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Abstract: Comparison between fossil and analogue active geothermal systems permit to obtain
key-parameters to define a conceptual model of the area under exploration. The approach is based
on structural, kinematic, and fluid inclusions analyses. The fossil system is investigated to describe
the distribution of the hydrothermal mineralization as witness of the fluid flow through geological
structures and bodies, at depth. Structural and kinematic data (to define the preferential direction
of fluid flow) are collected in structural stations and by scan lines and scan boxes on key outcrops.
Distribution, length, width of fractures, and hydrothermal veins bring to evaluate permeability in
the fossil system and, by analogy, in the deep roots of the active system. Fluid inclusions analysis
shed light on density, viscosity, and temperature of the paleo-fluids. Data integration provides the
hydraulic conductivity. In active geothermal systems, fieldwork is addressed to paleo-stress analysis
with data from recent faults (<2 Ma), to compare with local focal mechanisms. By this, indications on
the present fluid pathways are given. The main advantage resides in obtaining parameters normally
got after drilling, thus contributing to strengthen the strategy of exploration, de-risking unsuccessful
boreholes.

Keywords: structural geology; fieldwork; hydrothermal veins; geothermal systems

1. Introduction

One of the main obstacle to the development of the use of geothermal resources is in
the cost of exploration. Failed boreholes, i.e., unproductive boreholes, can in fact negatively
influence the economic plan, determining a decrease of interest on this renewable resource.
Thus, the understanding of the relationships between geological structures and geothermal
fluid flow is a continuous developing task in order to facilitate successful exploration.
Several methodologies are dealing with this, from geochemistry (e.g., References [1,2]) to
geophysical (e.g., References [3–5]), structural (e.g., References [6–8], and modeling studies
(e.g., References [9,10]). All of these approaches are inclined to define a reliable geological
and fluid-dynamic conceptual model, which will be the basis of the exploration plan and
the following sustainable use of the geothermal resources.

The construction of the model is, therefore, developed before drilling. This implies
a tricky point, since the model is obtained without having a direct evaluation of the site-
parameters, such as fluid properties, permeability, and hydraulic conductivity, making
weaker the conclusions.

In order to contribute to this gap, we describe the reliability of a field and laboratory
methodology based on the coupled study of exhumed and active geothermal systems, the
former analogue of the latter (Figure 1).
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model, by transferring data from the exhumed geothermal system to the active one and by com-

paring fieldwork data from the active system with those from the exhumed system. 

The integration among the results will permit to have: (a) a better understanding of 

the geological volumes hosting fluids; (b) an evaluation of the expected fluid pathways; 

(c) the value of the expected permeability at depth; (d) the values of the expected temper-

ature, density and viscosity of the geothermal fluids; and (e) the value of the hydraulic 

conductibility. All these parameters play the role of key-factors in any predictive geother-

mal model, with fallouts in reducing the mining risk during the geothermal exploration. 

Figure 1. Geological sketch (not to scale) illustrating the conceptual relationships between an
analogue, exhumed, geothermal system and its related active geothermal system. The study of the
fossil system takes advantage of the relationships between geological structures and hydrothermal
mineralization as a key for the understanding of the relationships between geological structures and
geothermal fluid flow in the active system at depth.

This approach is described comparing information from well-known geothermal
systems, studied in the last years. The methodology is rooted on structural, kinematic, and
fluid inclusion analyses [11–14]. The work flow is summarized in Figure 2, underlining the
transfer of knowledge from the exhumed to the active system and their mutual comparison.
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Figure 2. Sketch of the fieldwork and laboratory workflow to obtain a reliable 3D conceptual model,
by transferring data from the exhumed geothermal system to the active one and by comparing
fieldwork data from the active system with those from the exhumed system.

The integration among the results will permit to have: (a) a better understanding of
the geological volumes hosting fluids; (b) an evaluation of the expected fluid pathways; (c)
the value of the expected permeability at depth; (d) the values of the expected temperature,
density and viscosity of the geothermal fluids; and (e) the value of the hydraulic con-
ductibility. All these parameters play the role of key-factors in any predictive geothermal
model, with fallouts in reducing the mining risk during the geothermal exploration. The
outcomes in fact encompass a better understanding of the relationships between geological
structures and fluid pathways and the values of permeability and hydraulic conductivity,
that were estimated before the drilling operations.

Let us presume to have an exploration plan in a defined area. Assuming to have
verified the basic conditions to have a geothermal system (e.g., heat flux, occurrence of
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an impervious cover, infiltration of meteoric water, and natural seismicity), geothermal
systems are always characterized by fractures-controlled permeability [15,16], mainly
concentrated in: (i) damage-fault zones; (ii) at the intersection among faults segments;
and/or (iii) at fault termination [17].

In this general context, two types of geothermal systems can be distinguished (Figure 3):
(a) geothermal systems with a significant lateral fractured reservoir, i.e., a permeable
geological body, hydraulically confined, and hydraulically connected to the main upflow
structural channels; and (b) geothermal system without a significant lateral fractured
reservoir. The distinction is crucial since it implies different geothermal fluid pathways
and, consequently, different strategies of exploration. The knowledge of which kind of
geothermal system we are dealing with, is the first result of the proposed methodological
approach, described in the following.
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Figure 3. Geological sketches (not to scale) illustrating the two end-member geothermal systems; left: the fluid flow is
controlled by permeable fault damage zones and by a permeable level (lateral reservoir) hydraulically connected to the
main structural channel. Right: the fluid flow is limited to the fault damage zone.

2. Methodology

The fieldwork methodology is based on field mapping and structural analyses, with
collection of geometrical (e.g., fracture length and aperture; fracture and vein density) and
kinematic data in structural stations (i.e., exposures where data are collected) and along scan
lines in key-outcrops, coupled with mineralogical investigation, representative of the whole
rocks volume, as further on described. A good knowledge of stratigraphy is a pre-requisite in
order to point out possible permeable levels interbedded between impervious levels, thus
considering the potential presence or absence of geothermal lateral reservoirs. It is worth to
carry out the data collection both in the fossil and active geothermal area, and to maintain
the comparison during the construction of the conceptual model (Figures 1 and 2). In the
following, a description of the methodological approach in active and fossil systems is given,
in order to have the basis for their mutual comparison, with the aim to obtain key-parameters
before drilling operations.

