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Abstract: This paper presents an optimal design for a nanogrid/microgrid for desert camps in the
city of Hafr Al-Batin in Saudi Arabia. The camps were designed to operate as separate nanogrids
or to operate as an interconnected microgrid. The hybrid nanogrid/microgrid considered in this
paper consists of a solar system, storage batteries, diesel generators, inverter, and load components.
To offer the designer/operator various choices, the problem was formulated as a multi-objective
optimization problem considering two objective functions, namely: the cost of electricity (COE)
and the loss of power supply probability (LPSP). Furthermore, various component models were
implemented, which offer a variety of equipment compilation possibilities. The formulated problem
was then solved using the multi-objective evolutionary algorithm, based on both dominance and
decomposition (MOEA/DD). Two cases were investigated corresponding to the two proposed modes
of operation, i.e., nanogrid operation mode and microgrid operation mode. The microgrid was
designed considering the interconnection of four nanogrids. The obtained Pareto front (PF) was
reported for each case and the solutions forming this front were discussed. Based on this investigation,
the designer/operator can select the most appropriate solution from the available set of solutions
using his experience and other factors, e.g., budget, availability of equipment and customer-specific
requirements. Furthermore, to assess the quality of the solutions found using the MOEA/DD,
three different methods were used, and their results compared with the MOEA/DD. It was found
that the MOEA/DD obtained better results (nondominated solutions), especially for the microgrid
operation mode.

Keywords: desert camps; diesel generator; nanogrid; microgrid; multi-objective evolutionary algo-
rithm; multi-objective optimization; solar energy

1. Introduction

A robust power grid is a vital element that ensures the sustained supply of electrical
power to all customers connected to the grid, with low cost, better quality, and minimal
environmental harm [1]. Establishing such a grid is very challenging in a centralized system
because of long-distance transmission lines, which increase the outage threat. Moreover,
factors like high carbon emission levels, high transmission losses, and the challenge of
entertaining remote consumers have called reliance on an extensive grid system into
question. The distributed generation (DG) concept has provided an alternative to such a
situation; it deregulates highly interconnected power systems and takes care of the issues
described above. This approach could significantly reduce transmission loss and increase
system efficiency [2,3]. The microgrid concept is one of the DG implementation outcomes,
which aims to ensure the optimal power supply to connected loads [4]. Integration of
renewable energy sources like solar and wind in microgrids ensures the mitigation of
environmental effects. It also helps control the power flow and eases connection with
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the main grid [5]. A nanogrid is essentially a scaled-down version of a microgrid, and
has received significant attention from researchers for its promising prospects in power
system engineering.

The nanogrid is a single electrical power distribution domain in terms of capacity,
voltage profile, expense, control strategy, and overall administration. This distribution
system is usually used for one consumer: a single-unit house, a small-scale load or a
small building [6]. The factors which make a nanogrid divergent from other minigrids are:
consumer size, power rating, load size, complexity, hardware configuration, and control
strategy. The margin of these factors between a nanogrid and other grids is still debated
and nicely presented by Burmester et al. [6]. In a nanogrid system, there must be a local unit
of power production. It can be a renewable source or a fossil fuel-dependent one. A hybrid
nanogrid (HN) is a single unit of nanogrid in which different power production sources
are present simultaneously. Such a unit is often connected to other neighboring grids by a
gateway channel. Any sort of storage device is used in the nanogrid to ensure the stability
of the system. Important technoeconomical parameters—cost of energy, storage cost,
annual life cycle cost etc.—directly influence the storage devices chosen [7]. A controller,
also known as the brain of a nanogrid, must be present, in order to coordinate the necessary
operational strategies [8].

The classification of a nanogrid can be made via several factors. One of them is the type
of transferred energy in the network—DC or AC. DC distribution offers better efficiency
than AC despite some limitations [9]. Among the sources of energy, both renewable
(solar, wind, biogas) and traditional (diesel, fuel cell) forms can be used [10]. However, to
ensure the desired energy flow, suitable converters are widely used in both AC and DC
grid systems.

Several methods are presented and discussed in the literature to optimize the size and
operation of the nanogrid. A mixed-integer linear programming (MILP)-based algorithm
was proposed by Atia et al. [11], which successfully optimized a residential load-connected
hybrid nanogrid. This approach has a significant advantage: easy calculation. A hybrid grid
system was optimized with a MILP-based multi-objective optimization problem [12]. Both
the renewable and traditional sources were presented, and the fuzzy model searched for the
optimal solution. Moreover, this paper’s problem formulation included the cost-emission
factor to reduce energy cost and CO2 emission. For a small power system to support a
ship, a similar approach was addressed by Lan et al. [13], including the optimal navigation
of route tracking. Lokeshgupta et al. [14] offered an optimal energy management system,
where a multi-objective optimization strategy simultaneously reduced the energy bill and
the peak load. A decision support mechanism was proposed by Li et al. [15] to optimize
the nanogrid, where the problem formulation was made by an augmented–constrained
method. The characteristics and behavior of every unit of a hybrid network were well
discussed by Hosseinalizadeh et al. [16]. The formulation complexity and optimization
time were significantly reduced by linear programming formulation [17] while dealing
with many variables. In a recent article [18], the branch-and-cut approach was proposed to
search the Pareto front (PF) solution of the multi-objective problem. The paper addressed
the issue of real-time variation of energy demand in a nanogrid.

A multi-objective approach was proposed by Brandoni et al. [18], where different load
demand scenarios are considered in the load demand. The matter of climate classification
was used to optimize a grid-connected system by Shivam et al. [19], and the authors inves-
tigated the issue in four different Taiwanese regions. A study was carried out in Savannah,
Georgia, USA in which the impact of grid-connected nanogrids in tropical climates was
discussed [20]. The article [21] presented a geographical map for optimally installing the
standalone and grid-connected systems. It summarized that Cambridge Bay’s location (in
Canada) was the most suitable place from an economic point of view, whereas Toamasina
was the optimal location in terms of energy efficiency. Voltage quality improvements [22]
in a nanogrid system and cybersecurity insurance [23] were also addressed in some recent



Energies 2021, 14, 1245 3 of 24

articles. The review article [24] gathered all the relevant works on nanogrid optimization
and demonstrated a critical comparison among the attempted approaches.

