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Abstract: Thanks to the frequency hopping nature of Bluetooth, sniffing Bluetooth traffic with low-
cost devices has been considered as a challenging problem. To this end, BlueEar, a state-of-the-art
low-cost sniffing system with two Bluetooth radios proposes a set of novel machine learning-based
subchannel classification techniques for adaptive frequency hopping (AFH) map prediction by
collecting packet statistics and spectrum sensing. However, there is no explicit evaluation results on
the accuracy of BlueEar’s AFH map prediction. To this end, in this paper, we revisit the spectrum
sensing-based classifier, one of the subchannel classification techniques in BlueEar. At first, we build
an independent implementation of the spectrum sensing-based classifier with one Ubertooth sniffing
radio. Using the implementation, we conduct a subchannel classification experiment with several
machine learning classifiers where spectrum features are utilized. Our results show that higher
accuracy can be achieved by choosing an appropriate machine learning classifier and training the
classifier with actual AFH maps.Our results show that higher accuracy can be achieved by choosing
an appropriate machine learning classifier and training the classifier with actual AFH maps.

Keywords: bluetooth; frequency hopping; adaptive frequency hopping; spectrum sensing; wireless
security

1. Introduction

Bluetooth is one of the most widely used short-range wireless networking standards
and has exploded in popularity. According to [1], more than 4 billion Bluetooth devices
were shipped in 2019, and more than 6 billion Bluetooth device annual shipments are
expected by 2024. To this end, with the emergence of Internet of Things (IoT), various
security and privacy issues relying on Bluetooth are expected to be raised. Actually, there
are several early works [2,3] which focus on the potential threats and security weaknesses
in Bluetooh, and [4] present a recent overview of Bluetooth vulnerabilities, threats, and
risk mitigation solutions.

Amongst the security and privacy issues, traffic sniffing is a main building block to
analyze security problems in networking. Nevertheless, sniffing Bluetooth traffic with low-
cost devices is a challenging problem, due to its frequency hopping nature. Furthermore,
Bluetooth employs Adaptive Frequency Hopping (AFH) mechanism [5] which makes
prediction of frequency hopping sequences complex. While some commercially-off-the-
shelf sniffing devices and a recently announced sniffing system [6] can cope with the
problem by listening to the whole frequency band, such devices are too expensive and
power inefficient [7].

In this context, there are several research efforts [7–9] to design and implement low-
cost Bluetooth sniffing systems with cheap radio devices. These systems try to exploit or
capture AFH map, since AFH map can be used to infer the upcoming frequency hopping
sequence. For instance, BlueEar [8], a state-of-the-art low-cost sniffing system employing
two cheap Ubertooth [10] devices, proposes a set of machine learning-based, AFH map
prediction techniques by collecting packet statistics and spectrum sensing.
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In BlueEar, the packet-based classifier operating with one Ubertooth device called
scout infers AFH maps from the packet rates computed from eavesdropped packettheir-
tory. On the other hand, in the training phase, the spectrum sensing-based Support Vector
Machine (SVM) classifier associates the actual AFH map (as label) with spectrum sens-
ing statistics (i.e., received signal strengththeirtogram per channel) collected from scout.
BlueEar also employs a hybrid classifier combining the previous classifiers by training
the spectrum sensing-based classifier with the inferred AFH map from the packet-based
classifier in run-time. According to [8], the hybrid classifier has the best performance
among the three classifiers in practical settings.

Unfortunately, in spite of its great novelty and practicality, there are several remaining
questions in BlueEar:

• Since [8] evaluates the above classifiers as a module of the whole sniffing system,
only per-channel classification results are available. However, since AFH sequence
relies on the resulting AFH map, per-channel classification results is not sufficient to
evaluate contribution of the classifier in packet sniffing.

• Although SVM is known as powerful on a wide range of problems, there are broad
categories of machine learning classifiers. We could understand the AFH map pre-
diction problem more comprehensively by comparing results from multiple machine
learning classifiers.