2.1. Active System

A geological map of the geothermal area is the first step. The fieldwork has to be
detailed, by mapping at 1:5000 scale when possible or, alternatively, at 1:10,000. Smaller
scales are not suggested: fault zones (and their related permeable damage zones) in fact
consist of several segments forming wide shear zones and their identification often derives
from the possibility to map small geological bodies. During field mapping, an added
value is to report the distribution of (i) hot springs, (ii) areas of natural gas emissions,
(iii) hydrothermal alteration and mineralization, and (iv) sinter deposits (carbonate or
siliceous). All of them, indicating the occurrence of fractures channeling fluids toward
the surface, should find an explanation in the 3D final conceptual model. Occurrence of
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regional detachment (i.e., cataclastic) levels or continuous thick geological formation of
porous lithotypes, when interbedded to less permeable levels, should be highlighted, too.

Furthermore, geothermal systems are normally persistent in the same geological
region, since the tectonic conditions having brought to magmatism tend to remain stable
through time [18]. If this is the case, uplift and exhumation are active, and the area under
investigation can be also characterized by hydrothermal mineralization to be mapped,
and/or deposits of chemical origin: in this latter case, if tectonic activity determined
ruptures of the topographic surface, geothermal fluids can flow through thermal springs
(Reference [19] with references therein) and produce travertine and or/silica deposits,
when the geothermal fluids have an appropriate salinity [20,21]. In particular, the study of
travertine, can shed light on the recent deformation, a key factor to have information on
stress orientation, permeable structures and fluid-rock interactions in reservoirs at deeper
levels (e.g., References [22–27]).

The mapping of brittle shear zones is accompanied by collection of structural and
kinematic data, particularly on the slip-surfaces of younger faults (<2 Ma), although data
from older outcropping shear zones remain important for reconstructing the tectonic
evolution of the area and for comparison with the analogue fossil geothermal system.
The structural and kinematic data are crucial to derive the local stress field, active during
the shear movement [28]. In fact, assuming that the measured kinematic indicators are
parallel to the main shear stress, geometrical and kinematic data can derive double couple-
fault-plane solutions, to be compared with the present seismicity of the study area [29].
However, in terms of geothermal exploration, the most significant information is about
the orientation of the intermediate stress axis, representing the main direction along which
permeability [16] is favored (Figure 4) and, therefore, the main fluid flow is channeled.
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Studies on density of fractures and their spatial distribution can be carried out in
favorable outcrops, located along the main shear zones, in order to enforce the information
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about strain localization. We should be aware that these data, collected at surface, cannot
be simply transposed to depth, since stress conditions at surface are different from those
active at depth. This is a further reason why the analogue fossil system is studied: as
already mentioned, the mineralized fractures give a clear information on the geometry of
the fractures expected at depth.

2.2. Fossil System

A fossil geothermal system is an exhumed geothermal system, defined by outcrops
of: (i) mineralized fractures (epi- and meso-thermal extensional and shear veins), (ii)
mineralized geological bodies; and, when exhumation is significant, and (iii) exposures
of granitoids, representative of the heat source. Thus, the fossil, exhumed, system gives
a view on the deep roots of a geothermal system, permitting a better understanding of
the relationships between geological structures and geothermal fluid pathways at depth
(Figure 1), the latter represented by hydrothermal veins and mineralized geological bodies.

Three main conditions should be satisfied, before defining a fossil geothermal system
as analogue of the active one (Figure 1): (a) the active and fossil systems should be part of
the same tectonic context; (b) the tectonic context remained unchanged in the time range
between the formation of the fossil and active geothermal systems; and (c) the succession
of basement rocks is the same in both systems and the sedimentary cover is similar, as well.

Once these conditions are established, the study of the fossil system can be approached,
finalized to the reconstruction of the relationships between geological structures and
hydrothermal mineralization, as a key for the understanding the deep circulation in the
active system. The study of this relation takes advantage by the fact that the fractures
are sealed by hydrothermal minerals, thus giving a picture of the loci where circulation
was active.

Analogue fossil system can, therefore, explain which typology of geothermal system
we are dealing with (Figure 3). In the case of absence of lateral reservoir, mineralization will
be only located in fault damage zones, or along pre-existing discontinuities (i.e., bedding
and/or foliation) of the hosting rocks; in the case of a lateral reservoir, instead, large miner-
alized bodies will be recognizable, in correspondence of stratigraphic, permeable, levels.

The method of studying fossil systems is based on fieldwork and laboratory analyses.
In the field, the activity consists on mapping geological bodies and structures at 1:5000
or 1:10,000 scale, highlighting the distribution of veins and of the mineralized geological
bodies, both testifying the pathways of the fluids. To this goal, structural stations and
scan lines will implement the dataset, by reporting data on density of fractures, shear
veins and their distribution; particular attention should be given to kinematics of brittle,
mineralized, shear zones in order to have insights on the orientation of the preferential
structural channels [11–13,30–32]. In this context, data to evaluate permeability are also
obtained, as later on described. Laboratory activity mainly consists of petrographic and
mineralogical study of both rocks and veins, and fluid inclusions analyses on hydrothermal
minerals. From this study, physical and chemical characteristics of the analogue paleofluids
are derived.

2.2.1. Permeability

The study of the fossil, analogue, geothermal system contributes to the construction of
the conceptual model on the relationships between geological structures and geothermal
fluid flow and provides key-parameters, such as the estimation of fracture-permeability
and localization of favored permeability.

Permeability can be computed assuming a parallel plate model, although fractures
with permeability k > 10−12 m2 cannot be approximated by this model [33,34]. Hence,
a laminar flow and a network of fractures with different orientations, apertures, and
spacing is, therefore, considered [33,35,36]. In evaluating the fracture network connectivity,
Reference [34] approximated the fracture roughness and internal connectivity as a series of
angles among rock- wedges, expressing the efficiency with values comprised between 1
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and 0.1. They demonstrated that if wedges have a connecting angle lower than 30◦, then the
relative transmissivity is reduced at most by a factor of 0.7; in contrast to a connecting angle
of 60◦ where reduction is by a factor of 0.4. Based on these considerations, the following
relation can be derived [12,13]:

k =

(
2
3
× b3

L

)
×

(
f × 10−6

)
, (1)

where k is permeability (m2), b and L are the mineralized vein width and length (m),
respectively. These two latter parameters can be measured in the field or in laboratory, by
means of image analysis software. f is the factor expressing fracture connectivity that can
be assumed as 0.4, since its value is negligible on the final result. Finally, the dimension
10−6 derives from studies on the effective hydraulic aperture of experimental flow data,
considering different roughness of the wall fractures [34].

