A Case Study on Data Mining Application in a Virtual Power Plant: Cluster Analysis of Power Quality Measurements
Abstract
:1. Introduction
- The data that were used in this article were based on multipoint, synchronic, and long-term measurement performed in real VPP.
- The different input databases in point of power quality were proposed. The databases consisted of classic PQ parameters as well as global index values.
- The application of PQ global index enabled the reduction of the size of the input database while maintaining a similar division of data.
- The article investigated different PQ datasets and proposed a solution to define the optimal number of clusters selection.
- Application of CA enabled the definition of the different working conditions of the VPP based on data features. Additionally, the assessment of these working conditions was realized using the PQ global index.
2. Methodology and Research Object Description
2.1. Cluster Analysis
2.2. Global Power Quality Index
- Voltage—U,
- An envelope of voltage deviation obtained by the difference between the maximum and minimum of 200 millisecond U values identified during the 10 min aggregation interval—∆U,
- Short-term flicker severity—Pst,
- Asymmetry factor—ku2,
- Total harmonic distortion in voltage—THDu,
- A maximum of the 200 millisecond value of THDu, identified in the 10 min aggregation interval—THDumax [71].
2.3. Investigated VPP
3. Power Quality Data as an Input to Cluster Analysis Techniques
3.1. Input Databases Describtion
- Database I—Raw PQ data + Pphase: consists of classical PQ parameters and active power level for each phase separately. This database consists of 22 variables that describe each 10 min data point.
- Database II—PQ Global Indicators + Psum: consists of ADI components and active power level as a sum of each phase. This database consists of 7 variables that describe each 10 min data point.
- Database III—Global PQ Index + Psum: consists of ADI and active power level as a sum of each phase. This database consists of 2 variables that describe each 10 min data point.
- Three phase values of voltage,
- Three phase values of 200 ms minimal values of voltage,
- Three phase values of 200 ms maximal values of voltage,
- Three phase values of short-term flicker severity,
- One value of voltage unbalance,
- Three phase values of total harmonic distortion in voltage,
- Three phase values of 200 ms maximal values of total harmonic distortion in voltage,
- Three phase values of active power level.
- One value that represents voltage,
- One value that represents 200 ms minimal and maximal values of voltage,
- One value that represents short-term flicker severity,
- One value that represents voltage unbalance,
- One value that represents total harmonic distortion in voltage,
- One value that represents 200 ms maximal values of total harmonic distortion in voltage,
- One value that represents active power level: sum from three phases.
- One value that represents power quality: ADI,
- One value that represents active power level: sum from three phases.
3.2. Selection of Optimal Database—Results for 26-Week Measurements
- Dataset I: matrix 24,612 × 91, so concerns 2,421,692 single cells,
- Dataset II: matrix 24,612 × 29, so concerns 713,748 single cells,
- Dataset III: matrix 24,612 × 9, so concerns 221,508 single cells.
4. Cluster Analysis for Identification of Different Working Conditions of Virtual Power Plant
4.1. Optimal Number of Clusters
4.2. Qualitative Assessment of Clusters
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Gao, D.W.; Gao, W.; Zhang, H.; Zhou, J. Double-mode energy management for multi-energy system via distributed dynamic event-triggered Newton-Raphson algorithm. IEEE Trans. Smart Grid 2020, 11, 5339–5356. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Liang, X.; Huang, B. Event-triggered-based distributed cooperative energy management for multienergy systems. IEEE Trans. Ind. Inform. 2019, 15, 2008–2022. [Google Scholar] [CrossRef]