To this end, in this paper, we revisit the AFH map prediction problem with multiple
machine learning classifiers. Especially, we focus on the spectrum sensing-based classifier,
since the packet-based classifier (and thus the hybrid classifier) has strong dependency on
other system components (e.g., clock acquisition, packet rate measurement method, etc.).
At first, we build an independent implementation of the spectrum sensing-based classifier
with one Ubertooth sniffing radio. Using the implementation, we conduct a subchannel
classification experiment with several machine learning classifiers where spectrum features
are utilized. Our experimental results show that higher accuracy can be achieved by
choosing an appropriate machine learning classifier for spectrum sensing-based classifica-
tion and training the classifier with actual AFH maps and hyper-parameter tuning, while
BlueEar insists that their own spectrum sensing-based classifier has poor accuracy so that
another kind of classifiers (i.e., hybrid and packet-based classifiers) are required in BlueEar.
Note that this work is a fully-revised, extended work of our previous work [11]. In the
previous work [11], we only evaluated a SVM classifier with limited evaluation results,
while we discuss feasibility of several machine learning classifiers with new experimental
results in this work.

The rest of this paper is organized as follows. Section 2 reviews the related work.
Section 3 provides an overview of Bluetooth and machine learning algorithms. Section 4
introduces our packet sniffing system and our experimental process. Section 5 presents
evaluation results on the AFH map prediction with different machine learning classifiers.
We draws the conclusion and future work in Section 6.

2. Related Work

As privacy and security of Bluetooth have become increasingly important, there are
several off-the-shelf products which can listen to the whole Bluetooth channels [7,12]. Un-
fortunately, these devices are too expensive (e.g., over USD 10,000), comparing with typical
Bluetooth radios (e.g., under USD 100). To this end, [6,7,12] try to utilize mid-cost (about
several thousand dollars) software defined radio (SDR) devices to sniff the whole Bluetooth
channels with open source signal processing software (e.g., GNURadio). However, such
devices are typically designed for controlled experiments, e.g., for debugging and testing,
so that they are energy inefficient and lack of mobility.

To this end, there have been various research efforts [9,13–17] working on simple
and low-cost Bluetooth sniffing systems and their applications. These efforts are boosted
with the introduction of an open source Bluetooth sniffing platform called Ubertooth [10].
Ubertooth One, the current hardware revision of Ubertooth device, is capable of sniffing
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Bluetooth Classic and Bluetooth Low Energy (BLE) packets. Furthermore, since hardware,
firmware, and host code are publicly available, Bluetooth researchers can integrate their
own codes with Ubertooth. However, the above research efforts with Ubertooth are
operated in basic frequency hopping mode, since they lack of consideration of adaptive
hopping behavior of Bluetooth [8].

On the other hand, BlueEar [8] is a state-of-the-art Bluetooth sniffing system with two
Ubertooth devices. This system presents several techniques for practical Bluetooth traffic
sniffing such as clock acquisition, adaptive hopping sequence prediction, selective jamming
to improve sniffing performance. Amongst them, in this paper, we focus on adaptive
hopping sequence (i.e., AFH map) prediction. Especially, as discussed in Section 1, BlueEar
has per-channel classification results only, which does not show performance evaluation
on the AFH map prediction directly.

Meanwhile, in our approach, it is necessary to collect the actual AFH map from
Bluetooth master devices (which is connected through wire). Among several options, we
utilize InternalBlue which can be used for the collection. InternalBlue [17] is a Bluetooth
research and analysis framework that can analyze Link Management Protocol (LMP)
packets by modifying the firmware of Broadcom Bluetooth chipset. Since AFH maps in
Bluetooth Classic connections can be extracted through LMP packets with InternalBlue,
we can successfully collect the actual AFH maps using InternalBlue.

Although our research efforts focus on difficulty of adaptive frequency hopping map
prediction in Bluetooth traffic sniffing, there have been various studies [18–23] to resolve
spectrum issues (e.g., Wi-Fi and Bluetooth coexistence, non-RF device interference, etc.)
in the 2.4 GHz band. We believe that our work could be applied into the studies for better
understanding of spectrum usage in the 2.4 GHz band.