Collection of data is, therefore, finalized to have length and width of the mineralized
veins. The procedure implies scan lines and scan boxes in key-outcrops (Figure 5), located
along the main shear zones affecting the study area [12,13]. The use of the scan box is the
space reference for the measurement of length and width of fractures.
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considering width and length of fractures and veins, as recognized in a square of 40 cm per side. The scan line is settled after
a detailed geological survey in the chosen key-area: along the line, the frequency of fractures is considered. The scan box is
moved aside regularly along the scan line and data are collected (manually or by analyzing photos by image software) in
each new location of the scan box.

Each scan box provides averaged values of b, L, and then k, assumed as representative
of that volume of rock. Each scan line, having several scan-boxes, will give a variety of
permeability values, as a function of density and aperture of veins. A statistical assessment
can be therefore necessary. Finally, since mineralized veins can derive from multiple
injections and be very wide, values of k ≥ 1*10−12 m2 are excluded because unreasonable
for a single event. Moreover, similar permeability values overtake the limits of the plate
model theory, that is at the base of these evaluations.

2.2.2. Properties of the Paleo-Fluids

Physical-chemical features of paleo-fluids are obtained from the study of fluid in-
clusions trapped in hydrothermal minerals during their crystallization. Fluid inclusions,
in fact, are small portions of fluid (liquid, vapor, or supercritical fluid) entrapped within
crystals during its primary growth and/or after its complete deposition [37–42]. If more
than one generation of fluid inclusions are trapped within a single mineral or in mineral
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assemblage, the temporal relationships between the different inclusion generations can
provide information on the evolution of the paleo-fluids with time.

The most common technique for fluid inclusion studies is given by microthermometric
analyses based on the measurement of the temperature at which some phase changes take
place in inclusions during heating and cooling cycles. If the analyzed fluid inclusions satisfy
the three rules reported by Reference [37] (i.e., the inclusions trapped a single, homogeneous
phase; the inclusions represent an isochoric system after trapping; nothing has been added
to, or removed from the inclusions) the data collected by this non-destructive technique
allows to get some properties of the original trapped fluid. In particular, for inclusions
containing aqueous solution it provides fluid density and salinity (expressed in wt.% of
NaCl equivalent). Fluid inclusions analysis can be also supported by others laboratory
techniques, such as micro-Raman spectroscopy, laser ablation inductively coupled plasma
mass spectrometry (LA-ICP-MS), which provide information on the composition of volatile
phase and of the aqueous liquid phase [42].

If fluid inclusions were trapped when two immiscible fluids coexist (for example,
when aqueous liquid and vapor phases contemporaneously occur during boiling), trapping
temperature can be obtained directly from microthermometric data (i.e., it corresponds to
the homogenization temperature), whereas pressure can be computed from this tempera-
ture by using two-phase pressure-temperature relation. However, usually fluid inclusions
are trapped when only a single homogeneous fluid (liquid or vapor or supercritical) is
present, but, in this case the homogenization temperature represents the minimum trapping
temperature. For these inclusions, trapping temperature (or pressure) can be obtained
from their isochores if an independent pressure (or temperature) estimate is available.
For inclusions containing aqueous solution, isochores can be computed from density (or
homogenization temperature) and salinity data by using equations of state or from exper-
imental data [43,44]. Density and viscosity of the paleo-fluids can be also estimated by
using existing equations proposed by References [45,46], based on the H2O-NaCl Equation
of State, as proposed by Reference [47], after Reference [48].

2.2.3. Fossil vs. Active Systems

An evaluation of the reliability of the results is obtained by comparing fossil and
active systems studies. This is carried out by checking: (a) geological structures, as these
resulted from the field mapping in both systems. The geometrical coherence of structures
is definitely the first requirement to assess a common tectonic evolution; (b) kinematics,
paleo-stress analyses can be carried out in both systems, and then compared with the
local focal mechanisms. If consistence is proved, then a more robust consideration on the
relations between fluid path, and geological structures is reached, positively applying the
lesson learnt from the fossil system; and (c) geometries of structures at depth in the active
system, as derived on the basis of the direct data observed in the fossil system, considered
the analogue of the deep part of the active system. Obviously, this transfer of knowledge
(i.e., from fossil to active system) should be then checked with information from borehole
logs, geophysics and geochemistry carried out in the active system, in case of availability
(e.g., References [49–52]).

3. Case Histories

Examples of the methodology above proposed, are here below summarized, illus-
trating two different cases, respectively, referred to the presence and absence of a lateral
fractured reservoir.

3.1. Occurrence of Lateral Reservoir: Elba and Larderello Geothermal Systems

Both areas are located in the inner Northern Apennines, a former collisional belt
(Cretaceous-early Miocene), now experiencing extensional tectonics (Miocene-Present).
Extension is eastward migrating [53,54] and, since late Miocene, it is associated to eastward
migrating magmatism [55]. This latter determined a widespread hydrothermal mineraliza-
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tion, as it is the case of southern Tuscany and Elba Island [56] and presently gives rise to
active geothermal systems (e.g., Larderello) and thermal springs [57,58]. The emplacement
of magmatic bodies, volcanism and geothermal manifestations has been controlling by
NE-trending transfer zones [59] of which activity is coeval with the NW-trending normal
faults (Figure 6).
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Figure 6. Geological sketches and map illustrating the evolution of Northern Apennines: (a) Structural sketch map showing
the relationships between the main Pliocene-Pleistocene basins and transfer zones in Tuscany. Symbols: 1-inner Northern
Apennines: this domain is characterized by a 22–24 thick crust; 2-outer Northern Apennines with a 35–40 thick crust;
3-Outcropping or drilled magmatic bodies; these are mainly located along the transfer zones (after References [59,60]);
4-transfer zones; 5-normal faults; 6-thrusts; 7-Pliocene-Pleistocene marine to continental sediments; 8-metamorphic rocks;
(b) relationship between the different tectonic units of inner northern Apennines and related paleogeographic domains. (c)
Schematic geological cross-sections showing the collisional and post-collisional evolution in the inner zone of the northern
Apennines (after References [60,61]).