Camping is a part of tradition and culture in all the gulf countries; the Kingdom
of Saudi Arabia (KSA) is not an exception. Camps are established in the desert, as a
large portion of the countryside is covered by bare desert land. Al-Falahi et al. and
Hilden et al. [24,25] demonstrated life in a desert tent, along with the life of tribal citizens
of KSA. Some tents are built for a limited period, mostly during the winter season. In
contrast, some are built for an extended period, mainly to graze domestic livestock. The
temporary tents are primarily established for recreation, where local people spend time
with their family and friends in cold weather. This paper used Hafr Al-Batin city, located
in the Eastern Province of Saudi Arabia, to study the effect of nanogrids in a desert camp.
Many tent-establishing shops in the city enjoy patronage in winter, selling and setting up
hundreds of tents in the desert. However, current practices utilize diesel generators in
these tents, which has evident shortcomings, e.g., high cost and negative environmental
impact. These tents can be considered nanogrids. Upgrading such energy-consuming
units by integrating a renewable energy source has vast potential. This upgrade is what
we propose in this paper. This approach is suitable for any city or country, where desert
camps are present. This paper presents an optimization strategy for a single nanogrid and
proposes combining multiple nanogrids to form a microgrid—and operate them optimally.
Even though much research has already been conducted on grid optimization, this paper
will fill the gap by addressing the practical application in desert camps, where both the
concepts of nanogrids and microgrids are concurrently implemented.

A multi-objective evolutionary algorithm is used in this paper to solve the complex
multi-objective optimization of the nanogrid model. This algorithm offers an acceptable
balance between diversity and convergence [26]. Several optimization techniques are noted
in the literature, with a shortcoming: successfully dealing with multi-objective problems
is more difficult than accounting for only two or three objectives. However, this paper’s
adopted technique is free from such drawbacks and effectively combines the properties
of dominance and decomposition. Separately, dominance [27] and decomposition-based
[28,29] evolutionary techniques have been used in the literature to deal with similar prob-
lems of microgrid characteristic optimization.

The main contribution of this paper is the optimal design of a smart grid, which can be
modeled as a nanogrid or microgrid, depending upon the size of the desert camp load. This
was achieved as follows: first, we formulated the nanogrid/microgrid design as a multi-
objective problem. Second, we solved this problem using a performant multi-objective
evolutionary algorithm based on dominance and decomposition—which has not been used
before to solve a similar problem. Another contribution of this paper is the adoption of a
variety of models for each equipment. The combination of these equipment models will
lead to better results than the traditional use of a single model for each equipment.

The remaining paper is organized as follows: the subsequent section presents the
fundamentals of the problem formulation. The description of the case study is discussed in
Section 4. The detailed solution strategy of the addressed problem is explained in Section 5.
Section 6 discusses the attained results with the necessary explanation. Finally, Section 7
concludes the paper.

2. System Description

In this section, the components of a typical nanogrid system and their respective
models are discussed. A discussion on battery management strategy follows. The nanogrid
formed by the primary constituents (Figure 1) was then extended to create a microgrid, as
shown in Figure 2. An algorithm encompassing all possible conditions that a nanogrid
(with available constituents) might encounter during daily operation is presented. The
optimization problem is formulated in the subsequent section. The formulation developed
in this work independently found the optimal design and size for standalone nanogrids,
as well as microgrids formed by the interconnection of several nanogrids. Below, the
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fundamental constituents of the system under study are explained and modeled. All these
underlying components integrate to create a basic nanogrid. These multiple nanogrids are
then connected to form an isolated nanogrid that shares their resources to ensure collective
benefit within the newly formed microgrid. The term “hybrid” indicates that all discussed
systems are composed of renewable and nonrenewable energy resources.

Figure 1. Standalone hybrid nanogrid for a desert camp.

Figure 2. Standalone hybrid microgrid made up of multiple nanogrid for a desert camp.

2.1. Fundamental Constituents

The nanogrid under consideration was categorized as a standalone hybrid nanogrid
composed of Photovoltaic (PV) panels, battery bank, DC/AC inverter, diesel generator,
and a load representing the needs of a remote but fully equipped desert camp or tent [30].
Figure 1 illustrates the schematic of the nanogrid under consideration, while Figure 2
represents a microgrid’s schematic formed by the interconnection of nanogrids. The details
of each component are discussed.

PV systems have always been considered a noiseless, readily available and envi-
ronmentally friendly energy resource [31]. In recent years, there has been a notable rise
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in worldwide deployment. Conforming to global trends, KSA has envisioned a solar
contribution amounting to 40 GW by 2030 to reduce fossil fuel dependency under the
government’s Vision 2030 [32]. Moreover, the country enjoys year-round solar availability
and an extended summer season.

Daud et al. [33] and Razmjoo et al. [34] presented a way to compute a PV panel’s
output power, PPV−out, given the instantaneous solar radiation, G (W/m2), and ambient
temperature, Tamb (◦C), as shown below:

PPV−out = PRated ×
G
Gr

[
1 + Kt

(
(Tamb + (0.0256× G))− Tre f

)]
(1)

where: Kt is a constant equal to −3.7 × 10−3 (1/◦C), Gr is the reference value G taken to be
of 1 kW/m2 and PRated is the rated photovoltaic power at standard test conditions (STC).
The temperature of the PV cell at STC, denoted by Tref, is 25 ◦C.

In a hybrid nanogrid system, the diesel generator acts as the secondary source, con-
ducive to reducing energy storage requirements, and plays a pivotal role in nanogrid
economics, stability, and reliability. Due to its dependency on fossil fuel and low energy
conversion efficiency, a diesel generator works at a low loading rate. Consequently, it is
operated at peak load demand when the battery is depleted, making it an unlikely option
under light loading conditions [35].

The diesel generator output is modelled by Ashari et al. in [36] where the fuel
consumption of a diesel generator s(t) can be defined as a function of generated power, P(t),
and rated power, Prated, as given below:

s(t) = x P(t) + y Prated (2)

where x and y with values of 0.246 and 0.08415, respectively, represent consumption
coefficients [37].

