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Abstract: This paper focuses on the analysis and design of two multilevel–multicell converters
(MMCs), named 3-phase 5-Level E-Type Multilevel–Multicell Rectifier (3Φ5L E-Type MMR) and
3-phase 5-Level E-Type Multilevel–Multicell Inverter (3Φ5L E-Type MMI) to be used in microgrid
applications. The proposed 3-phase E-Type multilevel rectifier and inverter have each phase being
accomplished by the combination of two I-Type topologies connected to the T-Type topology. The
two cells of each phase of the rectifier and inverter are connected in interleaving using an intercell
transformer (ICT) in order to reduce the volume of the output filter. Such an E-Type topology
arrangement is expected to allow both the high efficiency and power density required for microgrid
applications, as well as being capable of providing good performance in terms of quality of the
voltage and current waveforms. The proposed hardware design and control interface are supported
by the simulation results performed in Matlab/Simulink. The analysis has been then validated in
terms of an experimental campaign performed on the converter prototype, which presented a power
density of 8.4 kW/dm3 and a specific power of 3.24 kW/kg. The experimental results showed that the
proposed converter can achieve a peak efficiency of 99% using only silicon power semiconductors.

Keywords: multilevel–multicell converter; wide bandgap devices; high performance; interleaved
topology; power density; specific power; microgrid

1. Introduction

The electrical power demand has increased in all applications, such as transportation,
industry, household, and the commercial sectors [1]. We are in fact becoming more and
more hungry for electric power: on one hand, this is provoked by the constant increase in
the world population, and consequently the urban centers are increasing in size with more
people living in cities; on the other hand, the hunger for energy, especially in developing
countries always in need of new infrastructure such as hospitals, schools, and transport,
comes from the middle class. Thus, the increased demand of energy should be addressed
by both significantly increasing the use of renewable energy sources and improving the
efficiency of energy systems [2]. Currently, the most abundant renewable energy sources
are wind and solar [3,4]; for both of them, adequate conversion equipment is needed. For
example, wind energy requires turbines and generators, which leads to variable frequency
and variable voltage electricity. As a result, between the generator and the grid, a power
conversion system is needed in order to meet the grid requirement of a fixed frequency of
50 or 60 Hz at certain standard voltage levels. Concerning solar energy, a photovoltaic (PV)
cell provides a DC source at unregulated low voltage, and thus power electronics systems
must be able to adjust this DC voltage level to one suitable for supplying the load [5]. In the
21st century, therefore, modern solutions based on different energy sources coming from
wind, solar, energy storage and micro-turbines have been used to feed the load or different
loads [6,7]. Particularly, in a stand-alone microgrid, more energy sources are connected to
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a single DC-bus to supply the load, as shown in Figure 1. The photovoltaic system and
the battery system are connected to the DC-bus thanks to a DC/DC power converter [8,9],
while the wind system and the micro-turbine are connected to the DC-bus through an
AC/DC converter. The power flows from the DC-bus to the load thanks to the DC/AC
converter connected to a power filter.
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It is evident that the modern renewable energy system could not operate, and the
microgrid could not be realized, without power electronics. In fact, power electronics
converters and controllers are the most important elements in this application, and the
efforts of power conversion designers consistently focuses on improving the efficiency
and reducing the volumes of the conversion system [10,11]. These goals can be reached
thanks to the continuous improvement of power electronics technologies and power con-
verter topologies. Indeed, on one hand the industrial manufacturing of power components
keeps introducing new high-performance modules and power semiconductors on the
market [12,13]; on the other hand, newer and emerging power converter topologies are
constantly proposed in literature. For example, in high power and/or high voltage applica-
tions, the limit of the power conversion system is attributed to the power semiconductors
capable of withstanding limited voltage and current stresses. To overcome this problem,
academia and industry are working on new solutions of power converters [14–16]. Thus,
the use of multilevel configurations allows the arrangement of power conversion systems
with power semiconductors that are required to withstand only a fraction of both the overall
DC-bus voltage and the converter output current. This usually allows higher switching
frequency fsw and, therefore, multilevel configurations lead to significant improvements
in terms of quality of both voltage and current waveforms without giving up the benefit
of high efficiency and high-power density. Furthermore, the weight and volume of the
converter passive components are likely to be reduced [14–17], which is very appealing for
several applications, where the overall size and weight of the electrical generating system
needs to be minimized. Given the high number of benefits, more and more multilevel
converter topologies are proposed in the literature [17–21]. It is understood that multilevel
topology can act on the voltage stress of the power semiconductors, leaving their current
ratings unchanged. To reduce the current stress flowing through the power semiconductors,
more parallel cell converters can be used. Thus, the power semiconductors with low current
rating can be chosen, leading to an improvement in the conduction losses. As another ad-
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vantage, parallel converters enhance the current ripple, resulting in a further improvement
of the waveform quality. Obviously, the multilevel converters present some disadvantages,
such as the reliability and cost. In fact, the number of power semiconductors in multilevel
converters increases as the number of the voltage levels increases, and, therefore, we could
think that cost and reliability worsen. However, some multilevel topologies proposed in
the literature have fault tolerance capability [22–24]. Additionally, even if the number of
power devices increases, there is a reduction in passive devices, which leads to less use of
copper and iron. These materials, actually, are more expensive than power semiconductors.
Naturally, the real disadvantage of having many devices could lie in the driver circuits
used for switching the devices [25]. Moreover, tuning the control algorithm could also
be more complicated, given the difficulty in finding an analytical model of the multilevel
converter [26,27]. Nevertheless, apart from the analytical effort required to find the control
law, the continuous trend of increasing the controller performance and memory size along
with the reduction in the cost has now reached a point where the increase in the number of
power semiconductors is not such a disadvantage. Multilevel converters based on Neutral
Point Clamped (NPC) and T-Type topologies have been proposed using Super-junction
MOSFETs [17,18]. Here, the peak efficiency is estimated to be above 99%. A five-level
T-Type converter able to reach an efficiency of 99.2% using only SiC technology is presented
in [19]. In this paper, the confirmed power density and specific power are 1.4 kW/dm3 and
2.5 kW/kg. In [20] a three-phase T-Type converter, called Swiss Rectifier, has been designed
using SiC power devices. The declared peak efficiency and power density were 99.26% and
4 kW/dm3, respectively. A hybrid Five-Level Active NPC Inverter that uses SiC and is able
to achieve a peak efficiency above 98% has been proposed in [21].