The tectonic evolution of the inner Northern Apennines is then characterized by de-
tachment levels, playing a role both during compression and extension; one of the main
detachment is located at the base of the Jurassic-Miocene sedimentary cover, implying
that the Triassic rocks are deeply affected by tectonic brecciation (Figure 6), thus deter-
mining lateral permeable levels where old and present geothermal fluids flew and flow,
chemically interacting with the hosting rocks. Hence, Elba and Larderello are located in
the same tectonic context and their rock-succession is comparable [60–62], belonging to
the same paleogeographic domains and tectonic evolution [31]. Furthermore, eastern Elba
is characterized by a widespread Fe-oxides and hydroxides mineralization, connected to
the hydrothermal activity developed during the cooling of the mid-crustal Porto Azzurro
monzogranite, dated at 6.53 ± 0.39 Ma [63]. Similarly, the active Larderello geothermal
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system is sustained by a mid-crustal cooling granitoid, recognized through geophysical
methods [64] and petrological considerations [58]. Exhumation and uplift processes deter-
mined the exposure of the deep roots of the Elba geothermal system, thus shedding light
on the Larderello geothermal system at depth, by analogy.

3.1.1. Elba Island

Based on these considerations, the relationships among mineralized faults, hydrother-
mal veins distributions, heat source, ore bodies, and geological structures were stud-
ied [12,14,58,65]. Existing data converge to indicate that the Porto Azzurro monzogranite
emplaced in a transfer zone [12,31,59], affecting the southeastern side of the Elba Island
(Figure 7). Within this transfer zone, at least 3 km width, the structural and kinematic
studies highlighted the presence of different generation of faults and related fault damage
zones. These are characterized by mineralized shear veins where the hydrothermal phases
are often cataclastic, testifying the contemporaneity between fluid flow and fault activity.
Hydrothermal mineralization is defined by a variety of mineral assemblages depending
on the paleo-fluid temperature and chemistry, the latter largely influenced by its origin
(magmatic, meteoric and/or a mixing of both), pressure conditions, and structural level of
the geothermal system (from deeper to shallower) where the fluid circulation occurred.
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Figure 7. Structural sketch (not to scale) illustrating the relationships between geological structures, magma emplacement,
and geothermal fluid flow (generating hydrothermal minerals) in the eastern Elba Island. Magmatic and geothermal fluids
are channeled in the brittle transfer zone, and then stored in lateral reservoir. The structural location of the two areas
described in the text are indicated: 1-deeper structural level, within micaschist; 2-shallower level, within quartzite Triassic
rocks (after Reference [66]).

At Elba island, the deeper structural level affected by geothermal circulation, is made
up of Paleozoic micaschist, hosting the Porto Azzurro magmatic intrusion. In this level,
characterized by low and very-low permeability, fluid circulation was mainly linked to
fractures (Figure 8a–e). Thus, interaction between fluid and rock is limited to the wall-
fractures, causing a halo of alteration (Figure 8f), determined by the leaching of biotite
and tourmaline deposition, mostly [67,68]. At this structural level, the typical mineral
assemblage filling the majority of shear veins is made up of tourmaline, mainly of schorl
and dravite composition, and minor amount of quartz [12,68]. Tourmaline is polyphasic
and cataclastic, hence indicating a continuous activity of the faults during crystallization
and fluid flow (Figure 8g–h). Occurrence of hydraulic breccias indicate the role in fault
weakening and permeability enhancement exerted by the fluid pressure during fault
activity (Figure 8i). Two main systems of tourmaline mineralized faults were recognized,
both cross cut by quartz shear veins (Figure 9). Kinematic analyses indicate that the first
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generation of faults is mostly defined by low-angle dominantly normal faults whereas
the second generation is typified by almost vertical faults, with a significant transcurrent
component. The contemporaneity between these two fault-systems is marked by the
common occurrence of tourmaline (i.e., the same hydrothermal fluid) in both fault systems.
It implies that deep fluids can find favorable permeable structural conduits along the
almost vertical and low-angle shear zones, on the basis of the orientation of their related
intermediate stress axes. Finally, the third deformational event is defined by small quartz
shear vein, with rare kinematic indicators, pointing to a dominant normal component of
movement [12].
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Figure 8. Faults and hydrothermal tourmaline shear veins in the Paleozoic micaschist. (a) Low-angle normal fault affecting
Late Miocene leucogranite dykes; (b) fault slip-planes are characterized by tourmaline shear veins, crosscutting the
leucogranite dykes; (c–e) tourmaline slickenlines on fault slip plane, with oblique- or normal slip movement; the thin
section shows the dominant cataclastic texture of tourmaline, indicating syn-tectonic mineralization; (f) tourmaline-bearing
metasomatic halos bounding a leucogranite dyke intruding the micaschist; (g) shear vein with tourmaline and quartz clasts
deriving from cataclastic and hydrofracturing effects; (h) micrograph (plane polarized light) of neoformational tourmaline
characterized by pale blue zonation due to the different composition (from schorl to dravite), and shear vein made up
of cataclastic tourmaline; (i) detail of hydraulic breccia cemented by tourmaline and quartz; Mineral abbreviation from
Reference [70].
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Figure 9. How to get permeability values in the field: (a) photo illustrating the scan box and the parameters to be collected;
(b) in the study area, three different generation of mineralized veins have been recognized; (c) example of collection
of data and related database; (d) values of permeability, after having considered the average among all the data; (e)
data of permeability measured in the active geothermal field of Larderello, for comparison with the obtained data; after
Reference [69]. The asterisk indicates the multiplication sign.

In key-outcrops, estimation of permeability (Figure 9) was carried out for the three
different fractures systems. Permeability values are in the order of 10−14–10−15 m2, for the
tourmaline veins (same range of the present measured permeability in Larderello [51,69]);
differently, permeability is in the order of 10−17 m2 for the quartz veins, referred to the
third deformational event. Concluding, it implies that heat transfer occurred by convec-
tion during the development of the tourmaline fractures, and by conduction during the
development of the third family of fractures [6].

Fluid inclusions analysis, carried out on hydrothermal tourmaline and quartz, high-
lighted that two main fluid types with distinct salinities circulated within these shear
zones: (i) a hypersaline fluid with salinity from 29 to 49 wt.% NaCl equivalent; and (ii)
a less saline fluid with salinity between 16 and 30 wt.% NaCl equivalent. The trapping
pressure-temperature ranges of the two fluid types were computed by Reference [12] from
homogenization temperature and pressure data, inclusion representative isochores and the
maximum pressure-temperature (200 MPa and 650 ◦C) of thermometamorphism related to
the Porto Azzurro monzogranite emplacement reported by Reference [71]. In particular,
the maximum temperatures are from 370 to 450 ◦C and from 380 to 650 ◦C for hypersaline,
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and less saline fluids, respectively (see Figure 9 of Reference [12]). Salinity and temperature
data suggest a magmatic origin for both fluid types.

