Study of Long-Term Stability of Ni-Zr0.92Y0.08O2-δ|Zr0.92Y0.08O2-δ|Ce0.9Gd0.1O2-δ |Pr0.6Sr0.4CoO3-δ at SOFC and SOEC Mode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Durability Tests
2.3. ToF-SIMS and HR-SEM Analysis
3. Results and Discussion
3.1. Electrochemical Long-Term Test in SOFC Mode
3.2. Electrochemical Long-Term Test at SOEC Mode
3.3. Electrode Activity Mapping Using 18O Tracing Method
3.4. Chromium Poisoning
3.5. Silicon Poisoning.
3.6. Crack Formation in the Electrolysis Cell
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Küngas, R. Review—Electrochemical CO2 Reduction for CO Production: Comparison of Low-and High-Temperature Electrolysis Technologies. J. Electrochem. Soc. 2020, 167, 044508. [Google Scholar] [CrossRef]
- Lillmaa, K.; Maide, M.; Kanarbik, R.; Nurk, G.; Lust, E. Electrochemical Characteristics and Gas Composition Generated by La0.8Sr0.2Cr0.5Mn0.5O3–δCathode at Electrolysis and Co-Electrolysis Modes. J. Electrochem. Soc. 2016, 163, F3190–F3196. [Google Scholar] [CrossRef]
- Hauch, A.; Küngas, R.; Blennow, P.; Hansen, A.B.; Hansen, J.B.; Mathiesen, B.V.; Mogensen, M.B. Recent advances in solid oxide cell technology for electrolysis. Science 2020, 370, eaba6118. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Wahyudi, W.; Lee, S.B.; Song, R.H.; Lee, J.W.; Lim, T.H.; Park, S.J. Effect of various sintering inhibitors on the long term performance of Ni-YSZ anodes used for SOFCs. Int. J. Hydrogen Energy 2015, 40, 11968–11975. [Google Scholar] [CrossRef]
- Jensen, S.H.; Larsen, P.H.; Mogensen, M. Hydrogen and synthetic fuel production from renewable energy sources. Int. J. Hydrogen Energy 2007, 32, 3253–3257. [Google Scholar] [CrossRef]
- Fu, Q.X.; Mabilat, C.; Zahid, M.; Brisse, A.; Gautier, L. Syngas production via high-temperature steam/CO2 co-electrolysis: An economic assessment. Energy Environ. Sci. 2010, 3, 1382–1397. [Google Scholar] [CrossRef]
- Blum, L.; Packbier, U.; Vinke, I.C.; de Haart, L.G.J. Long-Term Testing of SOFC Stacks at Forschungszentrum Julich. Fuel Cells 2013, 13, 646–653. [Google Scholar] [CrossRef]
- Chen, M.; Liu, Y.L.; Bentzen, J.J.; Zhang, W.; Sun, X.F.; Hauch, A.; Tao, Y.K.; Bowen, J.R.; Hendriksen, P.V. Microstructural Degradation of Ni/YSZ Electrodes in Solid Oxide Electrolysis Cells under High Current. J. Electrochem. Soc. 2013, 160, F883–F891. [Google Scholar] [CrossRef]
- Mogensen, M.B.; Hauch, A.; Sun, X.; Chen, M.; Tao, Y.; Ebbesen, S.D.; Hansen, K.V.; Hendriksen, P.V. Relation Between Ni Particle Shape Change and Ni Migration in Ni-YSZ Electrodes—A Hypothesis. Fuel Cells 2017, 17, 434–441. [Google Scholar] [CrossRef]
- Sun, X.; Hendriksen, P.V.; Mogensen, M.B.; Chen, M. Degradation in Solid Oxide Electrolysis Cells During Long Term Testing. Fuel Cells 2019, 19, 740–747. [Google Scholar] [CrossRef]
- Ebbesen, S.D.; Mogensen, M. Kinetics of Oxidation of H2 and Reduction of H2O in Ni-YSZ based Solid Oxide Cells. ECS Trans. 2013, 50, 167–182. [Google Scholar] [CrossRef]
- Njodzefon, J.C.; Klotz, D.; Kromp, A.; Weber, A.; Ivers-Tiffee, E. Electrochemical Modeling of the Current-Voltage Characteristics of an SOFC in Fuel Cell and Electrolyzer Operation Modes. J. Electrochem. Soc. 2013, 160, F313–F323. [Google Scholar] [CrossRef]
- Laguna-Bercero, M.A. Recent advances in high temperature electrolysis using solid oxide fuel cells: A review. J. Power Sources 2012, 203, 4–16. [Google Scholar] [CrossRef] [Green Version]
- Adler, S.B.; Lane, J.A.; Steele, B.C.H. Electrode kinetics of porous mixed-conducting oxygen electrodes. J. Electrochem. Soc. 1996, 143, 3554–3564. [Google Scholar] [CrossRef]
