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Abstract: In this paper, the motion of the n-vortex system as it collapses to a point in finite time
is studied. The motion of vortices is described by the set of ordinary differential equations that we
are able to solve analytically. The explicit formula for the solution demands the initial location of
collapsing vortices. To find the collapsing locations of vortices, the algebraic, nonlinear system of
equations was built. The solution of that algebraic system was obtained using Newton’s procedure.
A good initial iterate needs to be provided to succeed in the application of Newton’s procedure.
An unconstrained Leverber–Marquart optimization procedure was used to find such a good initial
iterate. The numerical studies were conducted, and numerical evidence was presented that if in a
collapsing system n = 50 point vortices include a few vortices with much greater intensities than the
others in the set, the vortices with weaker intensities organize themselves onto the vortex sheet. The
collapsing locations depend on the value of the Hamiltonian. By changing the Hamiltonian values
in a specific interval, the collapsing curves can be obtained. All points on the collapse curves with
the same Hamiltonian value represent one collapsing system of vortices. To show the properties of
vortex sheets created by vortices, the passive tracers were used. Advection of tracers by the velocity
induced by vortices was calculated by solving the proper differential equations. The vortex sheets are
an impermeable barrier to inward and outward fluxes of tracers. Arising vortex structures are able
to transport the passive tracers. In this paper, several examples showing the diversity of collapsing
structures with the vortex sheet are presented. The collapsing phenomenon of many vortices, their
ability to self organize and the transportation of the passive tracers are novelties in the context of
point vortex dynamics.

Keywords: point vortex; collapse; vortex sheets; passive markers transport

1. Introduction

Studies of the discrete vortex systems began in 1858 with the publication of the
Helmholtz paper [1], where the interaction of two linear vortices was investigated.

Nowadays, the dynamics of the point vortex system still rouse interest among scien-
tists. Good introductory reference material to the subject can be found in [2–8]. The concept
of replacing the continuous field of vorticity by the distribution of δ-Dirac functions, called
point vortices, constitutes the foundation of the vortex methods and provides a very useful
numerical methodology to study the inviscid or viscous flow problems [9–11]. The set of
point vortices that was obtained by replacing the continuous vorticity led to the genera-
tion of a velocity field that approximates the solution of the Euler equation [12] (refer to
Appendix A). Essential ingredients of modern modeling of any fluid flow are studies
of evolution of vorticity using the point vortices [6,10,13,14]. Sometimes mathematical
analysis of a collection of a few point vortices’ dynamics can shed light on interesting
features of fluid motion, which is the reason why scientists remain highly interested in
the point vortex system’s dynamics. The most fascinating phenomenon related to the
collapse of the system of vortices is the point in finite time. This phenomenon is known
for a long time since the dissertation of Gröbli 1877 [15]. It was rediscovered once again
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in the 70s by Aref [16] and Novikov [17,18]. Due to the fact that the distance between
vortices changes during the collapse motion, different scales of motion arise, which is the
elementary feature of turbulence. The collapse of vortices is regarded as an elementary
act in two-dimensional turbulence kinetics [19]. Since Aref’s and Novikov’s papers were
published, many scientists have studied the collapse of the three-vortices problem and its
applications; for example, [8,18,20–24]. The number of papers devoted to the collapsing
of three vortices indicates the importance of the collapsing phenomenon, even though
only three vortices were taken into account. The author’s papers showed numerically by
several examples (references [25,26] that the collapse of vortices is possible for any number
of vortices.

In this paper, numerical results related to some special feature of collapse system
of vortices are presented. It was discovered that when one or a few vortices in the col-
lapse system are much larger than others (such an inhomogeneity typical in turbulent
motion [27,28]), then the vortices with the smallest intensity always organize themselves
into the vorticity threads. Weaker vortices are gathered along the curve segments, which
can be regarded as the vortex sheets. The sheets behave as a solid barrier and are able to
transport the passive markers en route to the singularity point. As stated in [27], the co-
herent vortex structures that appeared in the turbulent rotating flows are able to trap the
passive tracer. The boundary of the coherent vortex structure is impermeable for tracers
from the inside out and vice versa. It is evident from the numerical experiments that a
collapse system of vortices that possess strong vortices organizes itself into a coherent
vortex structure.

In [29] the numerical algorithm for the collapse of the vortex sheets accompanied by a
strong vortex was given. In that paper, the shape of vortex sheet was initially presumed
and then it was replaced by identical weak point vortices. To find the collapse locations,
the algebraic system resulting from the point vortex approximation of the Rott–Birkhoff
equation for vortex sheet, together with some invariant of motion was solved.

In present paper, it is shown numerically that a collapse system with one or a few
strong vortices organizes itself into a vortex sheet. The self-organization of vortices gener-
ates interesting vortex structures that are able to transport the passive tracers. The vortex
sheet essentially modifies the advection of passive tracers. Passive particle advection is a
crucial component in many geophysical processes, such as the dispersion of pollutants in
the atmosphere and in the ocean [7].

The numerical results here are a novelty in the field of the point vortex system dy-
namics. In this paper, the description of the numerical algorithm is provided, followed by
several examples of different shapes of collapsing structures of vortices with one, two and
four strong vortices. Passive tracers were used to demonstrate the transporting features of
collapsing vortex structures.

2. Equations of Motion for n Vortices

Equations of motion for the system of n-point vortices were first provided by Helmholtz
in 1858 [1] (refer to Appendix A). Since then, his equations played a key role in vortex meth-
ods and were used in multiple applications of fluid motion modeling. Here, Helmholtz
equations are used to study the dynamics of point vortices that will collapse to a point
in a finite time. Details of assumptions and methodology are provided below and in
Sections 3 and 4.