Computing density and viscosity by existing equations [45–48], and considering
permeability values, the hydraulic conductivity was evaluated at the minimum and the
maximum trapping pressure conditions of fluid inclusions (Figure 10).
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Concluding, the deeper structural level of the exhumed system is characterized by
fluids of magmatic origin, of which circulation is only controlled by fracture permeability
along almost vertical and horizontal channels.

Elba even shows a shallower mineralized level, where circulation of paleo-fluids is
documented, presently corresponding with the Fe-ore body. This is hosted in the Triassic
dominantly quartz-rich rocks (metaconglomerate, quartzite, and phyllite: Verrucano Fm.
Auct.), affected by brittle deformation both during the collisional and extensional stages.
This level hosts a cataclastic horizon that is hydraulically connected to the southern transfer
zone [31,66] affecting the Elba Island (Figure 6). Fault systems of this shallower structural
level of Elba are kinematically similar to those affecting the deeper level [66]: coeval
evolution of almost perpendicular faults with different kinematics, is in fact documented
in the frame of oblique-slip (i.e., transfer) and normal faults. Moreover, faults with oblique
movement are later affected by normal movement [66].

In the Triassic level, hydrothermal fluids flew through fractures (Figure 11a), per-
meating the quartz-rich rocks through the matrix, producing metasomatic bodies overall
replaced by Fe-oxide and sulphide [72]. In this process, the texture of the quartzite rock is
crucial, resulting metasiltite almost impervious to the fluid flow (Figure 11b). Pre-existing
mechanical discontinuities (i.e., foliations) influenced fluid flow, too (Figure 11c,d). If
foliations are pervasive and texture is favorable, then a complete metasomatic process
developed (Figure 11e). As already seen in the deeper micaschist level, even here fluid
flow is contemporaneous to fault-movements, as testified by Fe-oxides and adularia shear
veins on fault-slip surfaces (Figure 11f,g). Fluid inclusions analysis mainly carried out on
hydrothermal quartz, calcite and adularia indicate homogenization temperature values
up to 330 ◦C [73] and variable salinities up to 22 wt.% NaCl equivalent [66]. These values
point to a mixing between magmatic fluid and meteoric water, as it is reasonable, being
closer to the surface. Hence, fluids were here stored determining a lateral reservoir, passing
through pre-existing discontinuities and/or reacting with the rock-matrix of the Triassic
level. The process was active up to the fluid was renewed and permeability maintained by
fractures (i.e., seismicity) and chemical fluid-rock interaction.

In conclusion, the fossil system of Elba tells us that fluid circulation occurred at two
different levels, mostly: in the deep rocks (micaschist) and at shallower level, in the per-
meable Triassic rocks with permeability values that permitted heat transfer by convection.
Paleo-fluids characteristics indicate a magmatic contribution at deeper structural levels,
while the contribution of meteoric waters became significant approaching the surface.
Keeping in mind this information, we move to the active system.
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Figure 11. Photos of outcrops of Fe-oxides and Fe-hydroxides bearing quartzite; (a) Fe-hydroxide vein settled along a 

fracture: the paleofluid laterally migrated, where the texture of the rock was suitable to host fluid flow; (b) the metasomatic 

process is selective, being efficient in the quartz-metasandstone only, while phyllite (violet) remains basically impervious; 
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Figure 11. Photos of outcrops of Fe-oxides and Fe-hydroxides bearing quartzite; (a) Fe-hydroxide vein settled along a
fracture: the paleofluid laterally migrated, where the texture of the rock was suitable to host fluid flow; (b) the metasomatic
process is selective, being efficient in the quartz-metasandstone only, while phyllite (violet) remains basically impervious;
(c) detail of former sedimentary levels selectively metasomatized by epidote and quartz; (d) pyrite and adularia veinlets
along the foliation of quartzite: the fluid flow followed pre-existing discontinuities; (e) metasomatism affects the entire
level, thus forming an ore deposit of pyrite and hematite; (f) fault slip surface characterized by syn-kinematic adularia
and Fe-hydroxides fibers and mechanical striations; (g) example of dominant oblique slip movement in a fault-plane
Fe-hydroxide shear vein. Mineral abbreviation from Reference [70]).

3.1.2. Larderello Geothermal System

The Larderello geothermal system includes several geothermal fields, distributed
in an almost 120 km2. On the whole, two different reservoirs have been detected. The
shallower, named as “first reservoir” (depth about 800–1000 m), is located at the base of the
sedimentary cover, within the cataclastic level corresponding to the late Triassic evaporite.
This is the historical reservoir. The deeper reservoir, named as “deep reservoir”, is hosted
in micaschist and/or phyllite, at a depth ranging between 3 and 4 km [74]. Temperature
is 220–250 ◦C in the shallower reservoir, while it is 300–350 ◦C in the deeper one [51].
Properties of fluids indicate a dominant meteoric origin [51].

We focus on the Lago geothermal field (Figure 11), that is the most efficient one of the
Larderello production area, where the magma source is supposed to be located at about 4
km depth [51], thus explaining the local high heat flux, the values of the 3He/4He ratio
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(Figure 12), and the shallow depth of the brittle/ductile transition [75–77]. Structural data
collection in the area was recently carried out [29], providing a new geological map and
kinematic data from structures considered active in the last 2 Ma. This information brought
to the: (a) definition of the main geological structures and their role, highlighting two
coeval fault systems framed in the evolution of a transfer zone; and (b) paleo-stress analysis
from inversion of kinematic data, in order to have comparison with the local seismicity
and define the orientation of the intermediate stress axis, during the kinematic evolution
(Figure 12).
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Figure 12. Larderello geothermal system: (a) Geological sketch map of Larderello and its surround-
ings. The transfer zone passing through the area is also indicated. Symbols: 1-Alluvial sediments
(Holocene). 2-Magmatic rocks. (Pliocene-Pleistocene) Neogene deposits: 3-Marine deposits (Pliocene);
4-continental to marine deposits (Serravallian-Messinian). Ligurian Units: 5-Ophiolite and related
sedimentary cover (Jurassic-Eocene) and carbonate-turbiditic succession (Eocene-Oligocene). Tuscan
Units: 6-carbonate and terrigenous succession (Late Trias-Early Miocene); 7-evaporite (Late Trias);
8-metapelite and quartzite (Paleozoic-Late Trias). (b) contour lines indicating the heat flux in the
study area: the highest values are located where the substratum of the Neogene sediments is deeper;
(c) distribution of the 3He/4He ratio in the study area: the mantle contribution is highest where the
substratum of the Neogene sediments is deeper (after Reference [29]).
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A major lithological element of similarity between Larderello and Elba, is derived by
the occurrence of tourmaline in the micaschist, drilled at depth in the Larderello geothermal
system [62,78]. Furthermore, comparably to Elba, the oblique-slip faults are also character-
ized by overprinted normal kinematics, thus indicating their role during reactivation of the
pre-existing discontinuities [29]. This implies the interplay between stretching and uplift,
determining a switch of the intermediate axis when, in turn, one of the two processes is
prominent (Figure 13). Such a switch can, therefore, favor the upwelling of deep fluids and
storage in later reservoir, here represented by the detachment level (late Trias evaporite) at
the base of the continental sedimentary succession or by the normal fault damage zones
where the intermediate axis (i.e., the direction of preferential flow) is close to be horizontal.