- Moller, P.; Kanarbik, R.; Kivi, I.; Nurk, G.; Lust, E. Influence of Microstructure on the Electrochemical Behavior of LSC Cathodes for Intermediate Temperature SOFC. J. Electrochem. Soc. 2013, 160, F1245–F1253. [Google Scholar] [CrossRef]
- Kivi, I.; Anderson, E.; Möller, P.; Nurk, G.; Lust, E. Influence of Microstructural Parameters of LSC Cathodes on the Oxygen Reduction Reaction Parameters. J. Electrochem. Soc. 2012, 159, F743. [Google Scholar] [CrossRef]
- Lust, E.; Küngas, R.; Kivi, I.; Kurig, H.; Möller, P.; Anderson, E.; Lust, K.; Tamm, K.; Samussenko, A.; Nurk, G. Electrochemical and gas phase parameters of cathodes for intermediate temperature solid oxide fuel cells. Electrochim. Acta 2010, 55, 7669–7678. [Google Scholar] [CrossRef]
- Lust, E.; Möller, P.; Kivi, I.; Nurk, G.; Kallip, S.; Nigu, P.; Lust, K. Optimization of the cathode composition for the intermediate-temperature SOFC. J. Electrochem. Soc. 2005, 152, A2306. [Google Scholar] [CrossRef]
- Kim, J.H.; Baek, S.-W.; Lee, C.; Park, K.; Bae, J. Performance analysis of cobalt-based cathode materials for solid oxide fuel cell. Solid State Ion. 2008, 179, 1490–1496. [Google Scholar] [CrossRef]
- Lee, S.; Miller, N.; Staruch, M.; Gerdes, K.; Jain, M.; Manivannan, A. Pr 0.6Sr 0.4CoO 3−δ electrocatalyst for solid oxide fuel cell cathode introduced via infiltration. Electrochim. Acta 2011, 56, 9904–9909. [Google Scholar] [CrossRef]
- Lust, E.; Möller, P.; Kivi, I.; Nurk, G.; Kallip, S. Electrochemical characteristics of La0.6Sr0.4CoO3-δ, Pr0.6Sr0.4CoO3-δ and Gd0.6Sr0.4CoO3-δ on Ce0.85Sm0.15O1.925 electrolyte. J. State Electrochem. 2005, 9, 882–889. [Google Scholar] [CrossRef]
- Nurk, G.; Vestli, M.; Moller, P.; Jaaniso, R.; Kodu, M.; Mandar, H.; Romann, T.; Kanarbik, R.; Lust, E. Mobility of Sr in Gadolinia Doped Ceria Barrier Layers Prepared Using Spray Pyrolysis, Pulsed Laser Deposition and Magnetron Sputtering Methods. J. Electrochem. Soc. 2016, 163, F88. [Google Scholar] [CrossRef]
- Tamm, K.; Möller, P.; Nurk, G.; Lust, E. Investigation of Time Stability of Sr-Doped Lanthanum Vanadium Oxide Anode and Sr-Doped Lanthanum Cobalt Oxide Cathode Based on Samaria Doped Ceria Electrolyte Using Electrochemical and TOF-SIMS Methods. J. Electrochem. Soc. 2016, 163, F586. [Google Scholar] [CrossRef]
- Budiman, R.A.; Bagarinao, K.D.; Liu, S.S.; Cho, D.H.; Ishiyama, T.; Kishimoto, H.; Yamaji, K.; Horita, T.; Yokokawa, H. Time-Dependence of Surface Composition, Transport Properties Degradation, and Thermodynamic Consideration of La0.6Sr0.4Co0.2Fe0.8O3-delta under Chromium Poisoning. J. Electrochem. Soc. 2018, 165, F1206. [Google Scholar] [CrossRef]
- Rohnke, M.; Schaepe, K.; Bachmann, A.K.; Laenger, M.; Janek, J. In situ ToF-SIMS monitoring of SOFC cathodes—A case study of La0.74Sr0.17Mn1.01O2.9 model electrodes. Appl. Surf. Sci. 2017, 422, 817–827. [Google Scholar] [CrossRef]
- Maide, M.; Lillmaa, K.; Salvan, L.K.; Möller, P.; Uibu, M.; Lust, E.; Nurk, G. Influence of Electrolyte Scaffold Microstructure and Loading of MIEC Material on the Electrochemical Performance of RSOC Fuel Electrode. Fuel Cells 2018, 18, 789–799. [Google Scholar] [CrossRef]
- Kivi, I.; Aruväli, J.; Kirsimäe, K.; Heinsaar, A.; Nurk, G.; Lust, E. Kinetic Response of La0.6Sr0.4CoO3-δLattice Parameters to Electric Potential Change in Porous Cathode at In Situ Solid Oxide Fuel Cell Conditions. J. Electrochem. Soc. 2015, 162, F354–F358. [Google Scholar] [CrossRef]
- Küngas, R.; Kivi, I.; Lust, K.; Nurk, G.; Lust, E. Statistical method to optimize the medium temperature solid oxide fuel cell electrode materials. J. Electroanal. Chem. 2009, 629, 94–101. [Google Scholar] [CrossRef]