3. Backgrounds

In this section, we briefly summarize the Bluetooth standard and introduce the ma-
chine learning classifiers used in the experiment.

3.1. An Overview of Bluetooth and AFH

Before introducing details of our approach, in this section, we provide some back-
ground information on Bluetooth. Especially, as in the previous research efforts [9,13–17],
we only consider Bluetooth Classic in this paper. Since Ubertooth One also supports
Bluetooth Low Energy (BLE) [24], AFH map prediction in BLE sniffers (e.g., [25]) could be
considered as a future work.

Piconet is the basic structure of Bluetooth communications that consists of a master
device and at most seven slave devices. Usually, a device which initiate a connection with
slave device(s) is initially master device and the others are selected as slave devices. The
piconet uses BD_ADDR (i.e., Bluetooth Device Address) of the master device as the piconet
address. Every device in the same piconet is synchronized with the master device’s clock
also known as piconet clock. Note that the piconet clock ticks every 625 µs and the value it
contains increases.

Bluetooth employs a technique called Frequency Hopping Spread Spectrum (FHSS)
which makes Bluetooth devices to change its carrier frequency every 625 µs. Since 79 fre-
quency channels are available in Bluetooth Classic, it implies that we can observe a sequence
of frequency channels over time from a Bluetooth piconet, which is called (frequency) hop-
ping sequence. The basic Bluetooth hopping sequence is generated by the hop selection
kernel defined in the original Bluetooth standard, by using piconet address and piconet
clock as inputs. Therefore, when we know the address and the clock of a piconet, we can
follow the basic Bluetooth hopping sequence. Note that obtaining the information is out of
scope in this paper, but there are several approaches to get the information, e.g., [7,8].

Unfortunately, with the introduction of AFH in the Bluetooth Core Specification
Version 1.2 published in 2003, obtaining the actual hopping sequence is more complex.
If the master device supports AFH, each channel is firstly labeled as either “used” (good) or
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“unused” (bad) based on channel quality assessment (based on measurements conducted
by the master and/or the slaves, etc.), and the labeled information for all channels is called
AFH (channel) map. For example, as shown in Figure 1, several channels with severe
interference level are classified as “unused”. If a channel chosen by the basic hop selection
kernel is labeled as “unused”, AFH remaps the channel to another channel labeled as
“used”. Note that while AFH map is defined by the Bluetooth standard, there is no specific
assessment algorithm or threshold for labeling. It implies that the channel classification
mechanism is vendor-specific (i.e., typically proprietary) so that we cannot obtain the exact
algorithm without reverse engineering. Rather, to this end, AFH map should be inferred
from machine learning classifiers as in BlueEar [8].

Figure 1. An example of Adaptive Frequency Hopping (AFH) mitigation.

3.2. Machine Learning Classifiers

In our experiment, we utilize five widely used machine learning classifiers: logistic
regression, decision tree, random forest, support vector machine (SVM), and multi-layer
perceptron (MLP). Since we want to compare with the used classifiers in a fair manner,
we use the same machine learning framework called scikit-learn (version 0.23.2). In
scikit-learn, we first tuned hyper-parameters of each classifier using the exhaustive grid
search over a set of values with accuracy of models.

3.2.1. Logistic Regression

Logistic regression can be seen as a modified version of linear regression for binary
classification. Logistic regression returns a probability of a feature set that is in a specific
label (e.g., in our case, “used” or “unused”). Furthermore, each weight of this model
represents the importance of the corresponding feature. To this end, this classifier is
considered as easily interpretable.

In our experiment, we use lbfgs (Limited-memory BFGS) solver, the default solver
in the current version of scikit-learn. In hyper-parameter tuning of the training phase,
we use the grid set for C, the inverse of l2-regularization strength, as {10−9, 10−8, · · · , 109}.
The resulting parameter is C = 102.