One of the goals of the proposed paper is analyzing, designing, and testing the 3Φ5L
E-Type MMR and the 3Φ5L E-Type Multilevel–Multicell Inverter (MMI) to obtain high, effi-
ciency, power density and specific power by using only silicon (Si) power semiconductors.
For this purpose, the operation modes of the proposed converters are clearly explained
and a solution to balance the DC-bus voltages is discussed. Then, the investigation focused
on the design of the proposed converters; an analytical approach to calculate the device
stress is presented to select the suitable power semiconductors. Starting from this analysis,
the power semiconductors have been selected and the efficiency as a function of the power
has been analytically calculated for both converters. The theoretical investigation has been
supported by the model of the converters created in the Matlab/Simulink and Plexim/Plecs
environments. A prototype of the converters has been built and the proposed MMR and
MMI are integrated on the same power board to reduce the power density. Furthermore,
the control structures for both MMR and MMI to be used in microgrid applications have
been implemented and verified through preliminary simulations. Finally, experimental
tests have been performed in order to confirm the obtained theoretical analysis. This paper
is organized as follows: the topology, the operation principle, and the voltage unbalancing
issue of the 3Φ5L E-Type MMR and 3Φ5L E-Type MMI are presented in Section 2. The
hardware aspect design of the proposed rectifier and inverter are illustrated in Section 3.
Based on the proposed rectifier and inverter, the control strategies regarding stand-alone
microgrid applications have been discussed in Section 4. Simulation results and exper-
imental results from a laboratory prototype are shown in Sections 5 and 6, respectively.
Conclusions are presented in Section 7.

2. Operation Structure of 3-Phase 5-Level E-Type MMC
2.1. 3Φ5L E-Type MMR and MMI

The circuit of the 3Φ5L E-Type MMR is illustrated in Figure 2. A single-phase of the
rectifier has two cells: cell 1 and cell 2. This converter is based on both I-Type and T-Type
topology [28–30]. In fact, each cell is composed of two I-Type legs connected to the T-Type
leg. The power flows in one direction in the 3Φ5L E-Type MMR due to the presence of the
diode into the T-Type cell. The two cells are connected in an interleaving manner, using an
intercell transformer (ICT). The advantages of paralleling the cells using the ICT lies in the



Energies 2021, 14, 843 4 of 21

fact that the phase current is equally shared between the cells, the amplitude of the total
current ripple is reduced, and the harmonic contents of the voltage at high frequency is
shifted at twice the switching frequency. The 3Φ5L E-Type MMI is also composed of the
I-Type and T-Type topologies like the rectifier, as illustrated in Figure 3. Each phase has
two cells connected through the ICT.
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According to the modulation control scheme, both converters show five voltage levels
on a single cell, while each phase has nine voltage levels, as shown in
Figures 4 and 5. Thus, the line-to-line voltage shows seventeen voltage levels. A carrier-
based pulse width modulation (PWM) method has been implemented, taking into account
the multiple power semiconductors of the converters. The gate signals of the power devices
are generated by the comparison of the modulating signals with the carriers, as shown
in Figure 6. Considering the interleaving concept, a phase displacement is applied be-
tween the parallel cells in order to achieve highest quality of the output waveforms. Thus,
four carrier signals, ct11, ct12, ct13 and ct14 (solid line) control the power devices in cell
1, and the other carrier signals ct21, ct22, ct23 and ct24 (dashed line) in the opposite phase
control the power semiconductors in cell 2. Furthermore, as can be seen from Figure 6,
two devices are controlled by a single carrier signal. The switching frequency of each
power semiconductors is fsw while the output waveform effective switching frequency is
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twice fsw. This phenomenon, present in the interleaved converters, is usually called the
multiplicative effect of the effective switching frequency, and leads to a drastic reduction in
the output filter.
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2.2. Balancing Circuit

The main problem of the multilevel converter based on T-Type or E-Type topologies is
the unequal voltage across the DC-bus capacitors [31–33]. This problem cannot be solved
in a simple way with a control algorithm due to the uncontrollable current flow through
the internal nodes [28] of the capacitors. The only chance to balance the DC-bus capacitors
of the 3Φ5L E-Type converters is to use an external circuit. The focus of this paper was not
to study the unbalanced voltage capacitor problem. Here, two series resonant balancing
circuits (SRBCs) have been used to solve the voltage unbalancing problem. Figure 7
illustrates the circuit and the implemented prototype of the SRBCs.

Energies 2021, 14, x FOR PEER REVIEW 6 of 22 
 

 

 
Figure 6. Modulation control scheme for power semiconductors located in a single-phase of the inverter. 

2.2. Balancing Circuit 
The main problem of the multilevel converter based on T-Type or E-Type topologies 

is the unequal voltage across the DC-bus capacitors [31–33]. This problem cannot be 
solved in a simple way with a control algorithm due to the uncontrollable current flow 
through the internal nodes [28] of the capacitors. The only chance to balance the DC-bus 
capacitors of the 3Φ5L E-Type converters is to use an external circuit. The focus of this 
paper was not to study the unbalanced voltage capacitor problem. Here, two series 
resonant balancing circuits (SRBCs) have been used to solve the voltage unbalancing 
problem. Figure 7 illustrates the circuit and the implemented prototype of the SRBCs. 