- Lim, H.T.; Hwang, S.C.; Park, Y.M.; Lee, I.S. Performance and long term stability of large area anode supported solid oxide fuel cells (SOFCs). Solid State Ion. 2012, 225, 124–130. [Google Scholar] [CrossRef]
- Tao, Y.K.; Ebbesen, S.D.; Mogensen, M.B. Degradation of solid oxide cells during co-electrolysis of steam and carbon dioxide at high current densities. J. Power Sources 2016, 328, 452–462. [Google Scholar] [CrossRef]
- Hjalmarsson, P.; Sun, X.F.; Liu, Y.L.; Chen, M. Durability of high performance Ni-yttria stabilized zirconia supported solid oxide electrolysis cells at high current density. J. Power Sources 2014, 262, 316–322. [Google Scholar] [CrossRef]
- Hjalmarsson, P.; Sun, X.; Liu, Y.-L.; Chen, M. Influence of the oxygen electrode and inter-diffusion barrier on the degradation of solid oxide electrolysis cells. J. Power Sources 2013, 223, 349–357. [Google Scholar] [CrossRef]
- Zhang, X.Y.; O’Brien, J.E.; O’Brien, R.C.; Hartvigsen, J.J.; Tao, G.; Housley, G.K. Improved durability of SOEC stacks for high temperature electrolysis. Int. J. Hydrogen Energy 2013, 38, 20–28. [Google Scholar] [CrossRef]
- Khan, M.S.; Lee, S.B.; Song, R.H.; Lee, J.W.; Lim, T.H.; Park, S.J. Fundamental mechanisms involved in the degradation of nickel yttria stabilized zirconia (Ni-YSZ) anode during solid oxide fuel cells operation: A review. Ceram. Int. 2016, 42, 35–48. [Google Scholar] [CrossRef]
- Miyoshi, K.; Iwai, H.; Kishimoto, M.; Saito, M.; Yoshida, H. Chromium poisoning in (La,Sr)MnO3 cathode: Three-dimensional simulation of a solid oxide fuel cell. J. Power Sources 2016, 326, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Andersen, T.; Hansen, K.V.; Mogensen, M.; Chorkendorff, I. Electrochemical removal of segregated silicon dioxide impurities from yttria stabilized zirconia surfaces at elevated temperatures. Solid State Ion. 2011, 190, 60–66. [Google Scholar] [CrossRef]
- Mocoteguy, P.; Brisse, A. A review and comprehensive analysis of degradation mechanisms of solid oxide electrolysis cells. Int. J. Hydrogen Energy 2013, 38, 15887–15902. [Google Scholar] [CrossRef]
Operation Time | Ea tot at 0.8 V | Ea tot at 0.9 V | Ea tot at 1 V |
---|---|---|---|
0 h | −0.57 eV | −0.50 eV | −0.34 eV |
3240 h | −0.65 eV | −0.61 eV | −0.45 eV |
10,370 h | −0.69 eV | −0.65 eV | −0.51 eV |
17,820 h | −0.95 eV | −0.68 eV | −0.56 eV |
Operation Time | Ea tot at 1 V | Ea tot at 1.1 V | Ea tot at 1.2 V | Ea tot at 1.3 V | Ea tot at 1.4 V | Ea tot at 1.5 V |
---|---|---|---|---|---|---|
0 h | 0.56 eV | 0.42 eV | 0.31 eV | 0.22 eV | 0.17 eV | 0.14 eV |
357 h | 0.52 eV | 0.41 eV | 0.34 eV | 0.27 eV | 0.22 eV | 0.17 eV |
690 h | 0.50 eV | 0.40 eV | 0.34 eV | 0.28 eV | 0.23 eV | 0.18 eV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kukk, F.; Möller, P.; Kanarbik, R.; Nurk, G. Study of Long-Term Stability of Ni-Zr0.92Y0.08O2-δ|Zr0.92Y0.08O2-δ|Ce0.9Gd0.1O2-δ |Pr0.6Sr0.4CoO3-δ at SOFC and SOEC Mode. Energies 2021, 14, 824. https://doi.org/10.3390/en14040824
Kukk F, Möller P, Kanarbik R, Nurk G. Study of Long-Term Stability of Ni-Zr0.92Y0.08O2-δ|Zr0.92Y0.08O2-δ|Ce0.9Gd0.1O2-δ |Pr0.6Sr0.4CoO3-δ at SOFC and SOEC Mode. Energies. 2021; 14(4):824. https://doi.org/10.3390/en14040824
Chicago/Turabian StyleKukk, Freddy, Priit Möller, Rait Kanarbik, and Gunnar Nurk. 2021. "Study of Long-Term Stability of Ni-Zr0.92Y0.08O2-δ|Zr0.92Y0.08O2-δ|Ce0.9Gd0.1O2-δ |Pr0.6Sr0.4CoO3-δ at SOFC and SOEC Mode" Energies 14, no. 4: 824. https://doi.org/10.3390/en14040824
APA StyleKukk, F., Möller, P., Kanarbik, R., & Nurk, G. (2021). Study of Long-Term Stability of Ni-Zr0.92Y0.08O2-δ|Zr0.92Y0.08O2-δ|Ce0.9Gd0.1O2-δ |Pr0.6Sr0.4CoO3-δ at SOFC and SOEC Mode. Energies, 14(4), 824. https://doi.org/10.3390/en14040824