- Yushuai, L.; Gao, W.; Gao, W.; Zhang, H.; Zhou, J. A distributed double-Newton descent algorithm for cooperative energy management of multiple energy bodies in energy internet. IEEE Trans. Ind. Inform. 2020, 1. [Google Scholar] [CrossRef]
- Yavuz, L.; Önen, A.; Muyeen, S.; Kamwa, I. Transformation of microgrid to virtual power plant–a comprehensive review. IET Gener. Transm. Distrib. 2019, 13, 1994–2005. [Google Scholar] [CrossRef]
- Lis, R.; Czechowski, R. Transformation of microgrid to virtual power plant. In Variability, Scalability and Stability of Microgrids; Institution of Engineering and Technology (IET): Stevenage, UK, 2019; pp. 99–142. [Google Scholar]
- Jenkins, A.; Patsios, C.; Taylor, P.; Khayrullina, A.; Chirkin, V. Optimising virtual power plant response to grid service requests at newcastle science central by coordinating multiple flexible assets. CIRED Workshop 2016 2016, 4, 212. [Google Scholar] [CrossRef] [Green Version]
- Gabderakhmanova, T.; Engelhardt, J.; Zepter, J.M.; Sorensen, T.M.; Boesgaard, K.; Ipsen, H.H.; Marinelli, M. Demonstrations of DC microgrid and virtual power plant technologies on the Danish island of Bornholm. In Proceedings of the 2020 55th International Universities Power Engineering Conference (UPEC), Torino, Italy, 1–4 September 2020; pp. 1–6. [Google Scholar]
- Van Summeren, L.F.; Wieczorek, A.J.; Bombaerts, G.J.; Verbong, G.P. Community energy meets smart grids: Reviewing goals, structure, and roles in Virtual Power Plants in Ireland, Belgium and the Netherlands. Energy Res. Soc. Sci. 2020, 63, 101415. [Google Scholar] [CrossRef]
- Nikolaou, T.; Stavrakakis, G.S.; Tsamoudalis, K. Modeling and optimal dimensioning of a pumped hydro energy storage system for the exploitation of the rejected wind energy in the non-interconnected electrical power system of the Crete island, Greece. Energies 2020, 13, 2705. [Google Scholar] [CrossRef]
- Heimgaertner, F.; Schur, E.; Truckenmueller, F.; Menth, M. A Virtual power plant demonstration platform for multiple optimization and control systems. In Proceedings of the International ETG Congress 2017, Bonn, Germany, 28–29 November 2017; pp. 1–6. [Google Scholar]
- Zhao, H.; Wang, B.; Pan, Z.; Sun, H.; Guo, Q.; Xue, Y. Aggregating additional flexibility from quick-start devices for multi-energy virtual power plants. IEEE Trans. Sustain. Energy 2020, 1, 646–658. [Google Scholar] [CrossRef]
- Sharma, H.; Mishra, S. Techno-economic analysis of solar grid-based virtual power plant in Indian power sector: A case study. Int. Trans. Electr. Energy Syst. 2020, 30. [Google Scholar] [CrossRef]
- Behi, B.; Baniasadi, A.; Arefi, A.; Gorjy, A.; Jennings, P.; Pivrikas, A. Cost–benefit analysis of a virtual power plant including solar PV, flow battery, heat pump, and demand management: A western australian case study. Energies 2020, 13, 2614. [Google Scholar] [CrossRef]
- Jeon, W.; Cho, S.; Lee, S. Estimating the impact of electric vehicle demand response programs in a grid with varying levels of renewable energy sources: Time-of-use tariff versus smart charging. Energies 2020, 13, 4365. [Google Scholar] [CrossRef]
- Moutis, P.; Georgilakis, P.S.; Hatziargyriou, N.D. Voltage regulation support along a distribution line by a virtual power plant based on a center of mass load modeling. IEEE Trans. Smart Grid 2018, 9, 3029–3038. [Google Scholar] [CrossRef]
- Dall’Anese, E.; Guggilam, S.S.; Simonetto, A.; Chen, Y.C.; Dhople, S.V. Optimal regulation of virtual power plants. IEEE Trans. Power Syst. 2018, 33, 1868–1881. [Google Scholar] [CrossRef]
- Paternina, J.L.; Contreras, L.; Trujillo, E.R. Study of voltage stability in a distribution network by integrating distributed energy resources into a virtual power plant. Contemp. Eng. Sci. 2017, 10, 1441–1455. [Google Scholar] [CrossRef]