First, let us assume that there are n point vortices on the plane with distinct positions zk,
and circulations (intensities) Γk, each Γk ∈ R \ 0. Each of distinct positions can be expressed
in terms of complex number zk = xk + iyk. Using the complex variables representation,
Helmholtz equations of motion for an n-point vortex system can be expressed as [30–32]
(see Appendix A):

dzk(t)
dt

= vk =
i

2π

n

∑
j=1

′ Γj
1

zk − zj
, k = 1, 2, . . . , n, (1)
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where the prime on the summation indicates the omission of the term with j = k,
and the overline denotes complex conjugation; vk is the velocity of the kth vortex.

System (1) is associated with the useful identities [3,30] :

n

∑
k=1

Γkvk = 0, (2)

n

∑
k=1

Γkzkvk =
i

2π ∑
k>j

ΓkΓj, (3)

n

∑
k=1

Γkvkvk =
d
dt ∑

k>j

ΓkΓj

2πi
ln (zk − zj). (4)

Using the above identities, it is not hard to obtain the integrals of motion for
Equation (1) [3,32]:

H = − 1
2π

n

∑
j=1

n

∑
k, k 6=j

ΓjΓk ln rjk = const., rjk = |zj − zk| (5)

M = Mx + iMy =
n

∑
j=1

Γjxj + i
n

∑
j=1

Γjyj = const., (6)

V =
n

∑
k=1

Γk(xk
dyk
dt
− yk

dxk
dt

) =
1

2π ∑
k>j

ΓkΓj,= const., (7)

S =
n

∑
j=1

Γj(x2
j + y2

j ) = const., (8)

where (5) is a Hamiltonian, (6) and (8) are a linear and an angular impulse respectively and
invariant V (Equation (7)) is a virial. Invariant (5) is expressed through the mutual distance
between the vortices. It permits one to express the equation of motion (1) as a Hamiltonian
system [32]:

Γk
dxk
dt

=
∂H
∂yk

, Γk
dyk
dt

= − ∂H
∂xk

. (9)

By substituting zk in Equation (1) with new variable ẑk = azk + b, it can be observed
that the shape of trajectories stays unchanged apart from time, which is scaled: t/|a|2.
Without lost of generality, one can shift the center of a vorticity’s mass to the origin of the
coordinate system, (0, 0), assuming that σ = ∑k Γk = const. 6= 0 [26]. Consequently, we
have Mx = 0, My = 0 and S = 0 [3].

3. Self Similar Motions of n-Vortices

In this article, the following definition of the self-similar collapse motion of the n-
vortices was introduced: [25,26].

Definition 1. The system of the n-vortices is in a self-similar collapse motion if there exist a
complex function λ(t), λ(t) = λr(t) + iλi(t), Re(λ) = λr(t) < 0 and λi(t) 6= 0, and the
equation of motion takes the form

dzk
dt

= vk(z1, z2, . . . , zn) = λ(t)zk, k = 1, 2, . . . , n. (10)

Let us assume that the solution of Equation (1) allows self-similar motion, and let us
introduce the new variables (r(t), ϕ(t)), such that the solution takes form:

zk(t) = zk(0)r(t)eiϕ(t), r(0) = 1, ϕ(0) = 0, k = 1, 2, . . . , n (11)
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By inserting Equation (11) into (1), the variables (r(t), ϕ(t)) can be easily separated,
allowing the following representation:

dr
dt

=
1
r

λr(0), r
dϕ

dt
=

1
r

λi(0). (12)

Integration of (12) provides:

r =
√

2λr(0)t + 1, ϕ =
λi(0)

2λr(0)
ln(2λr(0)t + 1), (13)

which allows us to represent the solution of Equation (11) as [25,26] (refer also to [33]):

zk(t) =
√

2λr(0)t + 1e
(

i λi(0)
2λr(0)

ln(2λr(0)t+1)
)

zk(0). (14)

Solution (14) represents the logarithmic spiral. The collapse time is given by

Tc = −
1

2λr(0)
(15)

Using the expression for collapse time (15) one can rewrite the (14) as follows:

zk(t) =
√
(1− t/Tc)e−iλi(0)Tc ln(1−t/Tc)zk(0). (16)

It is easy to check that when t→ Tc; then zk(t)→ 0, r(t)→ 0 and ϕ(t)→ +∞ when
λi(0) > 0 or ϕ(t) → −∞ when λi(0) < 0. When λr(t) > 0 then the system expands. To
change collapsing system it is enough to change the signs of all vortex circulations to the
opposite ones [32,34]. When the real part of λ(t) equals zero, λr = 0, then the vortices are
in relative or absolute equilibrium. The entire system can rotate like a solid body or take
stationary positions.

In the collapsing system of vortices, distances between vortices go to zero, seemingly
contradicting the Hamiltonian constant. However, by inserting Equation (11) into to
Equation (5) we obtain

H(t) = H(0)− 1
2π

ln |r(t)|
n

∑
k, k 6=j

ΓjΓk. (17)

From Equation (17), it can be concluded that Hamiltonian (5) during the self-similar
motion is constant, when the virial V = 0.

4. Algebraic Equations for Collapse Locations of Vortices

A configuration space of n vortices requires 2n real numbers. From the definition of the
self-similar motion (10), we have v1zk = vkz1, which provides only n− 3 independent rela-
tions [3,26]. This leads to 2n− 6 algebraic equations of the form: f j = vjzj+1 − vj+1zj = 0,
for real and imaginary parts of f j. In addition, we have three more equations from the
invariants: fn−5 = Mx = 0, fn−4 = My = 0, and fn−3 = S = 0 and one more equation
from property of identity (2), it is fn−2 = Re(∑n

i=1 Γivi) = 0 [3]. This leads to the nonlin-
ear system of n− 2 algebraic equations ( f1, f2, . . . , fn−2)

T = 0 where each has the form
f j(x1, y1, . . . , xn−1, yn−1) = 0.