1 

 

 

 

Figure 13. Conceptual model of the Larderello tectonic setting (after Reference [29]). Right: Geological sketch (not to scale)
illustrating the tectonic context in which the Lago Basin is located. The Lago Basin is a pull-apart basin developed within
the transfer zone affecting the geothermal area. The pull-apart crustal sector results more permeable, channeling deep
geothermal fluids and magma at depth. Left: In the frame of extensional tectonics, kinematics of faults is controlled by
crustal stretching or uplift. The stereonets show the comparison between the inversion of kinematic data from the field
and local focal mechanisms. The variation of kinematics determines the switch of direction along which permeability is
higher. The change of permeability direction through time enhances the effectivity of the geothermal system, permitting the
up-flow of deep fluids and their lateral storage in structural traps hydraulically connected to the transfer zone.

3.1.3. Elba Island vs. Larderello

The comparison between the two systems indicates the validity of the proposed
methodology in order to have data about the deep roots of an active geothermal systems.
The role of the transfer zone, in channeling deep fluids, is well documented in Elba Island
by the relationships between tourmaline and shear fractures. Similarly, a transfer zone
is controlling the structural setting of the most productive part of the Larderello system.
Finally, similar relations are documented also between the distribution of the mineralized
Fe-oxides and -hydroxides minerals and fractures, suggesting that the system remained
constant through the geological time. Presently, the same framework is confirmed by the
stress analysis and fault setting in the active geothermal system. Furthermore, in both
fossil and active systems, a lateral reservoir at the level of the Triassic rocks is documented,
although completely crystallized in the Elba Island. Values of permeability and hydraulic
conductivity estimated in the fossil system are then comparable with those presently
measured in the active geothermal area in boreholes [51,70]. Concluding the methodology
of comparing fossil and exhumed system is strengthen by the study of fossil systems, thus
contributing to the construction of a robust predictive model of exploration.
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3.2. Absence of Lateral Reservoir: Geitafell and Krafla Geothermal Systems

Intrusive and effusive magmatic environments are normally characterized by absence
of lateral reservoirs. This is a consequence of lithology, since porous lava levels are
occasional and discontinuous in volcanic successions. In this context, Iceland is a good
example of absence of lateral reservoir. Hence, permeability is connected to fractures,
only. The three main factors favoring geothermal resources are all present in Iceland: (a)
Iceland benefits of a diffuse high heat flux, since it is located above a mantle plume [79];
(b) active tectonic activity, combined with magmatic activity, determines and maintains
permeability [80]; and (c) meteoric recharge, with minor contributes of magmatic fluids and
sea water [81], is always efficient. Thus, the comparison between active and fossil system
is finalized to the understanding of the deep roots of active systems, normally located at
depths less than 2 km [82]. Iceland is an emergent 300 × 500 km wide platform, of flood
basalt and intrusive rocks. It is located at the divergent margins, separating the Eurasian
and American plates, at the top of a mantle plume [83–85]. Due to the interaction between
divergence and mantle plume, several rifts and two main transform zones (Figure 14), N-S
and WSW-ENE respectively oriented, have been developing since Neogene [86–88]. Within
rift zones, volcanism is associated with central volcanoes [79,80,89] and fissure swarms,
mainly parallel to the faults. Central volcanoes are often characterized by a caldera where
geothermal circulation is enhanced, as the case of the active Krafla geothermal field [90].
Two main structural trends are regionally recognized in Iceland: (i) SSW-NNE striking
normal faults and extensional fissures [91,92]; and (ii) WNW-ESE oriented transform
zones [93]. Since the volcanic activity is directly connected to the crustal accretionary
process at the divergent margins, central volcanoes have been progressively set apart from
the main central rift. In this context the Geitafell volcano, located in the rift valley during
late Miocene-Pliocene [79,94], has migrated southeastwards (Figure 14) and now represents
a fossil, exhumed geothermal system, analogue of Krafla.
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Figure 14. Tectonic sketch-map of Iceland (after Reference [86]). Symbols 1: glacier; 2-Holocene
deposits; 3-Late Pleistocene deposits; 4-Tertiary basalt and magmatic intrusions; 5-fissure swarm;
6-active central volcano and its caldera; 7-fossil central volcano; 8–inactive central volcano.
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3.2.1. Geitafell