 
Figure 7. Series resonant balancing circuit prototype. 

The SRBCs were built with four Semitop3 SK75GB066T modules (rated 60 A—600 
V), 4 µH and 16 µF as resonant total inductance (LR1/LR2) and total capacitance (CR1/CR2), 
respectively. Furthermore, one DC-bus film capacitor and two DC-bus electrolytic 
capacitors were used as a DC link. The energy was transferred from the capacitor CB1 to 
CB2 and from the capacitor CB3 to CB4 through the capacitors CR1 and CR2. The auxiliary 
inductors LR1 and LR2 were used to achieve a zero-current switching (ZCS) condition. The 
power semiconductors were driven with complementary control signals with a constant 
duty cycle at 50%; no control loops and sensors were required with the system being self-
balanced. These two SRBCs were used to balance the voltage across the capacitors to 
ensure equal DC currents iC1 = iC2 = iC3 = iC4. 

Figure 7. Series resonant balancing circuit prototype.

The SRBCs were built with four Semitop3 SK75GB066T modules (rated 60 A—600 V),
4 µH and 16 µF as resonant total inductance (LR1/LR2) and total capacitance (CR1/CR2),
respectively. Furthermore, one DC-bus film capacitor and two DC-bus electrolytic capaci-
tors were used as a DC link. The energy was transferred from the capacitor CB1 to CB2 and
from the capacitor CB3 to CB4 through the capacitors CR1 and CR2. The auxiliary inductors
LR1 and LR2 were used to achieve a zero-current switching (ZCS) condition. The power
semiconductors were driven with complementary control signals with a constant duty cycle
at 50%; no control loops and sensors were required with the system being self-balanced.
These two SRBCs were used to balance the voltage across the capacitors to ensure equal
DC currents iC1 = iC2 = iC3 = iC4.

3. Hardware Design and Prototype of E-Type Topology

The 3Φ5L E-Type MMR and MMI have been designed to maximize the efficiency,
power density, and specific power, without sacrificing the quality of the voltage and current
waveforms. To accomplish these tasks, different actions have been carefully carried out.

The capacitors of the DC-bus have been chosen considering the maximum peak-to-
peak voltage ripple ∆VBUS equal to 100 V and the estimated Root Mean Square (RMS)
current flow through the capacitors in the case of an asymmetric load condition. The
DC-bus current harmonics were compensated by the SRBCs except the 100 Hz component,
which had to be compensated by the capacitors. For this reason, the DC-bus capacitors
were selected according to (1), where NS and NP were the numbers of series and parallel
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capacitors, and ICBUS was the RMS current at double fundamental frequency defined in
Equation (2).

CBUS =
2
√

2NSNP

(2π100)∆VBUS
ICBUS (1)

ICBUS|100Hz =
U0 I0√
2VBUS

(2)

In (2), U0 is the RMS voltage, I0 is the RMS load current, and VBUS is the total voltage
across DC-bus capacitors. According to (1) and (2), six parallel and four series electrolytic
capacitors, each one equal to 220 µF, 220 V were chosen as DC-bus capacitor tanks.

The power semiconductors were carefully selected considering the maximum voltage
and current stress that the power components are able to withstand. Figure 8 shows the
maximum voltage stress across the power semiconductors of a single cell of the inverter
and rectifier.
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As can be seen, the switches Sx,21, Sx,22 and the diodes Dx,21, Dx,22, with x ∈ {1R, 2R}
and x ∈ {1I, 2I}, have the maximum voltage stress equal to 3/4VBUS compared to the other
power semiconductors. Naturally, the overvoltage related to the commutated current must
be added to this blocking voltage but, as explained in [34], the overvoltage commutation
only appears when the blocking voltage at a steady state is equal to 1

4 VBUS. Concerning
the current stress, the use of parallel cells helps to reduce the current stress of the power
semiconductors. To obtain the current stress of each power semiconductors, an analytical
procedure has been performed. Particularly, the average (AVG) and the root mean square
(RMS) currents flowing in the power semiconductors located in the rectifier and inverter
are expressed in Equation (3), where M0R is the modulation depth of the rectifier, Iin is the
RMS phase current of the rectifier, M0I is the modulation depth of the inverter, I0 is the
RMS phase current inverter, and aRMS,i, bRMS,i, aAVG,i, bAVG,i, aRMS,j, bRMS,j, aAVG,j, bAVG,j are
the coefficients related to the switches of the rectifier (i-index) and inverter (j-index). The
derivation of Equation (3) requires very complex analysis, and it is beyond the scope of this
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discussion. A simplified discussion to obtaining the Equation (3), including the coefficients,
is discussed in detail in Appendix A.

iRMS,R(t) =
√

Iin
2 M0R
24π

(
aRMS,i
M0R

+ bRMS,i

)
|iAVG,R(t)| =

√
2Iin M0R

4π

(
aAVG,i
M0R

+ bAVG,i

)
iRMS,I(t) =

√
Iout2 M0I

24π

( aRMS,j
M0I

+ bRMS,j

)
|iRMS,I(t)| =

√
2Iout M0I

4π

( aAVG,j
M0I

+ bAVG,j

)
(3)

Starting from this analysis, the selected power semiconductors of the 3Φ5L E-Type
Rectifier and Inverter are listed in Table 1. To improve the power density and the spe-
cific power, the 3Φ5L E-Type MMR and MMI were integrated on the same power board.
The power switches of the rectifier and inverter were driven by three boards, each one
controlling a single-phase of the rectifier and inverter.