To further reduce the number of equations of the vortex, zn = (xn, yn) was fixed. The
nonlinear system of 2n− 2 equations was solved using the Newton method (refer to [25,26]).
To succeed in a numerical solution of an algebraic nonlinear system of equations, one
should provide a good guess for the initial iterate [35]. To obtain such an initial iterate,
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an unconstrained Levenberg–Marquart optimization procedure was used to minimize
the sum:

F(x1, y1, . . . , xn−1, yn−1) =
2n−2

∑
i=1

f 2
i ≈ 0. (18)

The vector (x, y)min that minimizes (18) was then used as an initial iterate for Newton’s
procedure (refer to [25,26]). All calculations were performed using the Mathematica© v.12.
To succeed in the minimization of (18), one should perform the calculations with high
digital precision. In Mathematica© the digital precision is fixed by including parameter
called “WorkingPrecision” in the procedure. By setting WorkigPrecision→ ω, calculations
were perform with ω-digits of internal computation [36] (p. 409). In all case studies, ω was
set to 500. The minimum threshold of function F was ≈ 10−700 or smaller. All invariants
(Mx, My, S, V) were on the level≈ 100−500. Typically, the Newton procedure demands only
one iteration.

5. Numerical Examples
5.1. Prelude Example

First, we present an example that highlights the difference when the collapsing system
of 50 vortices has and does not have a strong vortex. Both systems have a fixed vortex in
the same place, marked by navy-blue dot with a dashed circle. Both systems start from a
randomly selected initial location. Figure 1a,b present calculated locations of a collapsing
set of vortices with intensities Γ1−25 = 1 and Γ26−50 = −4/3. Vortices with positive
circulation (red points) and negative circulation (blue points) are laid without visible order.
In Figure 1c, vortices were in the same initial starting locations, as in Figure 1a, but the
intensities of vortices were different. It was assumed that vortices from 1 to 49 have equal
intensity Γ1−49 = 1, and that there is one strong vortex with intensity Γ50 = −24. Red dots
represent the positive vortices with intensity equal to one, and blue, thick dots with dashed
circles around the represent the negative strong vortex.

The locations of collapsing vortices were obtained by first applying the unconstrained
Leverber–Marquart optimization procedure (18) and then Newton’s procedure. Computed
locations are presented in Figure 1c. It can be observed that a large number of vortices with
intensity equal to one lay very closely to each other on the arc of a curve. This arc can
be treated as a vortex sheet. As will be shown in the following examples, it is possible to
obtain a solution for which all vortices with small intensities (small in absolute value) lay
on the same curve. The appearance of the a vortex sheet is a generic feature, which can
be observed in a collapsing vortex set if one or several strong vortices are present in the
collapsing set.

(a)

-4 -2 2 4
x

-4

-2

2

4
y

(b)

-4 -2 2 4
x

-4

-2

2

4

y
(c)

-3 -2 -1 1 2 3
x

-3

-2

-1

1

2

3
y

Figure 1. (a) Initial starting locations of vortices, n = 50, Γ1−25 = 1 (red points), Γ26−50 = −4/3 (blue
points) andH ≈ −5.044. Navy-blue dot with dashed circle represents a fixed vortex; (b) collapsing
positions of vortices with initial locations as in (a),H ≈ −6.534; (c) locations of the collapsing vortices
with the initial starting locations as in (a) but with one strong vortex Γ50 = −24 and Γ1−49 = 1,
Tc ≈ 4.918 and H ≈ 38.792. In (c) only one exemplary collapse trajectory was drawn. The fixed
vortex is marked by dashed circle.
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In the following sections only selected examples out of many numerical case studies
are presented. These examples were chosen to present interesting properties of collapsing
vortices. Further, to make presented results easily reproducible, the initial locations of
vortices were placed on a well defined curve. In Sections 5.1.1 and 5.1.2, additional details
regarding the dynamics of the passive tracer and the selection of intensity values for strong
vortices are provided.

5.1.1. Dynamics of Passive Tracers

The passive tracers were used to demonstrate how the vortex sheets impact the motion
of fluid and passive tracers in the collapse of vortices. Passive tracers do not affect the
motion vortices [37]. They move according to the velocity induced by vortices. Due to
the fact that the locations of vortices are known in time (refer to (14)), the vortex-induced
velocity field (u(x, y, t), v(x, y, t)) can be computed. The trajectory of motion of passive
tracers x(t) and y(t) can be then obtained by solving the following differential equations:(

dx
dt

,
dy
dt

)
= (u(x, y, t), v(x, y, t)), u =

∂ψ

∂y
, v = −∂ψ

∂x
, (19)

where ψ(x, y) is a stream function that with the intensity Γj can be expressed as

ψ(x, y) =
n

∑
j=1

ψj(x, y), ψj(x, y) = −
Γj

2π
ln
√
(x− xj)2 + (y− yj)2 (20)

The differential equations were solved using embedded Bogacki–Shampaine 5(4)
Runge–Kutta method implemented in Mathematica [38].

5.1.2. Remarks on the Determination of the Values of Strong Vortices

In this paper, the calculations for one, two and four strong vortices inside the collapsing
vortices with uniform intensities are presented. Here, we explain how to determine what
value of intensity the strong vortex should have to fulfill the condition for virial V = 0
(refer to (7) and (17)). For simplicity, steps taken are described using the example. Here,
the intensities of 49 vortices were assumed to be Γ1−49 = 1 and the intensity of a strong
vortex was assumed be Γ50 = a. By inserting information about intensities of vortices into
Equation (7) and using the ability for symbolic calculations in Mathematica©, the following
expression for viral V can be obtained V = 1176 + 49a = 0. It is easy to see that in this
case a = −24. In the same way, we can calculate the values of intensity for two, three and
four strong vortices. For example, for two strong vortices with the same intensity a and
the remaining vortex intensities Γ1−48 = 1, the virial calculated by Mathematica can be
written as V = 1128 + 96a + a2 = 0. Such a representation yields two possible solutions for
intensities Γ49 = Γ50 = a, a = 2(−24− 7

√
6) or a = 2(−24 + 7

√
6). If the system has four

strong vortices instead of two, the equation for virial takes form V = 1035 + 184a + 6a2 = 0,
which yields two possible solutions for intensities Γ47 = Γ48 = Γ49 = Γ50 = a, i.e.,
a = 1/6(−92− 7

√
46) or a = 1/6(−92 + 7

√
46).