- Ishihara, H.; Nada, K.; Tanaka, M.; Inoue, S.; Kuwata, A.; Takano, T. A Voltage control method for power distribution lines utilizing dispersed customer resources. In Proceedings of the 2020 22nd European Conference on Power Electronics and Applications (EPE’20 ECCE Europe), Lyon, France, 7–11 September 2020; pp. 1–8. [Google Scholar]
- Konara, K.; Kolhe, M.; Sharma, A. Power flow management controller within a grid connected photovoltaic based active generator as a finite state machine using hierarchical approach with droop characteristics. Renew. Energy 2020, 155, 1021–1031. [Google Scholar] [CrossRef]
- Haque, M.M.; Wolfs, P.; Alahakoon, S. Active power flow control of three-port converter for virtual power plant applications. In Proceedings of the 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), Cochin, India, 20 April 2020; pp. 1–6. [Google Scholar]
- Pudjianto, D.; Djapic, P.; Strbac, G.; Stojkovska, B.; Ahmadi, A.R.; Martinez, I. Integration of distributed reactive power sources through Virtual Power Plant to provide voltage control to transmission network. In Proceedings of the CIRED 2019 Conference, Madrid, Spain, 3–6 June 2019. [Google Scholar]
- Kaczorowska, D.; Rezmer, J.; Sikorski, T.; Janik, P. Application of PSO algorithms for VPP operation optimization. Renew. Energy Power Qual. J. 2019, 17, 91–96. [Google Scholar] [CrossRef]
- Candra, D.I.; Hartmann, K.; Nelles, M. Economic Optimal Implementation of Virtual Power Plants in the German Power Market. Energies 2018, 11, 2365. [Google Scholar] [CrossRef]
- Moreno, B.; Díaz, G. The impact of virtual power plant technology composition on wholesale electricity prices: A comparative study of some European Union electricity markets. Renew. Sustain. Energy Rev. 2019, 99, 100–108. [Google Scholar] [CrossRef]
- Sikorski, T.; Jasiński, M.; Sobierajski, M.; Szymańda, J.; Bejmert, D.; Janik, P.; Ropuszyńska-Surma, E.; Węglarz, M.; Kaczorowska, D.; Kostyła, P.; et al. A case study on distributed energy resources and energy-storage systems in a virtual power plant concept: Economic aspects. Energies 2019, 12, 4447. [Google Scholar] [CrossRef] [Green Version]
- Foroughi, M.; Pasban, A.; Moeini-Aghtaie, M.; Fayaz-Heidari, A. A bi-level model for optimal bidding of a multi-carrier technical virtual power plant in energy markets. Int. J. Electr. Power Energy Syst. 2021, 125, 106397. [Google Scholar] [CrossRef]
- Rahimiyan, M.; Baringo, L. Real-time energy management of a smart virtual power plant. IET Gener. Transm. Distrib. 2019, 13, 2015–2023. [Google Scholar] [CrossRef]
- Othman, M.M.; Hegazy, Y.; Abdelaziz, A.Y. Electrical energy management in unbalanced distribution networks using virtual power plant concept. Electr. Power Syst. Res. 2017, 145, 157–165. [Google Scholar] [CrossRef]
- Mears, A.; Martin, J. Fully flexible loads in distributed energy management: PV, batteries, loads, and value stacking in virtual power plants. Engineering 2020, 6, 736–738. [Google Scholar] [CrossRef]
- Maanavi, M.; Najafi, A.; Godina, R.; Mahmoudian, M.; Rodrigues, E.M.G. Energy management of virtual power plant considering distributed generation sizing and pricing. Appl. Sci. 2019, 9, 2817. [Google Scholar] [CrossRef] [Green Version]
- Jha, B.K.; Singh, A.; Kumar, A.; Misra, R.K.; Singh, D. Phase unbalance and PAR constrained optimal active and reactive power scheduling of Virtual Power Plants (VPPs). Int. J. Electr. Power Energy Syst. 2021, 125, 106443. [Google Scholar] [CrossRef]
- Sikorski, T.; Jasiński, M.; Sobierajski, M.; Szymańda, J.; Bejmert, D.; Janik, P.; Solak, B.; Ropuszyńska-Surma, E.; Węglarz, M.; Kaczorowska, D.; et al. A case study on distributed energy resources and energy-storage systems in a virtual power plant concept: Technical aspects. Energies 2020, 13, 3086. [Google Scholar] [CrossRef]
- Sun, H.; Meng, J.; Peng, C. Coordinated optimization scheduling of multi-region virtual power plant with wind-power/Photovoltaic/Hydropower/Carbon-capture units. Dianwang Jishu/Power Syst. Technol. 2019, 43, 4040–4049. [Google Scholar] [CrossRef]