Table 1. Power semiconductors used to build the 3Φ5L E-Type MMR and MMI with x∈ {1R, 2R} and
y∈ {1I, 2I}.

Device Part Number Voltage
Rating

Current
Rating Technology Manufacturer

3Φ5L E-Type MMR

Sx,11, Sx,12
Sx,31, Sx,32

IPT210N25NFD 250 V 69 A OptiMOSTM

3
Infineon

Dx,21, Dx,22 IDP30E120 1200 V 30 A Si Diode Infineon

Sx,23, Sx,24 IPL60R104C7 650 V 20 A CoolMOSTMC7

3Φ5L E-Type MMI

Sy,11, Sy,12,
Sy,31, Sy,32

IPT210N25NFD 250 V 69 A OptiMOSTM

3
Infineon

Sy,21, Sy,22 IKW40N120H3 1200 V 40 A IGBT H3 Infineon

Sy,23, Sy,24 IKW20N60T 600 V 20 A Trenchstop™
IGBT Infineon

The Infineon integrated circuit (IC) (part number 1EDI60I12AF) was employed as a
gate driver chip. The printed circuit boards (PCBs) of the power board and the gate driver
board have been optimized to reduce the current path during the commutations; in this
way, the commutation inductance, i.e., the resulting inductance in the commutation circuit,
has been reduced, and with it also the overvoltage commutation.

Additionally, because the high gate driver signals result from the high number of the
power switches located in the 3Φ5L E-Type MMR and MMI, the interconnecting board
which routes all the signals between the diver boards to the control board has been built.

Finally, the input and output filters have been designed to reduce the volume and
to obtain high quality of the input currents in the rectifier side and high quality of the
output voltages in the inverter side. Thus, the input and output ICTs and the input and
output inductors have been built according to the analysis proposed in [30]. The complete
prototype of the 3Φ5L E-Type MMR and MMI is illustrated in Figure 9, and features a
power density of 8.4 kW/dm3 and a specific power of 3.24 kW/kg.



Energies 2021, 14, 843 9 of 21

Energies 2021, 14, x FOR PEER REVIEW 9 of 22 
 

 

prototype of the 3Φ5L E-Type MMR and MMI is illustrated in Figure 9, and features a 
power density of 8.4 kW/dm3 and a specific power of 3.24 kW/kg. 

 
Figure 9. Prototype of the 3Φ5L E-Type Rectifier and Inverter including the input and output power 
filters, measuring 580 mm × 300 mm × 45 mm. The power density is 8.4 kW/dm3 and the specific 
power is 3.24 kW/kg. 

4. Control Interface 
Figure 10 shows the block scheme of the 3Φ5L E-Type MMI. This converter must be 

provided with sinusoidal three-phase voltage waveforms with reduced total harmonic 
distortion (THDv). To meet this target, a multi-resonant controller [35] has been carefully 
chosen. Figure 11 illustrates the control algorithm of the 3Φ5L E-Type MMR connected to 
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Figure 9. Prototype of the 3Φ5L E-Type Rectifier and Inverter including the input and output power
filters, measuring 580 mm × 300 mm × 45 mm. The power density is 8.4 kW/dm3 and the specific
power is 3.24 kW/kg.

4. Control Interface

Figure 10 shows the block scheme of the 3Φ5L E-Type MMI. This converter must be
provided with sinusoidal three-phase voltage waveforms with reduced total harmonic
distortion (THDv). To meet this target, a multi-resonant controller [35] has been carefully
chosen. Figure 11 illustrates the control algorithm of the 3Φ5L E-Type MMR connected to
the wind source or to the micro-turbine source. As can be seen, the external speed loop
provides the current reference to the q-controller inner loop. The task of this controller is to
regulate the phase current to reduce the THD. The ICT circulating currents are regulated
by adding an offset into the modulating signals with an additional loop.
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Figure 11. Block diagram of the 3Φ5L E-Type MMR control algorithm for wind or micro-turbine sources.

5. Simulation Results

The hardware design previously addressed has been verified using a simulation
model realized in the Matlab/Simulink and Plexim environments. Particularly, the power
converter models have been implemented in Plecs, while the control structures have
been implemented in Simulink. The stress of the power semiconductors and the losses
distribution have been evaluated in the Plecs environment, which has a specific domain
for modeling power semiconductors. Moreover, based on the manufacturer of the power
semiconductors, the 2D look-up tables and 3D look-up tables have been created in Plecs to
evaluate the loss distribution. Figures 12 and 13 show the AVG and RMS current flowing
into power semiconductors of the E-Type MMI and E-Type MMR for different values of the
output power. Given the symmetry of the circuit, only the current flows through the power
switches located in the bottom side of the E-Type MMI and E-Type MMR are illustrated.
Both the analytical and experimental approaches provide the same results.

1 

 

 

 
(a) (b) 

 
Figure 12. Comparison between the analytical and simulation approaches of the currents flowing in the power semiconduc-
tors located in the 3Φ5L E-Type MMI: (a) average (AVG); (b) root mean square (RMS).

As can be seen, in the inverter side the most stressed switches are Sy,21, Sy,22, while
the least stressed switches are located in the middle leg Sy,23, Sy,24. In the rectifier side, the
most stressed and the least stressed power semiconductors are Dx,21, Dx,22 and Sx,23, Sx,24,
respectively.
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Figure 13. Comparison between the analytical and simulation approaches of the currents flowing in the power semiconduc-
tors located in the 3Φ5L E-Type MMR: (a) AVG; (b) RMS.