5.2. Numerical Results for the Collapse of 50 Vortices with One Strong Vortex

In this example, the 49 vortices with unit intensity Γ1 = · · · = Γ49 = 1 were assumed
to be initially located on the arc of the circle. For vortex i, i = 1, . . . 49, the initial position
on the arc was defined as (yi + y0)

2 + x2
i = R2, where xi = xl + (i− 1)(xr − xl)/(n− 2)

and R = 62, xr = 10, xl = −10, y0 = 60 (green dots in Figure 2a). The initial location of a
fixed strong vortex with intensity Γ50 = −24 was (x50, y50) = (−6, 1/2)—navy-blue dot
in dashed circle in Figure 2a,b. As pointed out in Section 5.1, the initial locations of 50
vortices were selected so that anyone can reproduce the example without difficulties. The
collapsing set of vortices are marked by black dots, and one fixed vortex was marked by a
navy-blue dot with a dashed circle in Figure 2a. Figure 2b displays trajectories of collapse
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for each vortex. The collapse time was Tc ≈ 2.63 and the Hamiltonian wasH = 14.4065.

(a)

(b)

Figure 2. (a) Initial locations of vortices (green dots) and the set of collapsing locations (black dots)
after Newton’s procedure. Thick, navy-blue dot in dashed circle represents the fixed strong vortex;
(b) Collapse trajectories, Tc = 2.63, Hamiltonian valueH = 14.4065.

Due to the fact that the Hamiltonian is expressed by mutual distance between the
vortices, replacing the identity (refer to Section 4) fn−2 = Re(∑n

i=1 Γivi) = 0 by H∆ =
H0 ± ∆H (∆H ≈ 0.001) permits finding the new set of the collapse vortices using initial
starting locations already found for H0. By repeatedly increasing and decreasing the
value of the Hamiltonian by ±∆H, the sequence of collapsing positions of vortices can
be obtained. By joining that positions (∼500 points) in interval [Hle f t,Hright], one obtains
n curves for each vortex. Points with the same Hamiltonian values determine the one
collapsing set of vortices [25,26]. The numerical procedure stops to converge at the ends of
that Hamiltonian interval. The sequence of collapsing locations of vortices for different
Hamiltonian values that were changing in the interval [Hle f t,Hright] is shown in Figure 3.
The collapse time and Hamiltonian value are provided at the top of each subfigure.
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tcr = 2.66, H = 38.3
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tcr = 3.05, H = 59.2
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tcr = 40.02, H = 90.7
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-6

-4
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y

tcr = 2162.30, H = 90.9

Figure 3. The dependence of locations of the collapse vortices from Hamiltonian values in intervalH ⊆ [38.318, 90.8776].
The critical time and the Hamiltonian value are provided at the top of each figure.

Figure 4a summarizes the smooth path of the collapsing locations for Hamiltonian
values changing in the interval [38.3, 90.97]. Green dots represent the locations of vortices
for Hamiltonian valueHle f t ≈ 38.3 and the red dots represent the locations of vortices for
the Hamiltonian value at the end of intervalHright ≈ 90.97. Figure 4b displays dependence
between the collapse time Tc and Hamiltonian valueH. It can be observed that near right
interval of HamiltonianHright ≈ 90.97 the curve Tc(H) becomes very steep and the collapse
time rapidly increases. The collapse times for the relative and the absolute equilibrium
are Tc = ∞. Figure 4b indicates that we are very close to the relative equilibrium for the
Hamiltonian value at the right end of the Hamiltonian interval. In Figure 4b, two points
were marked Tc = 2.63 and Tc = 40.02. These points correspond to the solution presented
in Figures 2b and 5, respectively. It can be observed that for collapse time Tc > 40.02,
the changes of Hamiltonian value are very small, ∆H < 10−6. Very small changes in
Hamiltonian result in very small variations in the collapsing locations of vortices.
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(a)

-6 -4 -2 2
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-4
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y

(b)

40 60. 80.
H

10

100

1000

TC

tc=2.63

tc=40.02

Figure 4. (a) Changes of the vortex positions when the Hamiltonian was changed fromH ≈ 38.32 to
H ≈ 90.88. Continuous lines mark the paths of vortices from collapse locations with critical time
tcr = 2.58 (black points) to the locations with time tcr ≈ 104 (red points); (b) dependence of the
collapse time from Hamiltonian values in the intervalH ∈ [38.3, 90.88].

Figure 5 shows the evolution of passive tracers that were put around the strong vortex
(blue color) and that were put on the other side of the vortex sheet (green color). Evidently,
the blue tracers approached the vortex sheet but did not penetrate to the other side of the
sheet. It can be observed that blue tracers rotate violently around the strong vortex and
they are carried over time with the whole system to the center of vorticity. By contrast, the
green tracers are calmly moved by advection. The strong vortex together with vortex sheet
rotate quicker than green tracers. Due to the process of collapse, the vortex sheet shrinks
and becomes shorter, and it gradually loses the blue tracers. It can be also be observed that
over time, the vortex sheet catches the green patch of tracers. The vortex sheet initially only
sliced the green patch, but over time the patch of green tracers was stroked and smashed.

