Constitutive Behavior and Mechanical Failure of Internal Configuration in Prismatic Lithium-Ion Batteries under Mechanical Loading
Abstract
:1. Introduction
2. Materials and Methods
2.1. Structural Dimensions and Component Materials of Prismatic Cells
2.2. Experimental Tests
2.2.1. Uniaxial Tensile Tests
2.2.2. Uniaxial Compressive Tests
2.2.3. Biaxial Tests
3. Constitutive Properties of Component Materials and Modeling
3.1. Uniaxial Tension Properties
3.2. Uniaxial Compression Properties
3.3. Constitutive Modeling and Simulating
4. Progressive Failure of Cathodes and Anodes
4.1. Modeling of Mesostructural Layer Element
4.2. Progressive Failure of Cathodes and Anodes on Multilayered LEMs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LIBs | lithium-ion batteries |
LEM | layer element model |
RVEs | representative volume elements |
ASTM | American society of testing materials |
εe, εa, εc | Uniaxial tensile strains of electrode, coating, current collector |
σs | Yield stress |
Et | Tangent modulus |
Fe, Fa, Fc | Uniaxial tensile load of electrode, coating, current collector |
ξ | Contribution coefficient of coating to tensile load |
E0 | Initial modulus |
Emax | Compaction modulus |
β | Fitting coefficient |
σe, σa, σc | Uniaxial compressive stress of electrode, coating, current collector |
, , | Average compressive strain of electrode, coating, current collector |
νa, νc | Relative volume fraction of coating, current collector |
References
- Kermani, G.; Sahraei, E. Review: Characterization and Modeling of the Mechanical Properties of Lithium-Ion Batteries. Energies 2017, 10, 1730. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Li, T.; Ren, F.; Gao, Y.; Wang, H. Failure analysis of pinch-torsion tests as a thermal runaway risk evaluation method of Li-ion cells. J. Power Sources 2014, 265, 356–362. [Google Scholar] [CrossRef]
- Zhang, X.; Sahraei, E.; Wang, K. Li-ion Battery Separators, Mechanical Integrity and Failure Mechanisms Leading to Soft and Hard Internal Shorts. Sci. Rep. 2016, 6, 32578. [Google Scholar] [CrossRef] [Green Version]
- Cannarella, J.; Arnold, C.B. Stress evolution and capacity fade in constrained lithium-ion pouch cells. J. Power Sources 2014, 245, 745–751. [Google Scholar] [CrossRef]
- Cannarella, J.; Arnold, C.B. State of health and charge measurements in lithium-ion batteries using mechanical stress. J. Power Sources 2014, 269, 7–14. [Google Scholar] [CrossRef]
- Zhou, W.; Hao, F.; Fang, D. The effects of elastic stiffening on the evolution of the stress field within a spherical electrode particle of lithium-ion batteries. Int. J. Appl. Mech. 2013, 5, 1350040. [Google Scholar] [CrossRef]
- Zhou, W. Effects of external mechanical loading on stress generation during lithiation in Li-ion battery electrodes. Electrochim. Acta 2015, 185, 28–33. [Google Scholar] [CrossRef] [Green Version]
- Marcicki, J.; Bartlett, A.; Yang, X.G.; Mejia, V.; Zhu, M.; Chen, Y. Battery Abuse Case Study Analysis Using LS-DYNA. In Proceedings of the 14th International LS-DYNA Users Conference, Dearborn, MI, USA, 12–14 June 2016. [Google Scholar]
- Wang, H.; Kumar, A.; Simunovic, S.; Allu, S.; Kalnaus, S.; Turner, J.A.; Helmers, J.C.; Rules, E.T.; Winchester, C.S.; Gorney, P. Progressive mechanical indentation of large-format Li-ion cells. J. Power Sources 2017, 341, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Finegan, D.; Tjaden, B.; Heenan, T.M.; Jervis, R.; Michiel, M.D.; Rack, A.; Hinds, G.; Brett, D.J.; Shearing, P.R. Tracking Internal Temperature and Structural Dynamics during Nail Penetration of Lithium-Ion Cells. J. Electrochem. Soc. 2017, 164, 3285–3291. [Google Scholar] [CrossRef]
- Sahraei, E.; Hill, R.; Wierzbicki, T. Calibration and finite element simulation of pouch lithium-ion batteries for mechanical integrity. J. Power Sources 2012, 201, 307–321. [Google Scholar] [CrossRef]
- Sahraei, E.; Campbell, J.; Wierzbicki, T. Modeling and short circuit detection of 18650 Li-ion cells under mechanical abuse conditions. J. Power Sources 2012, 220, 360–372. [Google Scholar] [CrossRef]
- Greve, L.; Fehrenbach, C. Mechanical testing and macro-mechanical finite element simulation of the deformation, fracture, and short circuit initiation of cylindrical Lithium ion battery cells. J. Power Sources 2012, 214, 377–385. [Google Scholar] [CrossRef]