3.2.2. Decision Tree

While logistic regression is useful especially in linearly separable dataset, the AFH
map prediction problem may not be the case, considering its vendor dependency. To this
end, nonlinear classifiers can be more useful to resolve the AFH map prediction problem.
Amongst them, decision tree classifiers try to learn simple rules on the feature sets to parti-
tion the input space into the labels in a hierarchical way [26]. Decision tree classifiers are a
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non-parametric supervised learning method, having the following advantages: (1) easy
to interpret, (2) little data preparation, and (3) robust against feature scaling. However,
decision tree classifiers also have potential unstablity due to small data variation and less
generality (i.e., over-fitting).

In our experiment, scikit-learn provides an optimized version of the Classification
and Regression Trees (CART) trees. In hyper-parameter tuning of the training phase, we use
the grid sets for min_samples_leaf (i.e., the minimum number of samples required to be
at a leaf node) and max_features (i.e., the number of features to consider when looking for
the best split): {5, 10, 15, 20, 25, 30, 35} for the former and {‘sqrt’, ‘log2’, 0.4, 0.5, 0.6, 1}
for the latter. The resulting parameters are min_samples_leaf = 5 and max_features
= 0.5. In addition, we assign 32 to max_depth.

3.2.3. Random Forest

A random forest classifier has a number of individual decision tree classifiers for
training on various subsets of the dataset. Random forest classifiers are widely known for
good predictive performance with little hyper-parameter tuning. Although the diversity of
individual decision tree classifiers in a random forest classifier may hurt its interpretability,
observing highly contributed trees can give a set of decision rules for the output.

In contrast to the original work [27], scikit-learn utilizes averaging for better accu-
racy and over-fitting control, instead of voting of each tree classifier for a label. In terms
of the bias-variance tradeoff in the classifier’s output, the averaging approach does not
relieve bias but it can give lower variance than a decision tree classifier. In hyper-parameter
tuning of the training phase, we use the grid sets for min_samples_leaf (i.e., the mini-
mum number of samples required to be at a leaf node) and max_features (i.e., the num-
ber of features to consider when looking for the best split): {5, 10, 15, 20, 25, 30, 35} for
the former and {‘sqrt’, ‘log2’, 0.5, 0.6, 0.7} for the latter. The resulting parameters are
min_samples_leaf = 5 and max_features = 0.7. In addition, we assign 32 to max_depth,
the same value in the decision tree classifiers.

3.2.4. Support Vector Machine

Support Vector Machine (SVM) classifiers are widely used in various supervised
machine learning problems, because SVM classifiers are computationally efficient and
supported by a well-defined theory validating its accuracy and robustness. Specifically,
obtaining a SVM classfier can be considered as an optimization problem (and convex
optimization problem with several kernel functions). Moreover, projecting feature sets to a
very high-dimension feature space increases chances that features sets with different labels
are linearly separable, which gives its computational efficiency and increases high general-
ization ability [28]. Although SVM classifiers are typically less interpretable, they gives
high accuracy in many scenarios.

Although scikit-learn supports several SVM implementations, we choose SVC
(C-Support Vector Classification) for our experiments, which is based on libsvm written
in the C language. In hyper-parameter tuning of the training phase, we use the grid set
for C, the inverse of (squared) l2-regularization strength, as {10−8, 10−7, · · · , 108} and the
grid set for kernel as {‘linear’, ‘rbf’, ‘sigmoid’, ‘poly’}. The resulting parameter is
C = 102 and kernel = ‘rbf’.

3.2.5. Multi-Layer Perceptron

A Multi-Layer Perceptron (MLP) classifier, consisting of input layer, output layer,
and non-linear hidden layers, learns a function f from Rm → Rn by training on a dataset,
where m and n are the number of dimensions for the input and output, respectively. MLP
classifiers have capability to learn highly nonlinear functions, but there are too many
parameters to be learned. It implies that MLP classifers are susceptible to overfitting.
Furthermore, in most cases, MLP classifiers are used as uninterpretable black boxes.
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In hyper-parameter tuning of the training phase, we consider two to four hidden layers
(which are homogeneous in size), the number of neurons in {32, 64, 128}, l2-regularization
parameter α in {0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}. Note that scikit-learn’s MLP implemen-
tation uses the following default configuration: the Rectified Linear Unit function (ReLU)
as the activation function for the hidden layer, the Adam (Adaptive Moment Estimation)
stochastic gradient-based optimizer as the solver for weight optimization. The resulting
parameters are (64, 64) hidden layers and α = 0.3.