The efficiency of the diesel generator, ηd, plays a crucial role in the model accuracy and
is the function of thermal break efficiency, ηbt, and generator efficiency, ηg, as defined below:

ηd = ηbt × ηg (3)

In designing a hybrid nanogrid, the size of the battery plays a crucial role. Souraki et al.
[38] and Parida et al. [39] highlighted three factors in determining suitable battery size.
The first one was autonomy days (AD), defined as the number of consecutive days the
desired load can be driven solely by the battery bank, without any external support. The
second factor, the depth of discharge, MDD (battery’s maximum usable capacity), directly
influences battery life. As a common practice, the battery of the system was designed
with 40–80% of its regular discharge. The third factor, atmospheric temperature, displays
a direct relationship with MDD, i.e., the higher the temperature, the greater the battery’s
capacity, decreasing the battery’s life and vice versa. To keep derate-factor, KD, equal to
one, the batteries are recommended to be kept at 25 ◦C.

The equation that relates all these factors in order to give battery bank capacity in Ah
is given below:

BC =
LAh. AD
MDD. KD

(4)

where LAh is the Ah accumulated over a single day, having a unit of Ah/day.
The number of parallel battery banks, NBP, is calculated by dividing targeted capacity,

BR with selected capacity, BS as given below:

NBP =
BR
BS

(5)



Energies 2021, 14, 1245 6 of 24

In contrast, the number of series-connected batteries, NBS, utilizes VS and VB, the DC
voltage levels of system and battery, respectively:

NBS =
VS
VB

(6)

Finally, the total number of required batteries, NB, is the product of NBP and NBS, as
given below:

NB = NBP . NBS (7)

Consequently, if CB denotes the cost of one battery, the cumulative battery bank cost,
CBank, will become:

CBank = NB . CB (8)

The last component enabling the conversion and power transfer between the AC and
DC components of a hybrid nanogrid is the DC to AC inverter. A standalone hybrid system
often requires a single inverter; however, mathematically, the precise number of inverters
servicing a nanogrid, Ninv_alone, can be computed by a simple equation given below:

Ninv_alone =
Pload
Pinv

(9)

where Pload and Pinv represent the maximum load power and maximum inverter power
capability, respectively. Discussion of the number of required inverters becomes vital when
smaller networks are connected to form a more extensive network [40]. Consequently, if
PHyb denotes the maximum power exchanged by a hybrid system, its ration with Pinv gives
the number of required inverters in a grid connected system, Ninv_grid:

Ninv_grid =
PHyb

Pinv
(10)

2.2. Energy Management Strategy

The intrinsic intermittency and uncertainty in both solar and load profiles requires
the development of an energy management strategy for a hybrid nanogrid. In this work,
condition-based energy management is proposed. These conditions act as a precursor in
the optimization framework and are listed below:

Condition 1: PV panels are the primary source of energy that is utilized with top priority.
Condition 2: If PV power is greater than the load, batteries are charged with the

surplus power.
Condition 3: If PV and batteries combined are unable to supply the load, the diesel

generator will compensate for deficit power.
Condition 4: If batteries are full, and PV has more power than required by the load, a

dump load will be used to deal with the surplus power.
It is pertinent to represent these conditions in the form of a working algorithm. A

framework comprising of nested if-else statements provide the workflow for the optimiza-
tion formulation solved in the subsequent section. Algorithm 1 describes this framework
with due linguistic convenience.
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Algorithm 1: Conditions-based priority workflow to manage energy in a nanogrid/microgrid.

IF PV panels instantaneous output is more than the instantaneous load, THEN
energize all loads with PV output
IF battery is not full, THEN

charge the batteries with surplus power
ElSE (battery is full)

redirect the surplus power to the dumping load
END IF

ELSE (Insufficient power at PV panels’ output)
IF battery is full, THEN

use battery to share the load with the PV panels
IF battery alone is insufficient, THEN

utilize the diesel
generator along with
the battery’s available
output

END IF
ELSE (If the battery is depleted)

rely entirely on the diesel generator to run all loads
END IF

END IF

3. Problem Formulation

The optimal sizing problem of nanogrid/microgrid constituents is formulated under
the multi-objective framework [29] as follows:

Minimize F(x) = [ f1(x), f2(x)] (11)

Subject to g(x) = 0 (12)

and h(x) ≤ 0 (13)

where f1(x) and f2(x) are the cost of electricity (COE) and the loss of power supply proba-
bility (LPSP), respectively, while x represents the set of design variables. The variable g(x)
denotes the set of equality constraints, whereas h(x) comprises all inequality constraints.
The objective function aims to obtain a diverse set of nondominated solutions in vector x,
known as the PF, simultaneously satisfying both equality and inequality constraints while
looking for the best possible combination of solutions.

3.1. Objective Functions

COE and LPSP are the two contrasting objectives of this problem. Various perfor-
mance indicators assess the cost-effectiveness of a hybrid nanogrid/microgrid system. COE
is one of the most common indices representing the per unit energy cost. It is evaluated
using the following equation [41]:

COE =
Total_Cost

∑h=8760
h=1 Pload

× CRF (14)

Total_Cost in the numerator consists of all significant operational costs incurred by
a system, including replacement cost, and maintenance cost. Pload in the denominator
represents power consumption per hour and is accumulated over one year (8760 h) to
give the cost per unit. Lastly, to incorporate the cost deterioration caused by the system’s
usage, the expression is multiplied by the capacity recovery factor (CRF). If n denotes
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the life period of the PV panel—considered equal to the entire system’s lifetime—and i
incorporates the effect of interest rate, CRF would be:

CRF =
i(i + 1)n

(i + 1)n − 1
(15)

Next, the intrinsic uncertainty of a PV panel is handled as the second objective function.
Due to unanticipated interruptions in the solar availability and errors in the forecast,
the system might fail to supply the required instantaneous demand. Therefore, such
power supply failure becomes a probabilistic event measured through LPSP. LPSP can be
determined by running chronological simulations. Another approach to determine LPSP,
used by Yang et al. [42] and Wang et al. [43], requires calculating the combined effect of all
constituents of a nanogrid/microgrid. The chronological approach is used in this research,
and the LPSP is defined as follows [43]:

LPSP =
∑T

t=0 Power.Failure.Time
T

(16)

where T is the number of hours in this research. The power failure time is defined as the
time that the load is not satisfied—when the power generated by the PV array is insufficient
and the storage is depleted in [42].