Figure 5. The sequence of instantaneous locations of the system of vortices and two sets of tracers
marked by the blue and green that were located on the opposite sides of vortex sheet. The upper left
corners are the collapsing locations of vortices at t = 0. On each subfigure, red dots represent positive
vortices with intensities Γ1−49 = 1, and navy-blue dots represent the strong vortex with negative
intensitiy Γ50 = −24. Instantaneous time is provided at the top of each figure.
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6. Collapse of 50 Vortices with Two Strong Vortices

The behaviour of the system of collapsing vortices with more than one strong vortex
is more complex and more interesting. In Sections 6.1–6.4, several selected case studies of
the system of vortices with two strong vortices are presented. In Section 6.5 a case study
for the system with four strong vortices is presented.

6.1. The Case A1

Figure 6a displays an example of the initial locations (green dots and two thick navy-
blue dots) and locations of the collapsing set of vortices (red dots together with two thick
navy-blue points). Figure 6b displays the selected trajectories of collapse vortices. The
48 vortices with uniform intensity (Γ1−48 = 1) were laid along the same arc, as in the
example presented in Figure 2a. The two strong vortices with intensities Γ49 = Γ50 =
2(24 + 7

√
(6)) were located at (x49, y49) = (8, 0) and (x50, y50) = (−8, 0) (navy-blue, thick

dots) (Figure 6a).

(a)

-10 -5 5 10
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(b)
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-1
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Figure 6. (a) Initial locations of vortices (green dots mean vortices with positive intensities Γ1−48 =

1, and two thick, navy-blue points means negative intensity, Γ49 = Γ50 = 2(24 + 7
√
(6)) with

coordinates (x49, y49) = (8, 0) and (x50, y50) = (−8, 0)), and collapsing locations of vortices (red
points and two navy-blue points); (b) collapsing locations (red points and navy-blue dots for the
strong vortices) and selected trajectories for the collapse of some vortices, Tc ≈ 5.75,H ≈ 3.66.

It can be noticed that the collapsing locations of vortices resemble sinusoidal-like
functions with antisymmetric positions of vortices. Peculiar to note is the strong vortex at
location (x49, y49) = (8, 0) did not move afterthe application of the minimization of (18)
and Newton’s procedure, as if that vortex was in the correct location to begin with.

Figure 7 shows the evolution of vortex locations when the Hamiltonian values change
in the intervalH ∈ [3.59, 99.65]. The collapse time and Hamiltonian value for each example
are provided at the top of each frame. Noticeably, the wavy sinusoidal-like function of
vortices’ locations atH ≈ 3.59 straightens up gradually as the Hamiltonian value changes
toH ≈ 99.65 and vortices take the positions along the vertical axis y. The system seems to
be near the relative equilibrium at collapse time, Tc ≈ 25170.
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Figure 7. Dependence between collapsing locations (red dots—vortices with positive intensities Γ1−48 = 1) and values of
the Hamiltonians. The Hamiltonian value and collapse time are provided at the top of each frame.

Figure 8 presents the evolution of collapsing vortices together with the passive tracers
(blue and green). The locations of vortices at t = 0 correspond to the third frame in Figure 7.
Red dots represent the locations of vortices with positive intensities Γ1−48 = 1, and navy-
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blue dots represent two negative vortices with the intensities Γ49−50 = 2(24 + 7
√
(6)). It

can be observed that vortices lay in a nearly straight line that creates a vortex sheet, and
two sets of tracers are located on opposite sides. Over time, when the system is collapsing,
the length of vortex sheet gets shorter, and the tracers are gradually released into the
surroundings. Collapse time is Tc ≈ 104.22.

Figure 8. Instantaneous locations of the system of collapsing vortices and two sets of tracers marked
by blue and green. In the upper left corner, the system of vortices is located at t = 0. Vortices with
low (positive) intensity Γ1−49 = 1 are marked by the red dots and two strong vortices with negative
intensities Γ49−50 are marked by navy-blue dots. Tracers were located on the opposite sides of the
vortex sheet created by positive vortices. Time is given at the top of each frame. Collapse time
Tc ≈ 104.22, andH ≈ 98.79.

6.2. The Case A2

In this case study, the initial locations of vortices with intestines Γ1−48 = 1 were the
same as in case study (Section 6.1), i.e., along the arc, but the locations of two strong vortices
were changed. Here, the two strong vortices were placed at (x49, y49) = (4/5, 7/2) and
(x50, y50) = (−8,−1) (fixed vortex position). Figure 9a displays starting locations of weak
vortices (black dots) and two strong vortices were marked by navy-blue and light- blue dots.

(a)

-10 -5 5 10

-10

-5

5

10

(b)

Figure 9. (a) Initial starting locations of vortices—black dots as positive vortices, Γ1−48 = 1; two
strong negative vortices, navy-blue dot in a dashed circle and bright blue as Γ49 = Γ50 = 2(−24 +

7
√

6). Collapsing locations of vortices (red dots, and two thick navy-blue dots); (b) trajectories of
collapse for each vortex Tc ≈ 12.56,H ≈ 23.14.

Figure 9a displays also the collapsing locations: the weaker, positive vortices (red dots)
and two navy-blue dots as strong vortices with negative intensities. It can be observed that
the second strong vortex moved farther away from its initial position (x49, y49) = (4/5, 7/2)
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to (x49, y49) ≈ (−1.684, 9.927) and that two disjoint pieces of vortex sheet were formed.
Each piece of vortex sheet surrounds different strong vortices. Figure 9b presents the
collapse trajectories of the system. The collapse time in this case is Tc ≈ 12.559; the
Hamiltonian value isH ≈ 23.145..

Figure 10 presents the changes of locations of vortices when the Hamiltonian evolves
in the interval H ⊆ [22.783, 38.047]. The collapse time and Hamiltonian value for each
example are provided at the top of each frame. Noticeably, as the Hamiltonian value
increases up to right end of the Hamiltonian interval, disjoint pieces of vortex sheet
approach each other, creating one vortex sheet with three branches. The collapse time
relating to the right end of Hamiltonian interval is Tc ≈ 117511.5.
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-10 -5 5
x

-5

5

10

y

Tc = 117511.50, H = 38.05

Figure 10. The dependence between collapsing locations of vortices (red dots mean vortices with
Γ1−48 = 1; navy-blue dots, Γ49−50 == 2(−24 + 7

√
6); the vortex with a fixed location is marked by a

dashed circle); the Hamiltonian value and collapse time are provided at the top of each frame.

