Effects of NaOH Activation on Adsorptive Removal of Herbicides by Biochars Prepared from Ground Coffee Residues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Herbicides
2.2. Preparation of GCRB and GCRB-N
2.3. Batch Adsorption Experiments
2.4. Analytical Methods
3. Results and Discussions
3.1. Characteristics of the GCRB and GCRB-N
3.1.1. Bulk Elemental Composition and Functional Groups Analyses
3.1.2. SEM-EDX and XRD Analyses
3.2. Adsorption of Herbicides: Kinetics Studies
3.3. Adsorption Isotherms of Herbicides
3.4. Effects of Solution pH on Adsorption of Herbicides
3.5. Effects of Solution Temperature on Adsorption of Herbicides
3.6. Effects of Ionic Strength on Adsorption of Herbicides
3.7. Effects of Humic Acids on Adsorption of Herbicides
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ALA | Alachlor |
Ce | Concentration of herbicides at equilibrium (μmol/L) |
C0 | Initial concentrations of herbicides (μmol/L) |
DIU | Diuron |
GCRB | Ground coffee residue biochar |
GCRB-N | NaOH activated ground coffee residue biochar |
k1 | Pseudo-first-order rate constant (1/h) |
k2 | Pseudo-second-order rate constant (g/μmol·h) |
KF | Freundlich isotherm capacity factor (μmol1−(1/n) L1/n/g) |
KL | The adsorption energy (L/μmol) |
Qe | The quantities of the adsorbed herbicides at equilibrium (µmol/g) |
Qt | The amounts of the adsorbed herbicides at time t (µmol/g) |
Qe,exp | The adsorption capacities of the herbicides at equilibrium (μmol/g) |
Qmax | The maximum adsorption capacity (μmol/g) |
n | The adsorption affinity of the herbicides |
SIM | Simazine |
V | Volume of herbicides solution (L) |
References
- Taha, S.M.; Amer, M.E.; Elmarsafy, A.E.; Elkady, M.Y. Adsorption of 15 different pesticides on untreated and phosphoric acid treated biochar and charcoal from water. J. Environ. Chem. Eng. 2014, 2, 2013–2025. [Google Scholar] [CrossRef]
- Tirmenstein, M.A.; Mangipudy, R. Alachlor. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press: Oxford, UK, 2014; pp. 107–109. [Google Scholar] [CrossRef]
- Antoniou, M.G.; De La Cruz, A.A.; Pelaez, M.A.; Han, C.; He, X.; Dionysiou, D.D.; Song, W.; O’Shea, K.E.; Ho, L.; Newcombe, G. Practices that prevent the formation of cyanobacterial blooms in water resources and remove cyanotoxins during physical treatment of drinking water. Sci. Inventory 2013, 2, 173–195. [Google Scholar]
- Vanraes, P.; Wardenier, N.; Surmont, P.; Lynen, F.; Nikiforov, A.; Van Hulle, S.W.H.; Leys, C.; Bogaerts, A. Removal of alachlor, diuron and isoproturon in water in a falling film dielectric barrier discharge (DBD) reactor combined with adsorption on activated carbon textile: Reaction mechanisms and oxidation by-products. J. Hazard. Mater. 2018, 354, 180–190. [Google Scholar] [CrossRef]
- Rosenfeld, P.E.; Feng, L. Risks of Hazardous Wastes, 1st ed.; William Andrew: Oxford, UK, 2011. [Google Scholar]
- Swan, S.; Guillette, L., Jr.; Myers, J.; vom Saal, F. Epidemiological studies of reproductive effects in humans. Reprod. Toxicol. 2008, 19, 5–26. [Google Scholar] [CrossRef]
- Magnusson, M.; Heimann, K.; Quayle, P.; Negri, A.P. Additive toxicity of herbicide mixtures and comparative sensitivity of tropical benthic microalgae. Mar. Pollut. Bull. 2010, 60, 1978–1987. [Google Scholar] [CrossRef] [PubMed]
- Zimba, P.V.; Tucker, C.S.; Mischke, C.C.; Grimm, C.C. Short-term effect of diuron on catfish pond ecology. North Am. J. Aquac. 2002, 64, 16–23. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.; Zheng, L.; Lu, S.; Yan, Z.; Ling, J. Occurrence, distribution and ecological risk assessment of the herbicide simazine: A case study. Chemosphere 2018, 204, 442–449. [Google Scholar] [CrossRef]