It is worth mentioning that, although two objective functions have been considered
for this study, many other objectives can be considered for future studies, including: mini-
mization of emissions and pollutants, minimization of net present cost, and minimization
of life cycle cost.

3.2. Design Variables

To enhance the optimization search space, manufacturing models of inverters, bat-
teries, and PV panels are included as adjunct design variables. This feature enables the
designer/operator of the hybrid system to select the most suitable manufacturer from
each item’s available list. Fundamentally, it provides the opportunity to choose the best
combination of inverters, batteries and PV panels to work together to optimize COE and
LPSP of Equation (11). These adjunct design variables, representing various manufacturing
models of PV panels, batteries, and inverters, are denoted by PVModel, BatteryModel, and
InverterModel, respectively, and are annexed to the existing list of design variables, x, as
shown below:

x =
[
NDG, NPV, AD, PVModel, BatteryModel, InverterModel

]
(17)

NDG is the number of diesel generators, NPV is the number of PV panels, and AD is
the number of autonomy days.

3.3. Constraints

The problem is constrained due to battery storage dynamics, as under:

Emin
Battery ≤ Ei

Battery ≤ Emax
Battery (18)

Emin
Battery = (1−DOD)CBattery (19)

where Ei
Battery represents the energy stored in the battery at the ith hour, DOD represents

the depth of discharge for the battery to protect the battery from over-discharge (set at 80%
for this study), Emin

Battery and Emax
Battery are the minimum and maximum battery energy storage

capacity, respectively.
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4. Description of the Case Study

The countries of the Arabian Peninsula are naturally blessed with considerable solar
resources. These countries have made significant efforts to utilize solar energy’s copious
resources [44]. Despite ample solar energy potential, KSA is still harnessing fossil fuel
resources to meet energy demand. However, policymakers have noted the issue with care
and are targeting the maximum use of renewable resources in the near future [45]. Figure 3
presents the horizontal solar irradiation data for the country of Saudi Arabia.

Figure 3. Global horizontal irradiation in Saudi Arabia [46].

Hafr Al-Batin is an important city in the Eastern Province of Saudi Arabia that shares
a border with the neighboring country of Kuwait. This city has an extended winter season
and is famous for desert camping activities. Most tents for these activities are supported
by diesel generators and pollute the environment by burning fossil fuel. The average
horizontal irradiation per day for this city is about 5.8 kWh/m2, as shown in Figure 3 [46].
The hourly solar irradiation data is presented in Figure 4 [47].

Load Estimation for a Desert Camp

A desert camp may include several tents. As informed by an experienced local person,
a typical camp may have up to 2 or 3 tents as living rooms, two washrooms, and one tent
for the watchman. It may include surrounding fences. Table 1 summarizes the detail of all
the electric loads usually present in a desert camp. In this table, the load was estimated by
investigating a similar tent in the mentioned city. The average energy demands in a day
were 30.93 kWh and 72.46 kWh for weekdays and weekends, respectively, as shown in the
table. The total load of the camp was around 6.46 kW. The peak demand in the weekdays
was 2.6 kW whereas it was 4.5 kW during the weekend. On weekdays, people may leave
the tent in the morning, go to work, and return at dusk. Therefore, the demand for a typical
weekday differs from a weekend day, when people often remain in the camp throughout
the day. Figure 5 shows such a desert camp, whereas Figure 6 presents the estimated load
variation per day for weekdays and weekends.
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Figure 4. Solar irradiation per hour for Hafr Al-Batin city [48].

Table 1. Daily load demand details for a remote desert camp in Hafr al-Batin.

Appliance Load (KW) Quantity Hours/Weekday Hours/Weekend

Toaster 0.16 1 0 1

Ceiling fans 0.45 3 2 13

Cellular Charger 0.026 3 3 4

Laptop computer 0.101 2 2 10

TV Flat screen LCD 46 0.045 2 7 9

Tent light 0.04 12 13 13

Fence lights Type 1 0.04 10 11 11

Fence lights Type 2 0.01 20 10 10

Fence lights Type 2 0.025 10 10 10

Air conditioner 1.129 1 7 10

Air conditioner 1.129 1 0 19

Refrigerator 0.065 3 16 15

Vacuum Cleaner 0.8 1 1 1

Figure 5. A typical desert camp in Hafr Al-Batin.
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Figure 6. Load profile for a weekday and weekend day of a typical desert camp.

5. Problem Solution Approach

The approach proposed in this paper optimized the sizing of hybrid photovoltaic
/diesel/battery nanogrids using a multi-objective evolutionary algorithm based on both
dominance and decomposition (MOEA/DD) [26]. To solve the multi-objective problem
presented in (11), MOEA/DD decomposed the problem into several scalar subproblems
using classic multi-objective optimization approaches, e.g., the weighted sum, weighted
Tchebycheff, and boundary intersection methods [29]. The penalty-based boundary in-
tersection (PBI) approach, known for good performance on a large class of optimization
problems, was adopted in this work [48,49].

The algorithm for MOEA/DD is presented in Algorithm 2 [26]. The MOEA/DD
algorithm was initialized by generating N initial solutions and their corresponding weights.
The parent population was then updated using elite-preserving mechanisms—offspring
generated from parents through a mating procedure. In general, MOEA/DD is made up of
the initialization, reproduction, and update procedures.