4. Experiment

In this section, we first introduce our testbed for the experiment. In the following,
we describe the experiment process in a brief manner.

4.1. AFH Map Collection and Prediction Testbed

As shown in Figure 2. we build a testbed for collecting AFH maps and spectrum
measurements of a Bluetooth piconet for AFH map prediction. In the testbed, a Google
Nexus 5 smartphone and Airpod are used as the master device and the slave device in the
piconet. As described in Section 2, InternalBlue requires that the master device (to collect
the actual AFH maps) uses a Broadcom Bluetooth radio, while the slave device can be any
Bluetooth device that supports Adaptive Frequency Hopping. Throughout each trial of
our experiment, master device plays music so that an audio application stream will be
transmitted through a Bluetooth classic connection.

Figure 2. An overview of the experimental process in the AFH map collection and prediction testbed.

All HCI packets (including AFH maps) transmitted from the master device hooked
by InternalBlue are transmitted to the host device through this USB connection. Similarly,
a Ubertooth One device as a Bluetooth network sniffing radio is connected to the host
computer through another USB connection. That is, the combination of Ubertooth and the
host computer is a prototype of Bluetooth traffic sniffing system. The host device in our
testbed extracts AFH maps from Bluetooth packets transmitted from the master device
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and converts the RSSI value transmitted from Ubertooth to dataset in online. We used our
laptop which has Intel i7-8656U processor and 16GB of RAM as host device. On the other
hand, machine learning training and testing procedures in Figure 2 were performed on
another computer which has an AMD Ryzen Threadripper 3960X 24-core processor and 32
GB of RAM.

Now, we will observe the overall process of our experiments in the following proce-
dures: spectrum sensing, data processing, and training & evaluation.

4.2. Spectrum Sensing

Using the Ubertooth device, the Received Signal Strength Indicator (RSSI) values for
all channels are measured over time. In BlueEar [8], a similar measurement is conducted,
but according to [9], the publicly available BlueEar implementation does not support online
measurement of RSSI value, while our system is capable of collecting RSSI values in an
online manner. We developed a spectrum sensing program using Ubertooth’s open-source
library, libubertooth, to measure RSSI values and convert them into data used in machine
learning classifiers. This program communicates with the Ubertooth device attached to
the host device. The Ubertooth device can measure RSSI of one channel at a time, and the
program sequentially iterates Bluetooth channels repeatedly from 2402 MHz to 2480 MHz
to read each channel’s RSSI values. Ubertooth supports 8-bit RSSI data values, ranging from
−128 dBm to 127 dBm. This RSSI data is transmitted to the data processing component.

4.3. Data Processing and the Resulting Dataset

To conduct our experiment, the collected spectrum sensing data (i.e., per-channel
RSSI values over time) and the extracted AFH maps from the master device should be
mapped so as to compose dataset. Note that during a time interval between the extracted
AFH map arrivals, a set of (possibly different) per-channel RSSI values are arrived at the
host computer.

Since each set of per-channel RSSI values in different time intervals (of AFH map
arrivals) has diverse lengths, it is better to represent each set as atheirtogram of RSSI
values. Since Ubertooth can measure per-channel RSSI level from −128 dBm to 127 dBm,
each channel has a 256-bintheirtogram for a time interval. Since we can find the actual
label (either “used” or “unused”) for each channel in the corresponding AFH map, we can
associate the AFH map and the set of 79 per-channel RSSItheirtograms.

