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MLFFNN Multilayer feedforward neural network
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