The initialization procedure (Algorithm 3) began with randomly sampling for the
initial parent population P from Ω (= g(x)U f (x)), uniformly distributed. This step was
followed by the identification of the nondomination level structure of P, after which a
set of weight vectors was generated before the assignment of the neighborhood. Weight
generation methods discussed in [46,47] were associated with the explosion of computa-
tional complexity and diversity reduction, respectively. As such, the two-layer weight
vector generation, proposed by Li et al. [26] was adopted. First, the sets of weight vectors
in the boundary (B =

{
b1, . . . , bN1

}
and inside (I =

{
i1, . . . , iN2

}
layers of a simplex

were generated such that N = N1 + N2. A coordinate transformation was then adopted to
reduce the coordinates of weight vectors in the inside layer. This allowed for the evaluation

of the jth component of ik =
(

ik
1, . . . ik

m

)T
, k ∈ {1, . . . N2} according to:

ik
j =

1− τ

m
+ τ × ik

j (20)

where τ ∈ {0, 1} represents the shrinkage factor and j ∈ {1, . . . , m}.
The set (=

{
w1, w2, . . . , wN}) was formed by combining B and I. The weight vectors,
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wi =
(
wi

1, . . . , wi
m
)

respectively defined unique subregions in the objective space, Φi:

Φi =
{

F(x) ∈ Rm
∣∣∣F(x), wj

}
(21)

where
〈
F(x), wj〉. is the acute angle between F(x) and wj, j = {1, . . . , N}, x ∈ Φ. The

neighborhood of each of the weight vectors wi, i ∈ {1, . . . , N} was made up of the T
closest weight vectors in a Euclidean sense. The fast nondominated sorting method [50]
was used to divide the solutions in P into nondomination levels (F1, . . . , Fl , l ≤ N). Finally,
each solution in P was initially randomly associated with a unique subregion.

The primary role of the reproduction procedure, presented in Algorithm 3 [26], was
to update the parent population after generat1ing offspring solutions. This update was
achieved using two main steps: mating selection and variation operation. In the mating
selection, some parents are selected for offspring generation from a neighborhood. Each
solution is associated with a uniquely weight-specified subregion based on Euclidean
distance in the method used. This association allowed for consideration of neighboring
solutions from neighboring subregions before randomly selecting mating parents from the
whole population when there were no associated solutions. As proposed by Li et al. in [26],
this work adopted the binary crossover (SBX) [51] and polynomial mutation [52] for the
variation operation. Any other genetic operator could also be used.

The generated offspring was used to update the parent population according to
Algorithm 4 [26]. The algorithm involved identifying the subregion of the offspring
solution xC and combing with the parent population P to generate a hybrid population P′.
The nondominated level structure of P′ was then determined using the method presented
by Li et al. [53]. Other considerations for updating were adopted from [26]. The optimal
values of hypermeters were determined by trial and error aided by experience working
with evolutionary algorithms.

Algorithm 2: General Framework of multi-objective evolutionary algorithm based on both
dominance and decomposition (MOEA/DD)

Output: P

1
[P, W, E]← INITIALIZATION();→ // P—Parent population, W—weight vector set,
E—neighborhood index set.

2 while stopping criterion not fulfilled do
3 for i← 1 to N do
4 P← MATING_SELECTION (E(i), P);
5 S← VARIATION

(
P
)
;

6 foreach Xc ∈ S do // Xc is an offspring
7 P←UPDATE_POPULATION(P, Xc)
8 end

end
end
return P.
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Algorithm 3: Mating Selection.

Input: E(i), P
Output: P

1 if rnd > δ then
2 Randomly choose k indices from E(i)
3 If no solution in the selected subregion then
4 Randomly choose k solutions from P to form P;
5 else
6 Randomly choose k solutions from the selected subregions to form P;
7 end
8 else
9 Randomly choose k solutions from P to form P;
12 end
13 return P

Algorithm 4. Update Procedure.

Input: P, XC

Output: P
1 Find the subregion associated with Xc according to (6)
2 P′ ← PU{Xc}
3 Update the nondomination level structure of P′
4 If l = 1 then
5 x′ ← L OCATE_WORST(P′)
6 P← P′\{X′};
7 else
8 If |Fl | = 1 then

Solution Xl

9 If
∣∣∣Φl
∣∣∣ > 1 // Φl is the associated subregion of Xl

10 P← P\
{

Xl
}

;

11 else //
∣∣∣Φl
∣∣∣ = 1

12 X′ ← LOCATE_WORST(P′)→
13 P← P′ \ {X′}
14 end
15 else
16 Identify the most crowded subregion Φh associated with those solutions in Fl
17 if

∣∣∣Φh
∣∣∣> 1 then

18
Find the worst solution
X′ = argmaxX∈Φh gpbi

(
X
∣∣∣Wh, z∗

)
;

19 P← P′ \ {X′};
20 else //

∣∣∣Φh
∣∣∣ = 1

21 X′ ← LOCATE_WORST (P′);
22 P← P′ \ {X′}
23 end
24 end
25 end
26 Update the nondominated level structure of P;
27 return P

6. Application, Results and Discussion

The details of the models used for PV panels, batteries and inverters are tabulated
in Tables A1–A3 of the Appendix A, respectively. The design variables were constrained
as follows: NPV ∈ [2, 100], NDG ∈ [1, 10], AD ∈ [1, 3], PV.Model ∈ [1, 13], BatteryModel ∈
[1, 27] and InverterModel ∈ [1, 8].

The proposed approach was applied to the following two case studies using a popula-
tion size of 100 for 200 iterations:
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CASE 1: Nanogrid operation mode
CASE 2: Microgrid operation mode
The following subsections describe the investigated cases and discuss the obtained

results with some analysis and recommendations.

6.1. CASE 1: Nanogrid Operation Mode

This case investigated the operation of each tent separately (i.e., as a nanogrid). The
MOEA/DD was run to solve the formulated problem for this case, and the obtained Pareto
front was plotted in Figure 7. In this figure, the MOEA/DD generated 23 solutions; all of
which occured between (COE = 0.3396 $/kWh, LPSP = 0.3015%) and (COE = 0.5544 $/kWh,
LPSP = 0.1946%). It can be seen that the designer/operator can use a variety of solutions
for this case.

Figure 7. Pareto front (PF) obtained for CASE 1 using MOEA/DD.

In addition to that, the obtained PF solutions are given in Table 2. For convenience,
these solutions are sorted in ascending order based on their COEs. If the designer/operator
selects solution # 1, the nanogrid will be made of 2 PV panels and two diesel generators
and will have an autonomy of 24 hours. The models for PV panel, battery and inverter
are model # 7, model # 1 and model # 3, respectively, for this case. Finally, the objective
functions obtained for this solution are COE = 0.3396 $/kWh and LPSP = 0.3015%.