The Geitafell Neogene Central Volcano (sensu [95]) consists mostly of: basaltic lavas
(65%), hyaloclastites (30%), and minor intermediate and silicic products (5%) and gabbro
dykes dipping toward the magma chamber [82], made up of gabbro, mainly [94]. Due
to glacial erosion (Figure 15a), the upper portion of the Geitafell magma chamber is, at
present, partly exposed [94].
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Figure 15. Photos of outcrops from the exhumed geothermal system of Geitafell (after Reference [13]):
(a) panoramic view of the gabbro and host rocks; (b) panoramic view of a fault zone affecting
the hosting rocks; (c) example a mineralized fault slip surface, in gabbro; (d–e) calcite, chlorite
and epidote slickenfibers on slip surfaces with oblique-slip component, indicating syn-kinematic
geothermal fluids circulation; (f–g) quartz and calcite mineralization associated to the subsequent
(normal) movement of the fault; (h) panoramic view of a mineralized (epidote and calcite) fault zone;
(i) detail of epidote-altered basalt; (j) epidote-rich levels of vesicular basalt hydraulically connected
with the fault zone shown in (h); (k) detail of mineralized hydraulic breccia developed along the
fault zone; (l) porous basalt lava can host garnet crystals aggregate when hydraulically connected
to the channeling fault zone; (m) detail of a vesicle characterizing basalt made up of hydrothermal
minerals. Mineral abbreviation from Reference [70].
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The interaction between magma cooling and meteoric fluids [96] resulted in the devel-
opment of a zoned mineralogical assemblage, from contact metamorphism to hydrothermal
system consisting of mineralized faults and related fractures (References [82,94]. Original
permeability of the magmatic rocks is scarce (from 10−22 to 10−17 m2; Reference [97]) and
limited to localized volumes of porous lavas. So, primary permeability is not sufficient to
permit efficient geothermal fluid circulation at depth. Only brittle structures (Figure 15b)
can promote fluid flow, creating preferential structural channels [98]. In the Geitafell fossil
system, this is reflected by the development of hydrothermal vein networks (Figure 15c–k)
and some mineral paragenesis [82,94], formed in limited porous levels (Figure 15 l,m).

The methodology of the study of the Geitafell exhumed system follows the already
described approach: fieldwork mapping, fracture analysis by scan lines and scan boxes,
fluid inclusions studies and finally, evaluation of the parameters describing permeability
and properties of the fluids [13]. Fieldwork results indicate that the area is affected by two
system of faults: (i) NNE-trending faults, with a mainly normal to oblique-slip kinematics;
(ii) WNW-trending faults, mainly exhibiting left-lateral oblique-slip kinematics. This
second system is explained as an expression of the transform zone interacting with the
NNE- trending rift faults. The Geitafell volcano is, therefore, connected to the intersection
between the two systems, highlighting the role of fault related permeability in developing
vertical permeability and channeling deep fluids, even magmatic. In this view, a critical
role is then played by the oblique slip faults (WNW-trending faults), characterized by an
intermediate stress axis close to the vertical.

The fact that hydrothermal minerals are sealing fault zones (Figure 15), cutting across
gabbro and host rocks, suggests that the distribution of the hydrothermal parageneses is
controlled by fluid flow in fractures rather than conductive heat transfer from the magmatic
source, as it is dominant in thermo-metamorphic aureoles.

Fluid inclusions were investigated in hydrothermal quartz and calcite collected in
the field and from boreholes, the latter drilled into the contact aureole [13]. The main
results indicate that the trapped paleo-fluids were characterized by temperature mainly
between 255 and 320 ◦C, and that the fluid progressive cooled during a late evolution of
the system down to 60–90 ◦C. Most inclusions trapped were under a hydrostatic pressure
of 115 bars, although temporary pressure drop, likely related to fracture opening during
tectonic activity, led to transient fluid boiling processes. Fluid salinity was generally low
(from 0 to 1.5 wt.% NaCl equivalent), indicating a dominant meteoric origin; however, rare
fluid inclusions with higher salinity (up to 10.6 wt.% NaCl equivalent) also occur. The latter
saline inclusions can be probably related to boiling process or to local input of magmatic
derived fluid.

Once again, following the previously described approach, permeability of rocks
(k = 1.3 × 10−14 m2), was computed, resulting comparable with that one from the active
geothermal system of Krafla [99,100]. Density, viscosity, and hydraulic conductivity were
evaluated in an interval of fluid temperatures as resulting from analyses in suitable, sealed
fractures (Figure 16).
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Figure 16. Minimum and maximum values of fluid density and viscosity, and of permeability and hydraulic conductivity
considering early, high-temperature, and late low-temperature paleo-fluids, as based on the parameters obtained by field
and laboratory analyses (after Reference [13]). Low-temperature data derive from fluid inclusions in calcite, whereas
high-temperature data are from fluid inclusions analyzed in quartz. Both quartz and calcite were collected in the field and
can be considered as representative of the main hydrothermal mineralizations recognized in the study area. The asterisk
indicates the multiplication sign.
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Thus, a conceptual model indicating circulation along fractures is envisaged (Figure 17).
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and hydrothermal mineralization at the Geitafell study area (after Reference [13]).

3.2.2. Krafla

The Krafla volcano-geothermal area is characterized by a central caldera with active
geothermal circulation (e.g., Reference [101] with references therein). Volcanism in the
caldera is dominated by basaltic lava flows (from olivine tholeiite to Fe-rich tholeiite and
basaltic andesite), although occasional silicic eruptions are also present [102]. A NNE-SSW
trending fissure swarm dominantly crosses the Krafla volcanic area (e.g., Reference [103]).
Boreholes down to about 2 km have revealed a substratum made up of basalt lava flows
interlayered with hyaloclastite while, at deeper structural levels, dolerite and gabbro
become dominant [101]. The study of seismic waves deriving from the earthquakes of
the rift activity revealed a magma chamber at 3–7 km depth, in the mid-section of the
caldera [104], although results from Reference [105] indicated a possible magma source at
roughly 2.7 km depth, under the brittle-ductile boundary, in the production area [106].

Morphological and field data indicate that the area is affected by two system of
faults [86,107–109], NNE-SSW to NNW-SSE and WSW-ENE oriented, respectively, with
the latter interpreted as associated to transform shear zones. Due to the intense weathering
and rheological properties of the volcanic deposits, kinematic indicators are scarce, the
few indicating an oblique and normal component for the WSW-ENE and NNE-SSW to
NNW-SSE oriented fault system, respectively [86].

At surface, the alignment of geothermal manifestations and fissured lava ridges
forming fissure swarms, are considered as indicators of deep permeable structures [80].
This is also supported by the occurrence of silica sinter deposits, especially located at the
intersection between the two structural trends (Figure 18), indicating a local increase of
the permeability that permits to the geothermal fluids to be channeled without losing
temperature during upflow [86]. At Krafla, significantly, the distribution of isotherms,
earthquakes and the area under exploitation follow the transform shear zone orientation,
rather than the rift-axis trend (Figure 19). In this view, the role of transform shear zones
appear to be the most efficient to channel the upflow of deep fluids, suggesting that the
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geothermal system of Krafla is mostly linked to structures parallel to the main Húsavík
transform fault zone (Figure 20).