Note that in the course of actual data processing in our experiment, we trim eachtheir-
togram have a bin range from −60 dBm to 20 dBm, since the collected dataset can be
represented with the trimmedtheirtogram without information loss. Since the spectrum
sensing-based classifier (in BlueEar and our experiment) conducts per-channel binary clas-
sification, each resulting sample has a binary label and 81 features. Therefore, the AFH Map
Prediction problem is a binary classification problem for the samples in the dataset correctly.

Table 1 represents the statistics of the dataset collected in the testbed. We conduct an
experiment in an office room under moderate interference of large-scale 2.4 GHz campus
Wi-Fi network. We collected the AFH maps and the spectrum sensing data from Nexus 5
connected with Airpod while playing music. The experiment has three trials, and two of the
trials are used for training and the last one is used for testing. There are 106,808 samples in
the training set and 20,935 samples in the test set. Note that since one AFH map generates
79 channel samples, we have 1352 AFH maps and 265 AFH maps for the training set and
the test set, respectively.
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Table 1. Statistics of the dataset collected in the testbed.

# of 0 # of 1 Total # of AFH Map # of 0 # of 1 Total # of AFH Map

A 16,743 83,824 100,567 1273
Training set 17,797 89,011 105,808 1352

B 1054 5187 6241 79

C 4572 16,363 20,935 265 Test set 4572 16,363 20,935 265

4.4. Training and Evaluation

As described in Section 3.2, we utilize five widely used machine learning classifiers
for AFH Map Prediction problem: logistic regression, decision tree, random forest, SVM,
and MLP. In this procedure, we first conduct hyper-parameter tuning by writing a Python
script for model selection. Detailed descriptions for the classifiers and the tuning process
are available in Section 3.2. Next, according to the information in Table 1, we conduct
training and testing for each machine learning classifier with tuned parameters.

5. Evaluation Results

In this section, we present our evaluation results on the test set. At first, we introduce
per-channel classification results of the five classifiers. Then, we observe AFH map pre-
diction results of the five classifiers. Lastly, we discuss the feasibility of the five spectrum
sensing-based classifiers in practical Bluetooth traffic sniffing systems.

5.1. Per-Channel Classification

Figure 3 shows the evaluation results on per-channel binary classification in AFH
map prediction with the five classifiers, in terms of the accuracy, precision, recall, and
f1-score. Clearly, all the performance metrics show the same trend among the classifiers.
For precision, recall, and f1-score in this section, we use weighted scores instead of macro
scores because there is imbalance of the number of samples labeled as “used” or “unused”.
Especially, Random forest has the best performance, while MLP has the worst performance.

Figure 3. The accuracy, precision, recall and F1-score of AFH map prediction results for the classifiers.
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Since MLP has too many parameters, the given amount of data could be insuffi-
cient, but considering the upcoming discussion in Section 5.3, MLP requires too much
training and testing time. Thus, it could be better to find other classifiers than MLP in
practical scenarios.

The random forest classifier and the decision tree classifier have a similar performance,
while the random forest classifier outperforms the decision tree classifier. This result
implies that the dataset has little diversity. Since practical RSSI measurements are noisy in
many scenarios, more measurements in different wireless environments should have done
for the extensive evaluation.

The SVM classifier has small yet better performance than the logistic classifier and MLP.
Considering its higher accuracy in various applications, this result is an expected result.

5.2. AFH Map Prediction

Figure 4 shows the prediction accuracy of AFH map for the five classifiers in the same
experiment. Of course, random forest and decision tree have better performance than the
others in most AFH maps. This result shows the consistency of the classifiers toward the
actual Bluetooth hopping sequence. Note that the average of prediction accuracy over
AFH map index is just the average per-channel classification accuracy, thus, observing the
average does not gives a new result.

Figure 4. The prediction accuracy of each AFH map for the five classifiers.

Rather, we can get an interesting result from the median of prediction accuracy,
since median gives the AFH map prediction accuracy for the ‘happy’ half of AFH maps.
Interestingly, the decision tree classifier has the highest median value of 73.4%, while the
random forest classifier has 70.5% as the median value. It implies that the decision tree
classifier could be better to predict the actual Bluetooth hopping sequence in many cases.