- Jiao, F.; Deng, Y.; Li, D.; Wei, B.; Yue, C.; Cheng, M.; Zhang, Y.; Zhang, J. A self-scheduling strategy of virtual power plant with electric vehicles considering margin indexes. Arch. Electr. Eng. 2020, 69, 907–920. [Google Scholar] [CrossRef]
- Sun, J.; Li, X.; Ma, H. Study on optimal capacity of multi-type energy storage system for optimized operation of virtual power plants. In Proceedings of the 2018 China International Conference on Electricity Distribution (CICED), Tianjin, China, 31 December 2018; pp. 2989–2993. [Google Scholar]
- Han, N.; Wang, X.; Chen, S.; Cheng, L.; Liu, H.; Liu, Z.; Mao, Y. Optimal configuration of energy storage systems in virtual power plants including large-scale distributed wind power. IOP Conf. Series: Earth Environ. Sci. 2019, 295, 042072. [Google Scholar] [CrossRef]
- Sadeghian, O.; Oshnoei, A.; Khezri, R.; Muyeen, S. Risk-constrained stochastic optimal allocation of energy storage system in virtual power plants. J. Energy Storage 2020, 31, 101732. [Google Scholar] [CrossRef]
- Kim, S.; Kwon, W.-H.; Kim, H.-J.; Jung, K.; Kim, G.S.; Shim, T.; Lee, D. Offer curve generation for the energy storage system as a member of the virtual power plant in the day-ahead market. J. Electr. Eng. Technol. 2019, 14, 2277–2287. [Google Scholar] [CrossRef]
- Pudjianto, D.; Ramsay, C.; Strbac, G. Microgrids and virtual power plants: Concepts to support the integration of distributed energy resources. Proc. Inst. Mech. Eng. Part. A: J. Power Energy 2008, 222, 731–741. [Google Scholar] [CrossRef]
- Etherden, N.; Vyatkin, V.; Bollen, M.H.J. Virtual power plant for grid services using IEC 61850. IEEE Trans. Ind. Inform. 2016, 12, 437–447. [Google Scholar] [CrossRef]
- Gong, J.; Xie, D.; Jiang, C.; Zhang, Y. Multiple objective compromised method for power management in virtual power plants. Energies 2011, 4, 700–716. [Google Scholar] [CrossRef]
- Caldon, R.; Patria, A.; Turri, R. Optimal control of a distribution system with a virtual power plant. In Proceedings of the Bulk Power System Dynamics and Control VI, Cortina d, ’AmpezzoItaly, 22–27 April 2004; pp. 278–284. [Google Scholar]
- Beguin, A.; Nicolet, C.; Kawkabani, B.; Avellan, F. Virtual power plant with pumped storage power plant for renewable energy integration. In Proceedings of the 2014 International Conference on Electrical Machines (ICEM), Berlin, Germany, 2–5 September 2014; pp. 1736–1742. [Google Scholar]
- Zhang, J.; Xu, Z.; Xu, W.; Zhu, F.; Lyu, X.; Fu, M. BI-objective dispatch of multi-energy virtual power plant: Deep-learning-based prediction and particle swarm optimization. Appl. Sci. 2019, 9, 292. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.; Xiao, J.; Liu, D.; Wu, J.; Wang, C.; Shen, Y. Robust stochastic optimal dispatching method of multi-energy virtual power plant considering multiple uncertainties. Appl. Energy 2020, 279, 115707. [Google Scholar] [CrossRef]
- Yi, Z.; Xu, Y.; Gu, W.; Wu, W. A multi-time-scale economic scheduling strategy for virtual power plant based on deferrable loads aggregation and disaggregation. IEEE Trans. Sustain. Energy 2019, 11, 1332–1346. [Google Scholar] [CrossRef]
- Luo, Z.; Hong, S.; Ding, Y. A data mining-driven incentive-based demand response scheme for a virtual power plant. Appl. Energy 2019, 239, 549–559. [Google Scholar] [CrossRef]
- Ai, X.; Yang, Z.; Hu, H.; Wang, Z.; Peng, D.; Zhao, Z. A load curve clustering method based on improved k-means algorithm for virtual power plant and its application. Dianli Jianshe/Electric Power Constr. 2020, 41, 28–36. [Google Scholar] [CrossRef]
- Raptis, T.; Vokas, G.; Langouranis, P.; Kaminaris, S. Total power quality index for electrical networks using neural networks. Energy Procedia 2015, 74, 1499–1507. [Google Scholar] [CrossRef] [Green Version]
- Langouranis, P.; Kaminaris, S.; Vokas, G.; Raptis, T.; Ioannidis, G. Fuzzy total power quality index for electric networks. MedPower 2014, 81. [Google Scholar] [CrossRef]