Based on the datasheet provided by the power semiconductor manufacturers, it has
been possible to estimate the efficiency distribution of the proposed converters using an
analytical approach and a simulation approach. Particularly, starting from the achieved AVG
and RMS currents, analytical equations to estimate the losses of the converters have been
obtained according to the method proposed in [36]. Numerical efficiency results from the
obtained analytical equations have been compared with simulation results. Figure 14 shows
the total efficiency of the 3Φ5L E-Type MMR and MMI, including the passive components,
as a function of the power. These results have been obtained based on the selected power
semiconductors and the operating parameters listed in Tables 1 and 2. The peak efficiency
occurs when the power is close to 10 kW, while the efficiency at a nominal point is above
98%. As can be seen, the simulation results closely match the analytical results. Operation
modes and characteristic waveforms of the 3Φ5L E-Type MMR and MMI have been evaluated
according to the operating point listed in Table 2.
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Table 2. Operating parameters of the 3Φ5L E-Type MMR and MMI.

3Φ5L E-Type MMR 3Φ5L E-Type MMI

DC-Bus voltage VBUS = 600 V VBUS = 600 V

Switching frequency fsw = 20 kHz fsw = 20 kHz

Fundamental frequency fin = 100 Hz f 0 = 50 Hz

Modulation depth M0R = 0.93 M0I = 0.93

Figure 15 shows the output phase voltages uu, uv, uw, the phase-to-neutral switching
voltages ua(sw), ub(sw), uc(sw), and the inductor phase currents iu, iu, iu of the 3Φ5L E-Type
MMI under resistive three-phase loads. As can be seen, the voltage waveforms show a
sinusoidal trend with very low total harmonic distortion.
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Figure 15. Waveforms of the 3Φ5L E-Type MMI, from top to bottom: output phase voltages uu, uv,
uw, phase-to-neutral switching voltages uu(sw), uu(sw), uu(sw), inductor phase currents iLu, iLv, iLw.

The waveforms of the 3Φ5L E-Type MMR are illustrated in Figure 16, where it is
possible to notice, from the top to bottom, the phase back electromotive force (EMF) ua, ub,
uc, the phase-to-neutral switching voltage ua(sw), ub(sw), uc(sw), the cell-to-neutral switching
voltage ua1(sw), ub1(sw), uc1(sw), and the electrical machine phase current ia, ib, ic.

Here, the cell-to-neutral switching voltages also show five voltage levels, while the
phase-to-neutral switching voltages exhibit nine voltage level. Thanks to the combination
of the proposed topology and the control algorithm, the phase currents are regulated as
three-phase sinusoidal waveforms with low total harmonic distortion.
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6. Experimental Results

Experimental results have been carried out on 20 kVA 3Φ5L E-Type MMC prototypes
previously described to support the proposed analysis. The DC-bus voltage was kept at
600 V by one port of the multi-port Dual Active Bridge (DAB) converter available in the
laboratory [9]. The 3Φ5L E-Type MMR was connected to a permanent magnet synchronous
motor (PMSM) to emulate the wind source and the 3Φ5L E-Type MMI was connected to the
resistive load bench. Figure 17 shows the experimental setup of the multilevel converter
including the SRBCs.
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As can be seen from the Figure 17, the 3Φ5L E-Type MMR and MMI were controlled
using two different control boards, which were based on the National Instruments sbRIO-
9651 System on Module (SoM), as shown in Figure 18. The SoM is equipped with both
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a microprocessor (µP) and a field-programmable gate array (FPGA), the control loop of
the voltages or, in case of the rectifier side, the control loop of the currents and speed,
run on the FPGA using 32-bit floating point arithmetic, while system managements and
communication infrastructure are managed by the µP.
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Figure 19 shows the phase-to-neutral switching voltage uu(sw), the cell-to-neutral switch-
ing voltage uu1(sw), the voltage waveform after the filter uu, and the phase current iu under
resistive load, when the fundamental frequency f 0 was equal to 50 Hz, the switching fre-
quency fsw was equal to 20 kHz, and the modulation depth M0I was equal to 0.93. Figure 19
shows the five voltage levels across the single cell converter uu1(sw) and nine voltage levels
across the single phase uu(sw) for a fixed modulation index. Figure 20 shows the output
voltage waveforms under resistive load. These results prove the good capability of the
multi-resonant controller to perfectly track the voltage references and to compensate the
harmonics introduced by dead component time.
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Figure 20. Phase-to-neutral voltages uu, uv, uw of the 3Φ5L E-Type MMI side under resistive load.

Figure 21 illustrates the normalized harmonic spectrum of the phase-to-neutral voltage
uu. The amplitude was normalized with respect to the fundamental. The harmonics
magnitude from the 15th to 50th order exhibited an amplitude less than 0.1%. The THDv
valuated up to the 50th order was close to 0.88%.
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Figure 21. Harmonic spectrum of the phase-to-neutral voltage uu.

Figure 22 shows the phase-to-neutral switching voltage ua(sw), the extracted funda-
mental component, the electrical machine phase current ia, and angular position θel, when
the fundamental frequency f 0 was equal to 100 Hz, the switching frequency fsw was equal
to 20 kHz, and modulation depth M0R was equal to 0.93.
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Figure 22. 3Φ5L E-Type MMR waveforms, from top to bottom: phase-to-neutral switching voltage
ua(sw), fundamental component (extracted), electrical machine phase current ia, and angular position θel.