A second example can be the selection of solution # 8. The designed nanogrid has
an autonomy of more than 26 h. It comprises 13 PV panels (Model #1), two diesel gen-
erators, the PV panel, battery, and inverter model are model # 1, mode #5 and model # 3,
respectively. This solution yields a COE of 0.4182 $/kWh and an LPSP of 0.2383%.

A third example can be illustrated by solution #23. The sized nanogrid, composed of
30 PV panels and two diesel generators, has more than 25 h of autonomy for this solution.
The optimized component models are model #1, model #3 and model #3 for the PV panel,
battery, and inverter, respectively. The solution has a COE of 0.5544 $/kWh and an LPSP of
0.1946%. The COE obtained for this solution is the most expensive due to the high number
of PV panels used. Furthermore, Figure 8 exposes each component’s contribution (i.e., PV
panels, diesel generator, and battery) to the nanogrid over 50 h for solution #23.
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Table 2. Solutions from PF for CASE 1.

Solution # NPV NDG AD PVModel BatteryModel InverterModel
COE

($/kWh) LPSP (%)

Solution 1 2 2 1.003 7 1 3 0.3396 0.3015

Solution 2 10 2 1.000 1 1 3 0.3445 0.2793

Solution 3 11 2 1.000 1 1 3 0.3456 0.2704

Solution 4 14 2 1.000 7 1 3 0.3488 0.2684

Solution 5 13 2 1.002 2 1 3 0.3488 0.2666

Solution 6 13 2 1.124 1 5 3 0.4182 0.2386

Solution 7 13 2 1.115 1 5 3 0.4182 0.2385

Solution 8 13 2 1.093 1 5 3 0.4182 0.2383

Solution 9 15 2 1.022 6 5 3 0.4203 0.2354

Solution 10 14 2 1.078 1 5 3 0.4212 0.2305

Solution 11 14 2 1.047 1 5 3 0.4212 0.2290

Solution 12 15 2 1.085 1 5 3 0.4242 0.2214

Solution 13 15 2 1.054 1 5 3 0.4243 0.2190

Solution 14 16 2 1.124 1 5 3 0.4274 0.2182

Solution 15 16 2 1.115 1 5 3 0.4274 0.2172

Solution 16 16 2 1.084 1 5 3 0.4274 0.2162

Solution 17 17 2 1.085 1 5 3 0.4305 0.2151

Solution 18 17 2 1.047 1 5 3 0.4305 0.2137

Solution 19 19 2 1.082 4 6 3 0.4677 0.2135

Solution 20 27 2 1.046 1 3 3 0.5442 0.2128

Solution 21 28 2 1.050 1 3 3 0.5475 0.2062

Solution 22 29 2 1.050 1 3 3 0.5509 0.2008

Solution 23 30 2 1.050 1 3 3 0.5544 0.1946

Figure 8. Zoom on the energy contribution of each component for solution #23.
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6.2. CASE 2: Microgrid Operation Mode

In this second case study, four tents were connected to form one microgrid. The
proposed approach based on MOEA/DD was applied to this case, and the obtained
PF is plotted in Figure 9. The number of obtained solutions was 37, and they are well
spread between the extreme points with the following objectives (COE = 0.1933 $/kWh,
LPSP = 0.4541%) and (COE = 0.278 $/kWh, LPSP = 0.3028%). This solution offers the
designer/operator many options to operate the tents together as a microgrid, instead of
4 separate nanogrids.

Figure 9. PF obtained for CASE 2 using MOEA/DD.

Furthermore, Table 3 tabulates the final set of PF solutions sorted in ascending COE-
based order. Many options can be selected for this case. One option could be solution
#1, where the resulting microgrid will be composed of 60 PV panels based on model # 1,
and 5 diesel generators. The batteries have autonomy for almost one and a half days. The
battery model #16 and inverter model #1 are the best options for this solution. The objective
functions for this solution are COE = 0.1933 $/kWh and LPSP = 0.4541%.

Similarly, if solution #12 is selected, the microgrid will be composed of 77 PV panels,
five diesel generators and the system will have an autonomy of fewer than 30 hours. For this
solution scheme, the PV panel, battery, and inverter models are model #1, model #16, and
model #1, respectively. The objective functions for this solution are COE = 0.1998 $/kWh
and LPSP = 0.4272%.

Another solution could be solution #29. This solution is composed of 98 PV panels of
model 1 and 5 diesel generators. The models for battery and inverter are model #16 and
model #1, respectively.

It can also be seen from Table 3 that for almost all the cases the best models for PV
panels are model #1, the best model among batteries is model #16, and the best model for
the inverter is model #1.

Furthermore, solutions from 30 to 37 are not very acceptable. Although they are part
of the PF numerically, they represent nonfeasible solutions.
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Table 3. Solutions from PF for CASE 2.

Solution # NPV NDG AD PVModel BatteryModel InverterModel
COE

($/kWh) LPSP (%)