- Ge, B.; Pan, T.; Li, Z. Synthetic assessment of power quality using relative entropy theory. J. Comput. Inf. Syst. 2015, 11, 1323–1331. [Google Scholar] [CrossRef]
- De Capua, C.; De Falco, S.; Liccardo, A.; Romeo, E. Improvement of new synthetic power quality indexes: An original approach to their validation. In Proceedings of the 2005 IEEE Instrumentation and Measurement Technology Conference, Ottawa, ON, Canada, 13 March 2006; Volume 2, pp. 819–822. [Google Scholar]
- Lee, B.; Sohn, D.; Kim, K.M. Development of power quality index using ideal analytic hierarchy process. Lect. Notes Electr. Eng. 2016, 376, 783–793. [Google Scholar] [CrossRef]
- Serpak, M. A unified index and system indicator for global power quality assessment. Sci. Int. 2016, 28, 1131–1136. [Google Scholar]
- Jasiński, M.; Sikorski, T.; Kostyła, P.; Leonowicz, Z.; Borkowski, K. Combined cluster analysis and global power quality indices for the qualitative assessment of the time-varying condition of power quality in an electrical power network with distributed generation. Energies 2020, 13, 2050. [Google Scholar] [CrossRef] [Green Version]
- Nourollah, S.; Moallem, M. A data mining method for obtaining global power quality index. In Proceedings of the 2011 2nd International Conference on Electric Power and Energy Conversion Systems (EPECS), Sharjah, United Arab Emirates, 12 January 2011; pp. 1–7. [Google Scholar]
- Klajn, A.; Bątkiewicz-Pantua, M. Application Note–Standard EN 50 160: Voltage Characteristics of Electricity Supplied by Public Electricity Networks; European Copper Institute: Woluwe-Saint-Pierre, Belgium, 2017. [Google Scholar]
- Roiger, R.J. Data Mining; Chapman and Hall/CRC: London, UK, 2017; ISBN 9781315382586. [Google Scholar]
- Vehkalahti, K.; Everitt, B.S. Multivariate Analysis for the Behavioral Sciences, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2019; ISBN 9781351202275. [Google Scholar]
- Filzmoser, P.; Hron, K.; Templ, M. Applied Compositional Data Analysis; Springer Series in Statistics; Springer International Publishing: Cham, China, 2018; ISBN 978-3-319-96420-1. [Google Scholar]
- Wierzchoń, S.; Kłopotek, M. Modern Algorithms of Cluster Analysis; Studies in Big Data; Springer International Publishing: Cham, Switzerland,, 2018; Volume 34, ISBN 978-3-319-69307-1. [Google Scholar]
- Jasiński, M.; Sikorski, T.; Borkowski, K. Clustering as a tool to support the assessment of power quality in electrical power networks with distributed generation in the mining industry. Electr. Power Syst. Res. 2019, 166, 52–60. [Google Scholar] [CrossRef]
- Kapil, S.; Chawla, M. Performance evaluation of K-means clustering algorithm with various distance metrics. In Proceedings of the 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 16 February 2016; pp. 1–4. [Google Scholar]
- Faber, P.; Fisher, R. Pros and cons of Euclidean fitting. Computer Vis. 2001, 2191, 414–420. [Google Scholar] [CrossRef]
- Wierzchoń, S.; Kłopotek, M. Algorithms of Cluster Analysis; Institute of Computer Science Polish Academy of Sciences: Warsaw, Poland, 2015; Volume 3, ISBN 9789638759627. [Google Scholar]
- Chowdhury, K.; Chaudhuri, D.; Pal, A.K. An entropy-based initialization method of K-means clustering on the optimal number of clusters. Neural Comput. Appl. 2020, 1–18. [Google Scholar] [CrossRef]
- Yang, J.; Lee, J.-Y.; Choi, M.; Joo, Y. A New Approach to Determine the Optimal Number of Clusters Based on the Gap Statistic. In Machine Learning for Networking; Springer International Publishing: New York, NY, USA, 2020; pp. 227–239. [Google Scholar] [CrossRef]
- Silva, J.; Lezama, O.B.P.; Varela, N.; Guiliany, J.G.; Sanabria, E.S.; Otero, M.S.; Rojas, V. Álvarez U-control chart based differential evolution clustering for determining the number of cluster in k-means. Computer Vis. 2019, 31–41. [Google Scholar] [CrossRef]
- Statsoft Polska. StatSoft Electronic Statistic Textbook. Available online: http:www.statsoft.pl/textbook/stathome.html (accessed on 15 December 2020).