- Sai, L.; Liu, Y.; Qu, B.; Yu, G.; Guo, Q.; Bo, C.; Xie, L.; Jia, Q.; Li, Y.; Li, X. The effects of simazine, a chlorotriazine herbicide, on the expression of genes in developing male Xenopus laevis. Bull. Environ. Contam. Toxicol. 2015, 95, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Oropesa, A.; García Cambero, J.; Soler, F. Effect of long-term exposure to simazine on brain and muscle acetylcholinesterase activity of common carp (Cyprinus carpio). Environ. Toxicol. Int. J. 2008, 23, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Leovac, A.; Vasyukova, E.; Ivančev-Tumbas, I.; Uhl, W.; Kragulj, M.; Tričković, J.; Kerkez, Đ.; Dalmacija, B. Sorption of atrazine, alachlor and trifluralin from water onto different geosorbents. RSC Adv. 2015, 5, 8122–8133. [Google Scholar] [CrossRef]
- Hnatukova, P.; Kopecka, I.; Pivokonsky, M. Adsorption of cellular peptides of Microcystis aeruginosa and two herbicides onto activated carbon: Effect of surface charge and interactions. Water Res. 2011, 45, 3359–3368. [Google Scholar] [CrossRef]
- Foo, K.; Hameed, B. Detoxification of pesticide waste via activated carbon adsorption process. J. Hazard. Mater. 2010, 175, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Chingombe, P.; Saha, B.; Wakeman, R. Surface modification and characterisation of a coal-based activated carbon. Carbon 2005, 43, 3132–3143. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. Biochar for environmental management: An introduction. Biochar Environ. Manag. Sci. Technol. 2009, 1, 1–12. [Google Scholar]
- Suo, F.; You, X.; Ma, Y.; Li, Y. Rapid removal of triazine pesticides by P doped biochar and the adsorption mechanism. Chemosphere 2019, 235, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Suo, F.; Liu, X.; Li, C.; Yuan, M.; Zhang, B.; Wang, J.; Ma, Y.; Lai, Z.; Ji, M. Mesoporous activated carbon from starch for superior rapid pesticides removal. Int. J. Biol. Macromol. 2019, 121, 806–813. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, X.; Xiang, Y.; Wang, P.; Zhang, J.; Zhang, F.; Wei, J.; Luo, L.; Lei, M.; Tang, L. Modification of biochar derived from sawdust and its application in removal of tetracycline and copper from aqueous solution: Adsorption mechanism and modelling. Bioresour. Technol. 2017, 245, 266–273. [Google Scholar] [CrossRef]
- Fan, Q.; Sun, J.; Chu, L.; Cui, L.; Quan, G.; Yan, J.; Hussain, Q.; Iqbal, M. Effects of chemical oxidation on surface oxygen-containing functional groups and adsorption behavior of biochar. Chemosphere 2018, 207, 33–40. [Google Scholar] [CrossRef]
- Choi, I.S.; Ko, S.H.; Kim, H.M.; Yang, J.E.; Jeong, S.-G.; Chang, J.Y.; Lee, K.H.; Qi, S.-B.; Xin, Q.; Cui, C.-B.; et al. Coffee residue as a valorization bio-agent for shelf-life extension of lactic acid bacteria under cryopreservation. Waste Manag. 2020, 118, 585–590. [Google Scholar] [CrossRef]
- Karmee, S.K. A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites. Waste Manag. 2018, 72, 240–254. [Google Scholar] [CrossRef]
- Shin, J.; Lee, Y.-G.; Lee, S.-H.; Kim, S.; Ochir, D.; Park, Y.; Kim, J.; Chon, K. Single and competitive adsorptions of micropollutants using pristine and alkali-modified biochars from spent coffee grounds. J. Hazard. Mater. 2020, 400, 123102. [Google Scholar] [CrossRef] [PubMed]
- Viglašová, E.; Galamboš, M.; Danková, Z.; Krivosudský, L.; Lengauer, C.L.; Hood-Nowotny, R.; Soja, G.; Rompel, A.; Matík, M.; Briančin, J. Production, characterization and adsorption studies of bamboo-based biochar/montmorillonite composite for nitrate removal. Waste Manag. 2018, 79, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Lu, T.; Zhao, D.; Huang, H.; Noriyuki, K.; Chen, Y. Influence of temperature on product distribution and biochar properties by municipal sludge pyrolysis. J. Mater. Cycles Waste Manag. 2013, 15, 357–361. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Johir, M.A.H.; Sornalingam, K. Single and competitive sorption properties and mechanism of functionalized biochar for removing sulfonamide antibiotics from water. Chem. Eng. J. 2017, 311, 348–358. [Google Scholar] [CrossRef]