1 

 

 

 
Figure 18. Examples of intersections between the two regional systems of Iceland (a) panoramic view of the steam emission
points and relationships between the two main indicated trends; (b) geothermal manifestation at the intersection area
between the two indicated fault trends; after Reference [86].
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Figure 19. (a) Isotherms showing the distribution of temperature at Krafla; (b) distribution of epicenters in the geothermal
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Energies 2021, 14, 933 21 of 26

Energies 2021, 14, 933 23 of 29 
 

 

Figure 19. (a) Isotherms showing the distribution of temperature at Krafla; (b) distribution of epicenters in the geothermal 

area of Krafla. Their depth is between 1.8 and 2.4 km. After Reference [86]. 

 

Figure 20. Conceptual structural model (not to scale) describing the relationships between geological structures and geo-

thermal resources in the Krafla area, after Reference [86]. 

3.2.3. Geitafell vs. Krafla 

The study of the fossil system demonstrated that permeability increased at the inter-

section between the two regional trends of fault systems, with emphasis on the role of the 

NW-trending faults in channeling deep fluids. This is the same evidence at Krafla, where 

thermal springs and silica sinter deposits are mostly localized at the intersection among 

faults. Moreover, at Krafla, the occurrence of a NW- trending brittle shear zone with fluids 

is marked by the distribution of earthquakes and increase of temperature. Finally, the field 

study of permeability and the analysis of paleo-fluids at Geitafell resulted a powerful 

method, when compared with the knowledge we have about the Krafla system. Once 

again, the methodology of studying fossil system in order to shed light on the deep roots 

of active system is proven and can provide key-indications for conceptual models on the 

relationships between geological structures and geothermal resources. 

4. Discussion and Conclusions 

The study of exhumed, analogue system is a common approach in the oil and gas 

exploration (e.g., References [110–112]) whereas it is quite recent in geothermal studies 

(e.g., References [19,113]). The study of fossil, analogue, geothermal systems significantly 

differs from the one dedicated to hydrocarbon since it benefits of the observation of a 

“crystallized condition”, developed at depth and then intactly exhumed. This is in fact the 

case of the hydrothermal veins. Contrastingly, carbonate levels, hosting hydrocarbon at 

depth, when exhumed, are also affected by fractures developed during exhumation, thus 

making difficult to separately examine those fractures formed at the depth of interest. 

Nevertheless, analysis of the hydrothermal veins might bring to an overestimation in 

term of permeability. The method is in fact based on measurements of the vein length and 

thickness, assuming that veins with the same mineralogical association were contempo-

raneously active. This is not the case for the shallower systems where banded veins can 

develop exhibiting repeated events of opening and mineral filling (e.g., References 

[11,114]). Nevertheless, for veins developed at the deeper structural levels, this simplifi-

Figure 20. Conceptual structural model (not to scale) describing the relationships between geological structures and
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3.2.3. Geitafell vs. Krafla

The study of the fossil system demonstrated that permeability increased at the inter-
section between the two regional trends of fault systems, with emphasis on the role of the
NW-trending faults in channeling deep fluids. This is the same evidence at Krafla, where
thermal springs and silica sinter deposits are mostly localized at the intersection among
faults. Moreover, at Krafla, the occurrence of a NW- trending brittle shear zone with fluids
is marked by the distribution of earthquakes and increase of temperature. Finally, the
field study of permeability and the analysis of paleo-fluids at Geitafell resulted a powerful
method, when compared with the knowledge we have about the Krafla system. Once
again, the methodology of studying fossil system in order to shed light on the deep roots
of active system is proven and can provide key-indications for conceptual models on the
relationships between geological structures and geothermal resources.

4. Discussion and Conclusions

The study of exhumed, analogue system is a common approach in the oil and gas
exploration (e.g., References [110–112]) whereas it is quite recent in geothermal studies
(e.g., References [19,113]). The study of fossil, analogue, geothermal systems significantly
differs from the one dedicated to hydrocarbon since it benefits of the observation of a
“crystallized condition”, developed at depth and then intactly exhumed. This is in fact the
case of the hydrothermal veins. Contrastingly, carbonate levels, hosting hydrocarbon at
depth, when exhumed, are also affected by fractures developed during exhumation, thus
making difficult to separately examine those fractures formed at the depth of interest.

Nevertheless, analysis of the hydrothermal veins might bring to an overestimation
in term of permeability. The method is in fact based on measurements of the vein length
and thickness, assuming that veins with the same mineralogical association were con-
temporaneously active. This is not the case for the shallower systems where banded
veins can develop exhibiting repeated events of opening and mineral filling (e.g., Ref-
erences [11,114]). Nevertheless, for veins developed at the deeper structural levels, this
simplification is also a consequence of the fact that hydrothermal veins are typified by
comminution of mineral-filling fractures, hence indications about the evolution of the veins
(as, for example, proposed by References [115–117]), are not recognizable, generally.

A mitigation of the k value overestimation is, however, determined by the statistical
approach which tends to highlight the most suitable value. Furthermore, it should be taken
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in account that large veins, such as the hydraulic breccias (burst veins in: Reference [117])
producing instantaneous, co-seismic veins [118], are not compatible with the laminar flow
of the parallel plate model, thus being excluded by the database. Similarly, computations
resulting in k values > 1 × 10−12 m2 are excluded too, since not consistent with the
assumptions of the parallel plate model. However, it is worth it to say that, although
with limitations, the parallel plate model gives reliable results, being comparable with the
permeability values measured in the active systems.

Hydraulic conductivity (K) is evaluated simplifying the Darcy’s low, since the move-
ment of fluids is toward the Earth surface, hence the contribute of the hydraulic head
and gravity cannot be stated. A range of K values can be reasonably suggested since it is
influenced by pressure of fluids, variable time by time.

Another issue to be pointed out is the importance of the shear zones with a dominant
oblique movement. In terms of channeling of deep fluids, these are the most favorable
structures since their kinematics implies an almost vertical intermediate axis. When these
structures interact with normal fault zones, then: (a) permeability locally increases, due to
the interaction between two system of fractures; and (b) since the intermediate axis is almost
horizontal in normal faults, lateral migration of fluids is favored. In our examples, these
structural relations are significant both in the continental and oceanic crust environments,
under extensional context. In conclusion, the presented methodological approach, based
on integrated study of exhumed and active geothermal systems with field and laboratory
methodologies, allows to better define conceptual models of the area under exploration.
Thus, we encourage the study of fossil systems in order to shed light on the deep structures
of the active geothermal systems, with benefit in the de-risking of failed drillings.
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