Here, the nine voltage levels are also clearly visible, and the control algorithm provided
good tracking capability, making the machine current almost a pure sinusoidal waveform.
The normalized harmonic spectrum of the phase current normalized with respect to the
fundamental is shown in Figure 23. The THD of the electrical machine phase current
estimated up to the 50th order was equal to 1.95%. The efficiency of the 3Φ5L E-Type
Rectifier and Inverter have been evaluated by using the PM3000A wattmeter, where one
channel has been used to measure the input power at the DC-bus and two channels have
been used to measure the output power through Aron’s insertion. Figure 24 illustrates
the experimental efficiency (blue line) of the 3Φ5L E-Type MMR plus 3Φ5L E-Type MMI
including filters. As can be seen, the peak efficiency was equal to 98.81% by using only the Si
power semiconductors, and at nominal power the efficiency was above 98%. Furthermore,
the experimental results showed a good matching compared to the theoretical analysis.
Consequently, the achieved experimental point validated the theoretical performance
analysis of the 3Φ5L E-Type MMR and the 3Φ5L E-Type MMI.
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7. Conclusions

The multilevel–multicell 3Φ5L E-Type MMI and 3Φ5L E-Type MMR for stand-alone
microgrid applications have been presented and discussed in this paper. The E-Type topol-
ogy has been carefully studied with reference to the multicell interleaving configuration.
The advantages and disadvantages of the proposed multilevel–multicell converters have
been clearly explained. To build the prototype of the MMR and MMI, the hardware design
process has been discussed. The prototype of the proposed multilevel-multicell has been
built, aiming for improvements in the power density and specific power, as well as the
power quality of the voltage and current waveforms. In fact, the complete prototype of the
3Φ5L E-Type MMR plus 3Φ5L E-Type MMI presented a power density of 8.4 kW/dm3 and
a specific power of 3.24 kW/kg. To evaluate the performance of the multilevel–multicell
converters, the control strategies have been introduced with particular regard to stand-
alone microgrid applications. Experimental results confirmed the effectiveness of the
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Appendix A

The analytical approach is presented in this section to calculate the AVG and the
RMS current flowing through the power semiconductors in the 3Φ5L E-Type MMR and
MMI. In general, the AVG and RMS current over one fundamental period can be found by
Equations (A1) and (A2), where θ = ωt, ω is the fundamental frequency, i is the sinusoidal
phase current, and dd is the duty cycle of the devices.

IRMS =

√
1

2π

∫ π

0
[i2(θ)·dd(θ)] d(θ) (A1)

IAVG =
1

2π

∫ π

0
[i(θ)·dd(θ)] d(θ) (A2)

To find the RMS and AVG currents, the duty cycles of the power semiconductors
in both rectifier and inverter must be obtained. According to the modulation strategy
illustrated in Figure 6, the duty cycle of the devices can be derived from Equation (A3),
where θin = ωint, θ0 = ω0t, ωin and ω0 the fundamental frequency of the rectifier and
inverter, respectively, An,car is the amplitude of the carriers and mn,car is the offset of the
carriers, with n = 1, 2, 3, 4, and mx(θin), my(θ0) are the modulation index of the rectifier and
inverter, respectively, defined in (A4), with z ∈ {A, B, C} and w ∈ {U, V, W} and k = 0, 1, 2. drect,devices(θin) =

1
An,car

[(
An,car

2 −mn,car

)
+ mz(θin)

]
dinv,devices(θ0) =

1
An,car

[(
An,car

2 −mn,car

)
+ mw(θ0)

] (A3)

{
mz(θin) = M0R sin

(
θin − k 2π

3
)

mw(θ0) = M0I sin
(
θ0 − k 2π

3
) (A4)

Substituting (A4) into (A3), the duty cycles for each power semiconductors in the single
cell rectifier and inverter can be expressed as (A5) and (A6), where α1R = arcsin(0.5/M0R)
and α1I = arcsin(0.5/M0I) are the angles between the carrier signals and the modulating
signals of the rectifier and inverter, respectively. Replacing (A5) and (A6) into (A1) and
(A2), and performing some algebraic manipulations, the RMS and AVG currents in each
power semiconductors can be written as in Equation (3), where the coefficients aRMS,i,
bRMS,i, aAVG,i, bAVG,i, aRMS,j, bRMS,j, aAVG,j, bAVG,j are listed in Tables A1 and A2.

dSx,11(θin) =

{
0 θin ∈ [0, π], θin ∈ [π, π + α1], θin ∈ [2 π − α1R, 2π]
−1− 2M0R sin(θin) θin ∈ [π, 2π − α1R]

dSx,12(θin) =

{
1 θin ∈ [0, π], θin ∈ [π, π + α1R], θin ∈ [2 π − α1R, 2π]
2[1 + M0R sin(θin)] θin ∈ [π + α1R, 2π − α1R]

dDx,21(θin) =

{
0 θin ∈ [0, π]
1 θin ∈ [π, 2π]

dDx,22(θin) =

{
1 θin ∈ [0, π]
0 θin ∈ [π, 2π]

dSx,23(θin) =


1− 2M0R sin(θin) θin ∈ [0, α1R], θin ∈ [π − α1R, π]
0 θin ∈ [α1R, π − α1R]
1 θin ∈ [π, 2π]

dSx,24(θin) =


1 θin ∈ [0, π]
1 + 2M0R sin(θin) θin ∈ [π, π + α1R], θR ∈ [2 π − α1R, 2π]
0 θin ∈ [π + α1R, 2π − α1R]

dSx,31(θin) =

{
1 θin ∈ [0, α1R], θR ∈ [π − α1R, π], θin ∈ [π, 2π]

2[1−M0R sin(θin)] θin ∈ [α1R, π − α1R]

dSx,32(θin) =

{
−1 + 2M0R sin(θin) θin ∈ [α1R, π − α1R]
0 θin ∈ [0, α1R], θin ∈ [π − α1R, π], θin ∈ [π, 2π]

(A5)
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dSy,11(θ0) =

{
0 θ0 ∈ [0, π], θ0 ∈ [π, α1I + π], θ0 ∈ [2 π − α1I , 2π]