5.3. Discussion

From our evaluation results, we have shown that decision tree and random forest
classifiers have better performance than SVM classifier. Since another implementation
variant of SVM classifier (i.e., SVMlight) is used in BlueEar, one may have a question how
about the performance of SVMlight with parameters used in BlueEar. Fortunately, the
SVMlight classifier implementation in BlueEar is available publicly (https://github.com/

https://github.com/albazrqa/BluEar
https://github.com/albazrqa/BluEar
https://github.com/albazrqa/BluEar
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albazrqa/BluEar), we have conducted the same experiment to the BlueEar’s SVMlight

classifier (i.e., using the same dataset), and the confusion matrices of our scikit-learn SVM
classifier and the BlueEar’s SVMlight classifier are shown in Tables 2 and 3. Interestingly,
while the confusion matrix of the BlueEar’s SVMlight classifier shows similar performance
metrics (Precision: 78.16%, Recall: 100%) compared with the results in [8], the BlueEar’s
SVMlight classifier predicts as ”used” regardless of their actual label. It implies that the
BlueEar’s SVMlight classifier has poor parameters so that the potential of spectrum sensing-
based classifier is under-estimated in [8]. On the other hand, due to the hyper-parameter
tuning procedure, our scikit-learn SVM classifier has better performance (Precision: 80.78%,
Recall: 98.65%) than the BlueEar’s SVMlight classifier.

Table 2. Confusion matrix of SVM of scikit-learn.

Actual Class

P N Sum

Predicted class
P 16,143 3840 19,983

N 220 732 952

sum 16,363 4572 20,935

Table 3. Confusion matrix of SVMlight.

Actual Class

P N Sum

Predicted class
P 16,363 4572 20,935

N 0 0 0

sum 16,363 4572 20,935

Figure 5 represents the training (left) and testing (right) time of the five classifiers
versus the accuracy. In this figure, the SVM classifier has both the worst training time
and the worst testing time. Considering the relatively low accuracy of the SVM classifier,
practical Bluetooth sniffing systems are recommended to use another classifiers. One
interesting result is that the random forest classifier has the best accuracy both in training
and test data set, while a substantial amount of training time is required for the random
forest classifier, compared with the logistic, decision tree, and MLP classifiers. It implies
that the random forest classifier can be used for offline learning scenarios. However,
BlueEar [8] reports performance degradation due to the vendor dependency when its
spectrum sensing-based classifier is trained in offline with one vendor. Since our scenario
is in the case, more extensive evaluation should be done. We consider this topic as a part
of our future work. Lastly, in our scenario, there is relatively small difference in accuracy
between the decision tree classifier and the random forest classifier. It can be interpreted
that our dataset is so small that it has little diversity. This issue should be addressed as a
future work.

https://github.com/albazrqa/BluEar
https://github.com/albazrqa/BluEar
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Figure 5. The training (left) and testing time (right) of the classifiers versus the accuracy.

5.4. Limitations

The testbed has following limitations. First, a machine learning model trained with
a particular device may not be good at predicting another devices AFH map because of
vendor dependency of channel classification mechanism. Second, the Ubertooth should
be installed closely enough to the master device. When the Ubertooth is too far from the
master device, measurement of the Ubertooth may not be accurate enough to represent
interference that the master device suffers.

6. Conclusions

In this paper, we revisited the Bluetooth AFH map prediction for a Bluetooth traffic
sniffing system with a Ubertooth device. Although our approach is similar to the spectrum
sensing-based classifier in BlueEar, we conduct our experiment using an independently
built Bluetooth traffic sniffing system with various machine learning classifiers. Further-
more, we observe the AFH map prediction accuracy, as well as per-channel classification
accuracy, which is not covered in the state-of-the-art research work. According to our
evaluation results, decision tree and random forest classifiers have higher accuracy than
other machine learning classifiers in many evaluation metrics.
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