Figure 11 presents the evolution of three patch of tracers in the velocity fields induced
by the collapsing vortices. Two patches of tracers (green and orange) were placed around
strong vortices and one patch of tracers was placed on the right site of vortex sheets.
The initial locations of vortices for t = 0 correspond to the third frame in Figure 10
for the Hamiltonian value H ≈ 37.77. Red dots, represent the positive, weak vortices,
Γ1−48 = 1, and navy-blue dots represent two strong vortices with intensities Γ49 = Γ50 =
2(24 + 7

√
(6)). It can be observed that over time, green and orange tracers rotate quickly

around the strong vortices and they are carried with the whole system toward the center of
vorticity (0, 0).

Figure 11. Instantaneous locations of the three sets of tracers - green, orange and gray. The green and orange were located
around the strong vortices, Tc ≈ 75.51.

By contrast, the gray tracers are slowly convected around. The strong vortices together
with the vortex sheets rotate faster than gray tracers. However, over time the vortex sheets
catch the gray tracers. Initially, the vortex sheets only sliced the patch of gray tracers into
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two, but in the next turns of the system, patch of the gray tracers were torn off. The branch
shaped vortex sheet behaves as a solid barrier that limit the influence of strong vortices.
Just behind that barrier, in the direction opposite to the locations of strong vortices, the
values induced by all vortices velocities are much smaller than in front of the sheets. At the
vortex sheets, normal velocity is zero. It means that flux of mass from inside in and inside
out is also zero. The bar of weaker vortices between the strong vortices separates the green
and orange tracers, creating two compartments. As the vortices collapse, the vortex sheet
shrinks and becomes shorter, gradually losing the green and orange tracers. The collapse
time for this system is Tc = 75.51.

6.3. The Case A3

In this case study presented in Figure 12a, the initial starting locations of 48 vortices
with weaker intensities Γ1−48 = 1 were laid along the same arc as in the example presented
in Figures 6a and 9a. In this example, two strong vortices with intensities Γ49 = Γ50 =
2(24 + 7

√
(6)) were located in (x49, y49) = (5, 4) and (x50, y50) = (−6, 0) (navy-blue dots

in Figure 12a).
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Figure 12. (a) Initial locations of vortices (red dots for vortices with positive intensities Γ1−48 = 1.
Locations of strong vortices (navy-blue dots) are (x49, y49) = (5, 4) and (x50, y50) = (−5, 0) (fixed
vortex), H ≈ −672.723; (b) collapsing locations of vortices. Some weaker vortices (red dots) lay
approximately on the perimeter of ellipse (marked by the dashed line) and some of them on the short
vertical segment of y axis. Tc ≈ 26.567,H ≈ −193.41 and (x49, y49) ≈ (4.961,−0.046).

Figure 12b displays the collapse locations that were calculated using Newton’s proce-
dures (red dots, two navy-blue dots). It can be observed that some of weaker vortices took
approximately the locations on the perimeter of the ellipse (dashed line in Figure 12b) and
the remaining ones created a short line on y axis, almost symmetric around the origin of
the coordinate system that divides the inner space of ellipse into two compartments. The
exemplary collapse trajectory is shown in Figure 12b.

Figure 13 presents the shift in collapsing locations when the Hamiltonian values were
changed fromH ≈ −192.57 (see left figure in Figure 13) toH ≈ −202.81 (right ellipse in
Figure 13). The collapse times Tc =≈ 26.45 and Tc =≈ 26131.9, respectively. The vortices
that are at the perimeter of the ellipse on the right side of Figure 13 are close to relative
equilibrium, and the distribution of the vortices is nearly symmetrical in terms of y axis.
Noticeably, one of the vortices lost its connection with right part of the vortex sheet and
took a position beneath the vortex bar, near the y-axis, (x, y) = (−0.187,−8.681).
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Figure 13. Two ellipses with collapse time Tc ≈ 26.45 and H ≈ −192.57 (left ellipse), and
Tc ≈ 26131.8 andH ≈ −202.81 (right ellipse). The right ellipse is close to the relative equilibrium.

Figure 14 presents the evolutions of collapsing vortices together with the passive
tracers (blue and green). The locations of vortices at t = 0 are given in the top left corners.
The bottom right corner of Figure 14 corresponds to the collapse time Tc ≈ 26.45. Red dots
represent the locations of vortices with positive intensities Γ1−48 = 1, and navy-blue dots
represent two negative vortices with the intensities Γ49−50 = 2(24 + 7

√
(6)). As the ellipse

structure collapses to a singular point, the tracers are squeezed from the inner region to the
outside of the ellipse and the vortex bar becomes shorter. The collapse time for this system
is Tc ≈ 26.45.

Figure 14. The instantaneous locations of vortices and two sets of tracers—green and orange—located
around the strong vortices, Tc ≈ 26.45 andH ≈ −192.57.

6.4. The Case A4

In this case study, it was assumed that the 48 vortices with Γ1−48 = 1 were distributed
initially on the circle (green dots in Figure 15a with radius R = 3 and Cartesian coordinates
defined as xj = R cos((j − 1)∆θ), yj = R sin((j − 1)∆θ); and ∆θ = (2π/(n − 2), j =

1, 2 . . . n − 2). Two vortices with strong intensities Γ49−50 = 2(24 + 7
√
(6)) marked by

navy-blue dots were located at (x49, y49) = (1,−0.5) and (x50, y50) = (3.4,−2), respectively.
The vortex in location (x50, y50) = (3.4,−2) was fixed (navy-blue dot with dashed circle).