−1− 2M0I sin(θ0) θ0 ∈ [α1I + π, 2π − α1I ]

dSy,11(θ0) =

{
1 θ0 ∈ [0, π], θ0 ∈ [π, α1I + π], θ0 ∈ [2 π − α1I , 2π]

2[1 + M0I sin(θI)] θ0 ∈ [α1I + π, 2π − α1I ]

dSy,21(θ0) =


0 θ0 ∈ [0, π]

−2M0I sin(θI) θ0 ∈ [π, α1I + π], θ0 ∈ [2 π − α1I , 2π]
1 θ0 ∈ [α1I + π, 2π − α1I ]

dSy,22(θ0) =


2M0I sin(θI) θ0 ∈ [0, α1I ], θ0 ∈ [π − α1I , π]

1 θ0 ∈ [α1I , π − α1I ]
0 θ0 ∈ [π, 2π]

dSy,23(θ0) =


1− 2M0I sin(θI) θ0 ∈ [0, α1I ], θ0 ∈ [π − α1I , π]

0 θ0 ∈ [α1I , π − α1I ]
1 θ0 ∈ [π, 2π]

dSy,24(θ0) =


1 θ0 ∈ [0, π]

1 + 2M0I sin(θI) θ0 ∈ [π, α1I + π], θ0 ∈ [2 π − α1I , 2π]
0 θ0 ∈ [α1I + π, 2π − α1I ]

dSy,31(θ0) =

{
1 θ0 ∈ [0, α1I ], θ0 ∈ [π − α1I , π], θ0 ∈ [π, 2π]

2[1−M0I sin(θI)] θ0 ∈ [α1I , π − α1I ]

dSy,32(θ0) =

{
0 θ0 ∈ [0, α1I ], θ0 ∈ [π − α1I , π], θ0 ∈ [π, 2π]

−1 + 2M0 sin(θI) θ0 ∈ [α1I , π − α1I ]

(A6)

Table A1. 3Φ5L E-Type MMR power semiconductor coefficients of the RMS and AVG currents.

i Power
Semiconductor Coefficients

1 Dx,21, Dx,22
aRMS,1 = 3π − 6α1R − 3 sin(2α1R)

bRMS,1 = 8(cos(α1R) + 2)(cos(α1R)− 1)2

aAVG,1 = 2 cos(α1R)
bAVG,1 = 2α1R − sin(2α1R)

2 Sx,11, Sx,32
aRMS,2 = 3π − 6α1R + 3 sin(2α1R)
bRMS,2 = −4 cos(α1R)

(
cos2(α1R)− 3

)
aAVG,2 = −2 cos(α1R)
bAVG,2 = sin(2α1R)− 2α1R + π

3 Sx,12, Sx,31

aRMS,3 = 3
2 (π − 2α1R + sin(2α1R))

bRMS,3 = 2
[
cos(α1R)

(
cos2(α1R)− 3

)
+(cos(α1R) + 2)(cos(α1R)− 1)2

]
aAVG,3 = 4 cos(α1R)
bAVG,3 = 4α1R − 2 sin(2α1R)− π

4 Sx,23, Sx,24
aRMS,4 = 1

2 [2α1R − sin(2α1R)]

bRMS,4 = 2(cos(α1R)− 1)2(−cos(α1R)− 2)
aAVG,4 = 2(1− cos(α1R))
bAVG,4 = sin(2α1R)− 2α1R
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Table A2. 3Φ5L E-Type MMI power semiconductor coefficients of the RMS and AVG currents.

i Power
Semiconductor Coefficients

1 Sy,21, Sy,22

aRMS,1 = 3π − 6α1I − 3 sin(2α1I) + 6 sin(2α1I) cos2(ϕ0)

bRMS,1 = −4 sin(ϕ0)
2 + 6 sin

( α1I
2 + ϕ0

)2 − 2 sin
(

3α1I
2 + ϕ0

)2
+ sin(3α1I − ϕ0)

−6 cos(α1I) + 8 cos(ϕ0)− 3 cos(α1I − 2ϕ0)
aAVG,1 = 4 cos(α1I) cos(ϕ0)
bAVG,1 = 2 sin(α1I) + cos(ϕ0)[4α1I− 2 sin(2α1I)− 2ϕ0]

2 Sy,11, Sy,32
aRMS,2 = 6α1I − 3π + 3 sin(2α1I)− 3(1 + cos(2ϕ0)) sin(2α1I)
bRMS,2 = 8 cos3(α1I) + 24 cos2(ϕ0) cos(α1I)− 12 cos3(α1I) cos(ϕ0)
aAVG,2 = −2 cos(ϕ0) cos(α1I)
bAVG,2 = cos(ϕ0)[sin(2α1I)− 2α1I + π]

3 Sy,12, Sy,31

aRMS,3 = 3
2 [π − 2α1I + sin(2α1I) cos(2ϕ0)]

bRMS,3 = 1
2 [3− 12 cos(α1I) + 4 cos(ϕ0) + cos(2ϕ0)− 6 cos(2ϕ0) cos(α1I)+

+2 cos(3α1I) cos(2ϕ0)]
aAVG,3 = 8 cos(α1I) cos(ϕ0)
bAVG,3 = 2 sin(ϕ0) + 2α1I cos(ϕ0)− 2ϕ0 cos(ϕ0)− 3 sin(2α1I) cos(ϕ0)− π cos(ϕ0)