- Wang, H.; Simunovic, S.; Maleki, H.; Howard, J.N.; Hallmark, J.A. Internal configuration of prismatic lithium-ion cells at the onset of mechanically induced short circuit. J. Power Sources 2016, 306, 424–430. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.H.; Tancogne-Dejean, T.; Zhu, J.; Luo, H.; Wierzbicki, T. Failure in lithium-ion batteries under transverse indentation loading. J. Power Sources 2018, 389, 148–159. [Google Scholar] [CrossRef]
- Sheidaei, A.; Xiao, X.; Huang, X.; Hitt, J. Mechanical behavior of a battery separator in electrolyte solutions. J. Power Sources 2011, 196, 8728–8734. [Google Scholar] [CrossRef]
- Lee, H.; Yanilmaz, M.; Topralci, O.; Fu, K.; Zhang, X. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci. 2014, 7, 3857–3886. [Google Scholar] [CrossRef]
- Zhang, C.; Santhanagopalan, S.; Sprague, M.A.; Pesaran, A.A. Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse. J. Power Sources 2015, 290, 102–113. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Xu, J.; Cao, L.; Wu, Z.; Santhanagopalan, S. Constitutive behavior and progressive mechanical failure of electrodes in lithium-ion batteries. J. Power Sources 2017, 357, 126–137. [Google Scholar] [CrossRef]
- Sahraei, E.; Bosco, E.; Dixon, B.; Lai, B. Microscale failure mechanisms leading to internal short circuit in Li-ion batteries under complex loading scenarios. J. Power Sources 2016, 319, 56–65. [Google Scholar] [CrossRef]
- Zhang, X.; Sahraei, E.; Wang, K. Deformation and failure characteristics of four types of lithium-ion battery separators. J. Power Sources 2016, 327, 693–701. [Google Scholar] [CrossRef]
- Sahraei, E.; Meier, J.; Wierzbicki, T. Characterizing and modeling mechanical properties and onset of short circuit for three types of lithium-ion pouch cells. J. Power Sources 2014, 247, 503–516. [Google Scholar] [CrossRef]
- Wierzbicki, T.; Sahraei, E. Homogenized mechanical properties for the jellyroll of cylindrical Lithium-ion cells. J. Power Sources 2013, 241, 467–476. [Google Scholar] [CrossRef]
- Zhu, J.; Li, W.; Wierzbicki, T.; Xia, Y.; Harding, J. Deformation and failure of lithium-ion batteries treated as a discrete layered structure. Int. J. Plasticity 2019, 121, 293–311. [Google Scholar] [CrossRef]
- Wang, H.; Watkins, T.R.; Simunovic, S.; Bingham, P.R.; Allu, S.; Turner, J.A. Fragmentation of copper current collectors in Li-ion batteries during spherical indentation. J. Power Sources 2017, 364, 432–436. [Google Scholar] [CrossRef]
Component | Material | Thickness (μm) |
---|---|---|
Prismatic shell | Aluminum | 500 |
Cathode active layer (2 side) | LiFePO4 | 139 |
Cathode current collector | Aluminum | 24 |
Anode active layer (2 side) | Graphite | 85 |
Anode current collector | Copper | 11 |
Separator | Alumina/PP/Alumina | 20 |
Electrolyte | Ethylene Carbonate (EC) | - |
Cathode | Anode | Separator | |||
---|---|---|---|---|---|
Coating | Current Collector | Coating | Current Collector | ||
Elastic Modulus (MPa) | 375 | 19,900 | 540 | 39,400 | 780 |
Yield Stress (MPa) | 2.5 | 133 | 3.7 | 270 | 20 |
Poisson’ s ratio | 0.01 | 0.33 | 0.01 | 0.343 | 0.2 |
Failure Strain | 0.12 1 | 0.0185 | 0.16 1 | 0.073 | 0.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Chen, J.; Lan, F.; Li, Y. Constitutive Behavior and Mechanical Failure of Internal Configuration in Prismatic Lithium-Ion Batteries under Mechanical Loading. Energies 2021, 14, 1219. https://doi.org/10.3390/en14051219
Li Z, Chen J, Lan F, Li Y. Constitutive Behavior and Mechanical Failure of Internal Configuration in Prismatic Lithium-Ion Batteries under Mechanical Loading. Energies. 2021; 14(5):1219. https://doi.org/10.3390/en14051219
Chicago/Turabian StyleLi, Zhijie, Jiqing Chen, Fengchong Lan, and Yigang Li. 2021. "Constitutive Behavior and Mechanical Failure of Internal Configuration in Prismatic Lithium-Ion Batteries under Mechanical Loading" Energies 14, no. 5: 1219. https://doi.org/10.3390/en14051219
APA StyleLi, Z., Chen, J., Lan, F., & Li, Y. (2021). Constitutive Behavior and Mechanical Failure of Internal Configuration in Prismatic Lithium-Ion Batteries under Mechanical Loading. Energies, 14(5), 1219. https://doi.org/10.3390/en14051219