Figure 15a presents both the initial locations of vortices (green dots and navy-blue dots
as fixed vortices, and a light-blue dot as another strong vortex) and their collapse locations
(red dots and two navy-blue). Figure 15b displays the selected collapsing trajectories.

Figure 16 presents the evolution of the collapsing locations of vortices when the
Hamiltonian changes value in the interval H ∈ [14.74, 21.21]. The collapse time and
Hamiltonian value for each example are provided at the top of each frame. Similarly as
before, it can be observed that as the value of Hamiltonian increases, the collapse time
increases, and the set of weaker vortices tightens up. The system of vortices reaches nearly
relative equilibrium at Tc ≈ 2773.
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Figure 15. (a) Initial locations of n = 50 vortices (green dots as weaker vortices; fixed vortex in a
dashed circle; one light-blue dot and two blue ones as strong vortices) and the calculated collapsing
locations (red dots and navy-blue ones); (b) collapsing trajectories, Tcr = 6.7023; the Hamiltonian
value wasH = 18.3827. To ensure clarity of the figure, only four trajectories have been drawn.
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Figure 16. The dependence of the vortex locations on Hamiltonian values; the Hamiltonian values
and collapse times are given on the tops of frames.

Figure 17 presents how the system of collapsing vortices and passive tracers behave
over time. The freeze-frame for t = 0 is shown in the left top corner. Figure 17 corresponds
to the first frame of Figure 16. Instantaneous locations of a set of 48 weaker vortices
(red dots), two strong vortices (two navy-blue dots) and the passive green and blue tracers
located around two strong vortices can be observed. Time is provided at the top of each
frame. The collapse time and Hamiltonian value are Tc ≈ 20.85 andH ≈ 14.74. It can be
noted that two sets of traces are separated by the vortex sheet, which surrounds the strong
vortices. The vortex sheet takes a tear-shape structure. It also can be noted that two strong
vortices move as a vortex pair. Over time, the passive markers are pressed out from the
loop of the vortices because of fluid motion being incompressible and the vortex system’s
shrinkage to the singularity.

Figure 17. Instantaneous locations at selected time vortices (red and navy-blue dots) and the two
sets of tracers—orange and green—that were located around the two strong vortices, Tc ≈ 20.85,
H ≈ 14.74.
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Figure 18 presents how two patches of passive tracers and the system of collapsing
vortices presented in the last frame in Figure 16, behave over time. Similarly, in Figure 16,
instantaneous locations of a set of 48 weaker vortices, two strong vortices and the passive
green and blue tracers located around two strong vortices are presented. It can be observed
that weaker vortices are organized into the tail, which as time pass by, behaves as a solid
wall separating two strong vortices. The structure created by the vortices presented in
Figure 18 resembles the structure of a tadpole galaxy. The tracers pressed out from the loop
of vortices flowed up along the vortex tail. The tail acts as a solid arm of the large mixer.

Figure 18. Instantaneous locations of vortices at a selected time and the two sets of tracers—orange
and green—that were located around the two strong vortices, Tc ≈ 20.85,H ≈ 14.74.

6.5. The Case A5

In this case study, four strong vortices were put in the system. The initial loca-
tions of 46 vortices with weaker intensity Γ1−46 = 1 were placed at the peripheral of
ellipse with axes a = 12, b = 2 and the cartesian coordinates of four strong vortices were
(x47, y47) = (−3, 5, 3.5), (x48, y48) = (9.5, 2), (x49, y49) = (1,−3.5) and the last, fixed vortex
was located at (x50, y50) = (−6, 0.5) (see Figure 19a). Figure 19b presents the calculated
collapsing locations of vortices using the initial location of vortices presented in Figure 19a.
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Figure 19. (a) Initial locations of vortices; (b) collapse locations of vortices with collapse time
Tc ≈ 151.94 and Hamiltonian value H ≈ −77.22. The collapsing vortices lay inside of circle, which
was marked by the gray dashed gray line. Distinct cell structures around the strong vortices can
be observed.
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As can be observed in Figure 19b, all vortices lay inside of a circle marked by dashed
gray lines. Inside that circle, the strong vortices took positions at distinct cells. The
boundaries of cells are created by the weak vortices that arrange themselves loosely along
the arc of an ellipse and straight lines which make the walls of cells. The vortices are not
closely located, but they are still able to keep passive tracers together and transport them
together with strong vortices over long time.

Figure 20 presents how the system of collapsing vortices presented in Figure 19b
behaves over time. Passive color tracers were put around strong vortices (navy-blue
dots). The tracers rotate quickly around vortices and they stay in each individual cell for a
relatively long time. In a collapsing process, the distances between the vortices become
smaller, the boundaries of the cells become shorter and the tracers are pressed out through
cracks in cell walls. The time is given at the top of each frame.

Figure 20. Instantaneous locations of the four sets of tracers—orange and green—that were located
around the four strong vortices.

Figure 21a presents the smooth path of the collapsing locations for Hamiltonian values
changing in the intervalH ∈ [−77.34,−76.86].
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Figure 21. (a) Changes in the locations of vortices when the Hamiltonian was run fromH ≈ −77.34
(red points, Tc = 148.35) toH ≈ −76.858 (green points, Tc = 37251.54). (b) Dependence of collapse
time on the Hamiltonian values.
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The red dots correspond to the left end of the intervalH ≈ −77.34, and the red dots to
the right end,H ≈ −76.86]. The paths of the vortices from red to green locations are marked
by gray dotted lines. It can be noticed that the Hamiltonian interval is relatively narrow, and
the changes of the vortex locations are small. Figure 21b presents the dependence between
collapse time and the value of Hamiltonian. It can be observed that as the Hamiltonian
value increases, the collapse time Tc increases from 148.35 to 37, 251.45. For Hamiltonian
values near the right edge of the Hamiltonian interval, the collapse time sharply increases,
which suggests that the system of vortices (green points in Figure 21a) is close to the
relative equilibrium.