- Jasinski, M.; Sikorski, T.; Kostvla, P.; Borkowski, K. Global power quality indices for assessment of multipoint Power quality measurements. In Proceedings of the 2018 10th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Iasi, Romania, 28–30 June 2018; pp. 1–6. [Google Scholar]
- Jasiński, M.; Sikorski, T.; Kaczorowska, D.; Rezmer, J.; Suresh, V.; Leonowicz, Z.; Kostyla, P.; Szymańda, J.; Janik, P. A case study on power quality in a virtual power plant: Long term assessment and global index application. Energies 2020, 13, 6578. [Google Scholar] [CrossRef]
- International Electrotechnical Commission (IEC) 61000 4-30. Electromagnetic Compatibility (EMC)–Part 4-30: Testing and Measurement Techniques–Power Quality Measurement Methods; IEC: Geneva, Switzerland, 2015. [Google Scholar]
- European Standards EN 50160. Voltage Characteristics of Electricity Supplied by Public Distribution Network 2010. Available online: http://copperalliance.org.uk/uploads/2018/03/542-standard-en-50160-voltage-characteristics-in.pdf (accessed on 15 December 2020).
- Jasinski, M.; Sikorski, T.; Kaczorowska, D.; Kostyla, P.; Leonowicz, Z.; Rezmer, J.; Janik, P.; Bejmert, D. Global power quality index application in virtual power plant. In Proceedings of the 2020 12th International Conference and Exhibition on Electrical Power Quality and Utilisation (EPQU), Kraków, Poland, 14–15 September 2020; pp. 1–6. [Google Scholar]
- Kang, J.; Lee, J.-H. Electricity customer clustering following experts’ principle for demand response applications. Energies 2015, 8, 12242–12265. [Google Scholar] [CrossRef] [Green Version]
- Claeys, R.; Azaioud, H.; Cleenwerck, R.; Knockaert, J.; Desmet, J. A novel feature set for low-voltage consumers, based on the temporal dependence of consumption and peak demands. Energies 2020, 14, 139. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
voltage | 10% of declared voltage |
short-term flicker severity | 1.0 |
asymmetry | 2% |
total harmonic distortion in voltage | 8% |
Database | Cluster 1 | Cluster 2 | Difference to Basic Database |
---|---|---|---|
Database I: raw PQ data + Pphase | 6579 | 18,034 | - |
Database II: ADI components separately + Psum | 6483 | 18,129 | 108 |
Database III: ADI + Psum | 6661 | 17,951 | 111 |
Range of minimal decrease | 1% | 2% | 3–6% | ≤7% |
Optimal number of clusters | 9 clusters | 6 clusters | 3 clusters | 2 clusters |
Cluster | Global Index | Main Feature of Dataset in Point of VPP | Number of 10 min Data Points | |||
1-G | 2-G | 3-G | 4-G | |||
1 | 0.081 | 0.068 | 0.077 | 0.088 | ESS and HPP are not working with high power | 17,765 |
2 | 0.076 | 0.073 | 0.079 | 0.087 | HPP is working with high power | 5432 |
3 | 0.073 | 0.067 | 0.068 | 0.084 | ESS is discharging with high power | 1415 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jasiński, M.; Sikorski, T.; Kaczorowska, D.; Rezmer, J.; Suresh, V.; Leonowicz, Z.; Kostyła, P.; Szymańda, J.; Janik, P.; Bieńkowski, J.; et al. A Case Study on Data Mining Application in a Virtual Power Plant: Cluster Analysis of Power Quality Measurements. Energies 2021, 14, 974. https://doi.org/10.3390/en14040974
Jasiński M, Sikorski T, Kaczorowska D, Rezmer J, Suresh V, Leonowicz Z, Kostyła P, Szymańda J, Janik P, Bieńkowski J, et al. A Case Study on Data Mining Application in a Virtual Power Plant: Cluster Analysis of Power Quality Measurements. Energies. 2021; 14(4):974. https://doi.org/10.3390/en14040974
Chicago/Turabian StyleJasiński, Michał, Tomasz Sikorski, Dominika Kaczorowska, Jacek Rezmer, Vishnu Suresh, Zbigniew Leonowicz, Paweł Kostyła, Jarosław Szymańda, Przemysław Janik, Jacek Bieńkowski, and et al. 2021. "A Case Study on Data Mining Application in a Virtual Power Plant: Cluster Analysis of Power Quality Measurements" Energies 14, no. 4: 974. https://doi.org/10.3390/en14040974
APA StyleJasiński, M., Sikorski, T., Kaczorowska, D., Rezmer, J., Suresh, V., Leonowicz, Z., Kostyła, P., Szymańda, J., Janik, P., Bieńkowski, J., & Prus, P. (2021). A Case Study on Data Mining Application in a Virtual Power Plant: Cluster Analysis of Power Quality Measurements. Energies, 14(4), 974. https://doi.org/10.3390/en14040974