Solution 1 60 5 1.484 1 16 1 0.1933 0.4541

Solution 2 60 5 1.484 1 16 1 0.1933 0.4536

Solution 3 62 5 1.478 1 16 1 0.1946 0.4496

Solution 4 62 5 1.469 1 16 1 0.1949 0.4494

Solution 5 62 5 1.469 1 16 1 0.1950 0.4486

Solution 6 63 5 1.476 1 16 1 0.1955 0.4430

Solution 7 63 5 1.477 1 16 1 0.1956 0.4430

Solution 8 63 5 1.469 1 16 1 0.1956 0.4428

Solution 9 60 5 1.497 1 16 1 0.1959 0.4328

Solution 10 61 5 1.497 1 16 1 0.1971 0.4293

Solution 11 62 5 1.497 1 16 1 0.1984 0.4280

Solution 12 77 5 1.216 1 16 1 0.1998 0.4272

Solution 13 63 5 1.497 1 16 1 0.1999 0.4226

Solution 14 64 5 1.498 1 16 1 0.2014 0.4200

Solution 15 64 5 1.499 1 16 1 0.2014 0.4185

Solution 16 66 5 1.497 1 16 1 0.2044 0.4169

Solution 17 66 5 1.519 1 16 1 0.2044 0.4165

Solution 18 79 5 1.494 2 16 1 0.2109 0.4152

Solution 19 79 5 1.503 2 16 1 0.2109 0.4132

Solution 20 79 5 1.504 2 16 1 0.2109 0.4128

Solution 21 94 5 1.373 4 16 1 0.2229 0.4117

Solution 22 94 5 1.363 4 16 1 0.2229 0.4114

Solution 23 94 5 1.398 4 16 1 0.2250 0.4107

Solution 24 94 5 1.398 4 16 1 0.2250 0.4095

Solution 25 90 5 1.338 1 16 1 0.2280 0.4085

Solution 26 93 5 1.391 1 16 1 0.2359 0.4061

Solution 27 93 5 1.391 1 16 1 0.2359 0.4046

Solution 28 94 5 1.338 1 16 1 0.2362 0.4034

Solution 29 98 5 1.423 1 16 1 0.2510 0.4033

Solution 30 3 6 1.013 4 18 1 0.2747 0.3247

Solution 31 3 6 1.013 5 18 1 0.2748 0.3170

Solution 32 3 6 1.048 1 18 1 0.2750 0.3119

Solution 33 4 6 1.048 7 18 1 0.2756 0.3098

Solution 34 3 6 1.012 8 18 1 0.2757 0.3089

Solution 35 4 6 1.045 6 18 1 0.2763 0.3045

Solution 36 4 6 1.018 2 18 1 0.2769 0.3039

Solution 37 4 6 1.017 4 18 1 0.2780 0.3028
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6.3. Comparative Study

A comparative study with other multi-objective optimization algorithms was con-
ducted to assess the quality of the obtained results. Three well-known algorithms were
selected for this study: (1) multi-objective evolutionary algorithm based on decomposi-
tion (MOEA/D), (2) novel multi-objective particle swarm optimization (NMPSO) and (3)
speed-constrained multi-objective particle swarm optimization (SMPSO).

Figures 10 and 11 show the comparison of the PFs obtained using the four algorithms
for CASE 1 and CASE 2, respectively.

Figure 10. Comparison of PFs obtained for CASE 1 using different algorithms.

Figure 11. Comparison of PFs obtained for CASE 2 using different algorithms.

For CASE 1, MOEA/DD, MOEA/D, NMPSO and SMPSO generated a set of 23 solutions,
15 solutions, 11 solutions and 11 solutions, respectively. When these results were compared
to each other to determine which solutions were nondominated, it was found that:

• Among the 23 solutions generated using MOEA/DD, 16 were nondominated by any
other solutions found using the remaining algorithms.
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• Among the 15 solutions generated using MOEA/D, 5 were nondominated by any
other solutions found using the remaining algorithms.

• Among the 11 solutions generated using NMPSO, all were dominated by the solutions
found using the remaining algorithms.

• All 11 solutions generated using SMPSO were nondominated.

For CASE 2, the four used algorithms—MOEA/DD, MOEA/D, NMPSO and SMPSO—
generated 37 solutions, 28 solutions, 4 solutions, and 4 solutions, respectively. These results
were compared to each other to determine which solutions were nondominated. In this
case, (i.e., they are part of the PF), the 37 solutions generated using MOEA/DD were
nondominated by any other solutions found using the remaining algorithms. In contrast,
all solutions generated using MOEA/D, NMPSO and SMPSO were dominated by those
obtained using the MOEA/DD.

Therefore, it can be concluded that the proposed approach, using MOEA/DD, is
the most performant one for both operation modes. This conclusion was verified in the
microgrid operation mode case (i.e., CASE 2.).

7. Conclusions

This paper presents a dominance and decomposition-based multi-objective evolution-
ary algorithm to optimize a hybrid nanogrid/microgrid’s size and operation. Hafr Al-Batin,
a city of the Eastern Province of Saudi Arabia, was selected for implementation. The reason
behind choosing that particular city is the common practice of using desert camps, which
can easily be considered nanogrid units. The nanogrid consisted of a solar system, stor-
age batteries, diesel generators, invertor, and load components. Two different modes of
operation were investigated in this paper: one with the single nanogrid and the second
a combination of nanogrids, coordinated to form a microgrid. In the formulation of the
optimization problem, the reliability and the cost of the system were considered. A set of
diverse, acceptable, and widespread solutions were obtained from the developed program
for both the case studies, which will guide the designer/operator of a nanogrid/microgrid
to model such a system. The obtained results offered competitive and practical solutions to
the addressed problem using a multi-objective optimization strategy.

However, the addressed issue of desert camping is not a regional problem; rather, it
can be implemented in any part of the world. The designed nanogrid/microgrid concept
applies to desert camps, but is suitable for any islanded load of a similar kind. Moreover,
using such desert camps is widely seen in all the world’s desert areas, particularly in the
Gulf countries. Therefore, the paper’s aspect is global, even though it addresses a particular
region of the globe.

The presented work can be further continued to investigate possible recovery strate-
gies, subject to the failure of a source like a PV panel or diesel generator. The effect of
ageing on associated equipment (PV system, diesel generator, batteries, inverter, etc.) or of
equipment modification (due to the connection of a new tent, for example) of load size can
be considered future work of this research.

Author Contributions: Conceptualization, H.R.A.-H.B. and M.S.S.; methodology, H.R.A.-H.B. and
M.S.J.; software, H.R.A.-H.B.; validation, H.R.A.-H.B. and M.A.M.R.; formal analysis, M.S.S., M.S.J.
and Y.A.S.; investigation, H.R.A.-H.B., M.S.J., M.S.S., and Y.A.S.; resources, M.S.S., H.R.A.-H.B., M.S.J.
and Y.A.S.; data curation, H.R.A.-H.B.; writing—original draft preparation, H.R.A.-H.B., M.S.S.,
M.S.J. and Y.A.S.; writing—review and editing, H.R.A.-H.B., M.S.S., M.S.J., Y.A.S. and M.A.M.R.;
visualization, H.R.A.-H.B., M.S.S., M.S.J. and M.A.M.R.; supervision, H.R.A.-H.B. and M.A.M.R.;
project administration, H.R.A.-H.B.; funding acquisition, H.R.A.-H.B. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by DEANSHIP OF SCIENTIFIC RESEARCH, UNIVERSITY OF
HAFR AL BATIN, grant number G-109-2020.

Acknowledgments: The authors extend their appreciation to the Deanship of Scientific Research,
University of Hafr Al-Batin, for funding this work through the research group project No G-109-2020.