4 Sy,23, Sy24
aRMS,4 = 3α1I − 3 cos(2ϕ0)cos(α1) sin(α1I)
bRMS,4 = −6 + 6cos(α1I)− 2 cos(2ϕ0) + 6 cos(2ϕ0) cos(α1I)− 4 cos(2ϕ0) cos3(α1I)
aAVG,4 = 2− 2 cos(ϕ0) cos(α1I)
bAVG,4 = −2 cos(ϕ0) + sin(2α1I) cos(ϕ0)− 2α1I cos(ϕ0) + 2ϕ0 cos(ϕ0)
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12. Lazarević, V.Ž.; Zubitur, I.; Vasić, M.; Oliver, J.A.; Alou, P.; Patchin, G.; Eltze, J.; Cobos, J.A. High-Efficiency High-Bandwidth
Four-Quadrant Fully Digitally Controlled GaN-Based Tracking Power Supply System for Linear Power Amplifiers. IEEE J. Emerg.
Sel. Top. Power Electron. 2019, 7, 664–678. [CrossRef]

13. Yuan, X.; Laird, I.D.; Walder, S. Opportunities, Challenges, and Potential Solutions in the Application of Fast-Switching SiC
Power Devices and Converters. IEEE Trans. Power Electron. 2021, 36, 3925–3945. [CrossRef]

http://doi.org/10.1109/ACCESS.2020.2988011
http://doi.org/10.1109/ACCESS.2020.3030729
http://doi.org/10.1109/TSTE.2020.3023498
http://doi.org/10.1109/TIA.2020.2979789
http://doi.org/10.1109/ACCESS.2020.2992654
http://doi.org/10.1109/TIA.2018.2886190
http://doi.org/10.1109/TPEL.2019.2943889
http://doi.org/10.1109/JESTPE.2018.2884959
http://doi.org/10.1109/TPEL.2020.3024862


Energies 2021, 14, 843 21 of 21

14. Liang, G.; Tafti, H.D.; Farivar, G.G.; Pou, J.; Townsend, C.D.; Konstantinou, G.; Ceballos, S. Analytical Derivation of Intersubmod-
ule Active Power Disparity Limits in Modular Multilevel Converter-Based Battery Energy Storage Systems. IEEE Trans. Power
Electron. 2021, 36, 2864–2874. [CrossRef]

15. Ebrahimi, J.; Karshenas, H. N-Tuple Flying Capacitor Multicell Converter—A Generalized Modular Hybrid Topology. IEEE Trans.
Ind. Electron. 2019, 66, 5004–5014. [CrossRef]

16. Meraj, M.; Bhaskar, M.S.; Iqbal, A.; Al-Emadi, N.; Rahman, S. Interleaved Multilevel Boost Converter with Minimal Voltage
Multiplier Components for High-Voltage Step-up Applications. IEEE Trans. Power Electron. 2020, 35, 12816–12833. [CrossRef]

17. McNeill, N.; Yuan, X.; Anthony, S.P. High-Efficiency NPC Multilevel Converter Using Super-Junction MOSFETs. IEEE Trans. Ind.
Electron. 2015, 63, 25–37. [CrossRef]

18. McNeill, N.; Yuan, X.; Jin, B. A Super-Junction MOSFET-Based 99%+ Efficiency T-Type Multilevel Converter. In Proceedings of
the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018; pp. 5643–5650.

19. Shi, Y.; Shi, Y.; Wang, L.; Xie, R.; Li, H. A 50 kW high power density paralleled-five-level PV converter based on SiC T-type
MOSFET modules. In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA,
18–22 September 2016; pp. 1–8.

20. Schrittwieser, L.; Leibl, M.; Haider, M.; Thöny, F.; Kolar, J.W.; Soeiro, T.B. 99.3% Efficient Three-Phase Buck-Type All-SiC SWISS
Rectifier for DC Distribution Systems. IEEE Trans. Power Electron. 2019, 34, 126–140. [CrossRef]

21. Zhang, L.; Zheng, Z.; Li, C.; Ju, P.; Wu, F.; Gu, Y.; Chen, G. A Si/SiC Hybrid Five-Level Active NPC Inverter with Improved
Modulation Scheme. IEEE Trans. Power Electron. 2019, 35, 4835–4846. [CrossRef]

22. Di Benedetto, M.; Lidozzi, A.; Solero, L.; Crescimbini, F.; Grbovic, P.J. Reliability and Real-Time Failure Protection of the
Three-Phase Five-Level E-Type Converter. IEEE Trans. Ind. Appl. 2020, 56, 6630–6641. [CrossRef]

23. Deng, F.; Lu, Y.; Liu, C.; Heng, Q.; Yu, Q.; Zhao, J. Overview on submodule topologies, modeling, modulation, control schemes,
fault diagnosis, and tolerant control strategies of modular multilevel converters. Chin. J. Electr. Eng. 2020, 6, 1–21. [CrossRef]

24. Pires, V.F.; Cordeiro, A.; Foito, D.; Pires, A.; Martins, J.; Chen, H. A Multilevel Fault-Tolerant Power Converter for a Switched
Reluctance Machine Drive. IEEE Access 2020, 8, 21917–21931. [CrossRef]

25. Omer, P.; Kumar, J.; Surjan, B.S. A Review on Reduced Switch Count Multilevel Inverter Topologies. IEEE Access 2020, 8,
22281–22302. [CrossRef]

26. Benedetto, M.D.; Lidozzi, A.; Solero, L.; Crescimbini, F.; Grbovic, P.J. Low-Frequency State-Space Model for the Five-Level
Unidirectional T-Rectifier. IEEE Trans. Ind. Appl. 2017, 53, 1127–1137. [CrossRef]

27. Benedetto, M.D.; Lidozzi, A.; Solero, L.; Crescimbini, F.; Grbovic, P.J. Small-Signal Model of the Five-Level Unidirec-tional
T-Rectifier. IEEE Trans. Power Electron. 2017, 32, 5741–5751. [CrossRef]

28. Di Benedetto, M.; Solero, L.; Crescimbini, F.; Lidozzi, A.; Grbović, P.J. 5-Level E-type back to back power converters—A
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