7. Conclusions

In this paper, a numerical approach to find the collapsing system of vortices was
provided. First the algorithm was provided to find the collapsing locations from which
vortices collapse. Then through series of selected, reproducible case studies very interesting
properties and behavior of the system of collapsing vortices with at least one strong vortex
were highlighted and examined. It was demonstrated numerically that the system of
collapsing vortices in a self-similar motion can organize itself in vortex structures that
are able to transport passive markers caught inside of that structures. The collapsing
system of vortices should fulfill condition for the integral of motion V (viral), i.e., V = 0
(Equation (7)). The viral V is expressed as double sum mutual products of vortex intensities.
The condition V = 0 can be realized in many ways. If we assume that the majority of
the vortices in the collapsing system have the intensity equal to one then a few vortices
with negative intensities will have intensities much greater than one. Presented numerical
results confirmed that such a situation always results in a tight gathering of vortices with
weaker intensities along some curves. These densely located vortices along some curves
can be regarded as the vortex sheets. The vortex sheets behave as a solid barrier, that
are impermeable to tracers from inside out and vice versa. The self-organization of point
vortices into vortex structures that are capable of transporting passive tracers is a novel
element of point vortex dynamics. This can be regarded as the prototype of the coherent
vortex [27] and may provide a new mechanism of transport in geophysical processes like
the dispersion of pollutant in the atmosphere and in the ocean by advection [7].

In this article, only selected examples emphasizing the properties and behavior of
the system of collapsing vortices were presented so that the reader can reproduce the
results independently. Examples were selected out of dozens of collapse system vortices
obtained by author. Based on author experience, it is possible to find solutions describing
the location from which vortices collapse for huge variety of vortex systems with different
initial conditions.

The author chose certain examples because they seemed interesting in form, but at
no time were forms of vortex structures exhausted. It seems that the number of different
collapse structures of vortices is almost infinite. The change in the initial starting locations
nearly always leads to a different collapse configuration. Further investigation using field
experiments or observational studies of atmospheric events would be helpful to reinforce
the discovery of the collapse phenomenon with the presence of a vortex sheet. From the
dynamical systems theory point of view, the analytical proof that the collapsing system of
vortices can self-organized in vortex sheets would be desirable. The numerical results here
are a great stepping stone to further understand the collapse phenomena of many vortices
and their ability to self-organize and transport the passive tracers.
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Appendix A. Derivation of Helmholtz Equations

The equations of incompressible inviscid fluid motion (Euler equations) are

∂v
∂t

+ (v · ∇)v = −1
ρ
∇p + f (A1)

∇ · v = 0 (A2)

where v = (u, v, w) is velocity vector, ρ is fluid density, p is pressure and f is mass force,
for which we assume that there is potential Φ, f = ∇Φ.

By using the vector to identify (v · ∇)v = ∇
(

1
2 v2
)
+ ω× v, Equation (A1) can be

rewritten as
∂v
∂t

+ ω× v = −∇B. (A3)

where B =
(

v2

2 + Φ + p
ρ

)
. Taking rotation from both sides of Equation (A3) results in:

∂ω

∂t
+ rot(ω× v) = 0 (A4)

Clearly, the motion of the fluid describing by the Euler Equation (A1) with the potential
mass field f is possible only when the above equation is fulfilled. Further, we will regard
only a flow in 2D space. Hence, the velocity has only two components v = (u, v, 0), while
the vorticity takes the form ω = (0, 0, ω). The transport vorticity equation takes the form:

∂ω

∂t
+ v · ∇ω = 0 (A5)

The transport vorticity Equation (A5) results that along the particle paths, vorticity
ω is constant. The trajectory of α-particle x(t, α) is defined by the flow map Φ : Ω0 7→ Ωt
(see Figure A1).

a

W
0

E
3

F

x
W

t

Figure A1. Trajectory of the α particle.

The motion of particles along the path is described by differential equations:

dx
dt

= v(x(t), t), x(α, 0) = α (A6)

Incompressibility ∇ · v = 0 guarantees the existence of the vector potential A, such
that v = rotA. In 2D space, this vector potential has only one component: A = (0, 0, ψ),
where ψ is a known stream function. The stream function ψ and velocity can be computed
by solving the Poisson equations:

∆ψ = −ω(x, y), u =
∂ψ

∂y
, v = −∂ψ

∂x
(A7)
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The solution of the Poisson equation in the entire 2D space can be expressed as

ψ(x, y) = − 1
2π

∫
D

ln r′ω(x′, y′)dx′dy′, r′ =
√
(x− x′)2 + (y− y′)2 (A8)

and velocity as

v(x) = (u(x, y), v(x, y)) =
∫
R2

((y− y′),−(x− x′))
2πr′

ω(x′)dx′dy′ (A9)

Now we approximate the vorticity by delta Dirac measure distribution:

ω(x, y) =
n

∑
k=1

Γkδ(x− xk)δ(y− yk) (A10)

where the value of Γk is referred to as the intensity of the point vortex which is equal to the
circulation around the point k. In practice one can regard Γk as a mean value of vorticity
over a small area Ak = h2.

Γk =
∮

Ck

v · ds =
∫

Ak

ω(x, y)dxdy = ωkh2. (A11)

By substituting (A10) into the Equation (A9), we obtain the system of differential
equations:

dxj

dt
= − 1

2π

n

∑
k=1

′ Γk(yj − yk)

r2
jk

, x(0) = α1 (A12)

dyj

dt
=

1
2π

n

∑
k=1

′ Γk(xj − xk)

r2
jk

, y(0) = α2, j = 1, . . . n (A13)

where rjk is the distance between the vortices i and j and the prime on the summation
indicates omission of the term with j = k. The system (A12) for two-point vortices was
used the first time by Helmholtz (1858) [1].
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