Energies 2021, 14, 1245 20 of 24

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. PV panels models and information [54].

Model # Name YPV Efficiency αP TcNOCT Cost US$/Watt

Model # 1 Kyocera Solar
(KC200) 200.00 0.20 −0.46 47.00 800.00 $4.00

Model # 2 BP Solar (SX 170B) 170.00 0.17 −0.46 47.00 728.97 $4.29

Model # 3 Evergreen (Spruce
ES-170) 170.00 0.17 −0.46 47.00 731.00 $4.30

Model # 4 Evergreen (Spruce
ES-180) 180.00 0.18 −0.46 47.00 774.00 $4.30

Model # 5 Evergreen (Spruce
ES-190) 190.00 0.19 −0.46 47.00 817.00 $4.30

Model # 6 Solar World
(SW-165) 165.00 0.17 −0.46 47.00 709.97 $4.30

Model # 7 Mitsubishi
(PV-MF155EB3) 155.00 0.16 −0.46 47.00 669.97 $4.32

Model # 8 Sharp (ND-208U1) 208.00 0.21 −0.46 47.00 898.56 $4.32

Model # 9 Sharp (NE-170U1) 170.00 0.17 −0.46 47.00 739.50 $4.35

Model # 10 Mitsubishi
(PV-MF165EB4) 165.00 0.17 −0.46 47.00 719.97 $4.36

Model # 11 Sunwize (SW150) 150.00 0.15 −0.46 47.00 668.31 $4.46

Model # 12 Kyocera (KC175GT) 175.00 0.18 −0.46 47.00 799.00 $4.57

Model # 13 Kyocera (KC175GT) 175.00 0.18 −0.46 47.00 799.00 $4.57

Table A2. Batteries models and information [54].

Model # Name Efficiency Capacity Voltage Cost Lifetime Weight (lbs)

Model # 1 MK 8L16 0.85 370.00 6.00 288.77 12.00 113.00

Model # 2 Surrette
12-Cs-11Ps 0.85 357.00 12.00 1118.96 12.00 272.00

Model # 3 Surrette
2Ks33Ps 0.85 1765.00 2.00 874.90 12.00 208.00

Model # 4 Surrette
4-CS-17PS 0.85 546.00 4.00 604.23 12.00 128.00

Model # 5 Surrette
4-Ks-21Ps 0.85 1104.00 4.00 1110.44 12.00 267.00

Model # 6 Surrette
4-Ks-25Ps 0.85 1350.00 4.00 1386.85 12.00 315.00

Model # 7 Surrette
6-Cs-17Ps 0.85 546.00 6.00 906.31 12.00 221.00

Model # 8 Surrette
6-Cs-21Ps 0.85 683.00 6.00 1075.01 12.00 271.00

Model # 9 Surrette
6-Cs-25Ps 0.85 820.00 6.00 1241.37 12.00 318.00

Model # 10 Surrette
8-Cs-17Ps 0.85 546.00 8.00 1256.21 12.00 294.00
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Table A2. Cont.

Model # Name Efficiency Capacity Voltage Cost Lifetime Weight (lbs)

Model # 11 Surrette
8-Cs-25Ps 0.85 820.00 8.00 1654.76 12.00 424.00

Model # 12 Surrette
S-460 0.85 350.00 6.00 324.93 12.00 117.00

Model # 13 Surrette
S-530 0.85 400.00 6.00 370.65 12.00 127.00

Model # 14 Trojan L16H 0.85 420.00 6.00 357.00 12.00 121.00

Model # 15 Trojan T-105 0.85 225.00 6.00 138.00 12.00 62.00

Model # 16 US Battery
US185 0.85 195.00 12.00 216.58 12.00 111.00

Model # 17 US Battery
Us2200 0.85 225.00 6.00 127.99 12.00 63.00

Model # 18 US Battery
US250 0.85 250.00 6.00 126.35 12.00 72.00

Model # 19 Surrette
S-460 0.85 350.00 6.00 357.36 12.00 117.00

Model # 20 Surrette
S-530 6V 0.85 400.00 6.00 406.09 12.00 127.00

Model # 21 Surrette
4-CS-17PS 0.85 546.00 4.00 770.45 12.00 128.00

Model # 22 Surrette
4-Ks-21Ps 0.85 1104.00 4.00 1206.00 12.00 267.00

Model # 23 Surrette
4-Ks-25Ps 0.85 1350.00 4.00 1508.83 12.00 315.00

Model # 24 Surrette
6-Cs-17Ps 0.85 546.00 6.00 932.31 12.00 221.00

Model # 25 Surrette
6-Cs-21Ps 0.85 683.00 6.00 1164.00 12.00 271.00

Model # 26 Surrette
6-Cs-25Ps 0.85 820.00 6.00 1349.45 12.00 318.00

Model # 27 Surrette
8-Cs-17Ps 0.85 820.00 8.00 1795.71 12.00 424.00

Table A3. Inverters models and information [54].

Model # Inverter
Manufacture Model Price ($) Power (W)

Input
Voltage
(VDC)

Output
Voltage
(VAC)

Nominal
Frequency

(Hz)
Efficiency

Model # 1 Xantrex
(XW6048) XW6048 3597.75 6000 48 120 60 0.92

Model # 2 Xantrex
(XW4548) XW4548 2878.2 4500 48 120 60 0.92

Model # 3 Xantrex
(SW5548) SW5548 2735.85 5500 48 120 60 0.92

Model # 4 Xantrex
(SW4048) SW4048 2178.96 4000 48 120 60 0.92

Model # 5 Outback
(GTFX3048) GTFX3048 1760 3000 48 120 60 0.92
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Table A3. Cont.

Model # Inverter
Manufacture Model Price ($) Power (W)

Input
Voltage
(VDC)

Output
Voltage
(VAC)

Nominal
Frequency

(Hz)
Efficiency

Model # 6 Outback
(GVFX3648) GVFX3648 1913 3600 48 120 60 0.92

Model # 7 Sunny Island
(SI4248U) SI4248U 4228 4200 48 120 60 0.92

Model # 8 Sunny Island
(SI5048U) SI5048U 6535 5000 48 120 60 0.92
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