- Xiao, B.; Dai, Q.; Yu, X.; Yu, P.; Zhai, S.; Liu, R.; Guo, X.; Liu, J.; Chen, H. Effects of sludge thermal-alkaline pretreatment on cationic red X-GRL adsorption onto pyrolysis biochar of sewage sludge. J. Hazard. Mater. 2018, 343, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhao, Z.; Wu, X.; Zhou, W.; Zhu, L. Impact of mineral components in cow manure biochars on the adsorption and competitive adsorption of oxytetracycline and carbaryl. RSC Adv. 2017, 7, 2127–2136. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Capareda, S.; Chang, Z.; Gao, J.; Xu, Y.; Zhang, J. Biochar pyrolytically produced from municipal solid wastes for aqueous As(V) removal: Adsorption property and its improvement with KOH activation. Bioresour. Technol. 2014, 169, 622–629. [Google Scholar] [CrossRef]
- Cho, D.-W.; Yoon, K.; Kwon, E.E.; Biswas, J.K.; Song, H. Fabrication of magnetic biochar as a treatment medium for As(V) via pyrolysis of FeCl3-pretreated spent coffee ground. Environ. Pollut. 2017, 229, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-B.; Kim, S.-H.; Jeon, E.-K.; Kim, D.-H.; Tsang, D.C.W.; Alessi, D.S.; Kwon, E.E.; Baek, K. Effect of dissolved organic carbon from sludge, Rice straw and spent coffee ground biochar on the mobility of arsenic in soil. Sci. Total Environ. 2018, 636, 1241–1248. [Google Scholar] [CrossRef] [PubMed]
- Baharum, N.A.; Nasir, H.M.; Ishak, M.Y.; Isa, N.M.; Hassan, M.A.; Aris, A.Z. Highly efficient removal of diazinon pesticide from aqueous solutions by using coconut shell-modified biochar. Arab. J. Chem. 2020, 13, 6106–6121. [Google Scholar] [CrossRef]
- Shin, J.; Lee, Y.-G.; Kwak, J.; Kim, S.; Lee, S.-H.; Park, Y.; Lee, S.-D.; Chon, K. Adsorption of radioactive strontium by pristine and magnetic biochars derived from spent coffee grounds. J. Environ. Chem. Eng. 2021, 9, 105119. [Google Scholar] [CrossRef]
- Lee, K.-H.; Lee, Y.-G.; Shin, J.; Chon, K.; Lee, S.-H. Selective Immobilization of Antimony Using Brucite-rich Precipitate Produced during In Situ Hypochlorous Acid Formation through Seawater Electrolysis in a Nuclear Power Plant. Energies 2020, 13, 4493. [Google Scholar] [CrossRef]
- Kim, E.; Jung, C.; Han, J.; Her, N.; Park, C.M.; Jang, M.; Son, A.; Yoon, Y. Sorptive removal of selected emerging contaminants using biochar in aqueous solution. J. Ind. Eng. Chem. 2016, 36, 364–371. [Google Scholar] [CrossRef]
- Kim, H.; Ko, R.-A.; Lee, S.; Chon, K. Removal Efficiencies of Manganese and Iron Using Pristine and Phosphoric Acid Pre-Treated Biochars Made from Banana Peels. Water 2020, 12, 1173. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.M.; Kookana, R.S.; Van Zwieten, L.; Krull, E. Marked changes in herbicide sorption–desorption upon ageing of biochars in soil. J. Hazard. Mater. 2012, 231–232, 70–78. [Google Scholar] [CrossRef]
- Zheng, W.; Guo, M.; Chow, T.; Bennett, D.N.; Rajagopalan, N. Sorption properties of greenwaste biochar for two triazine pesticides. J. Hazard. Mater. 2010, 181, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Quirantes, M.; Nogales, R.; Romero, E. Sorption potential of different biomass fly ashes for the removal of diuron and 3,4-dichloroaniline from water. J. Hazard. Mater. 2017, 331, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Fontecha-Cámara, M.; López-Ramón, M.; Alvarez-Merino, M.; Moreno-Castilla, C. Effect of surface chemistry, solution pH, and ionic strength on the removal of herbicides diuron and amitrole from water by an activated carbon fiber. Langmuir 2007, 23, 1242–1247. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Mayer, B.K.; McNamara, P.J. Adsorption of organic micropollutants to biosolids-derived biochar: Estimation of thermodynamic parameters. Environ. Sci. Water Res. Technol. 2019, 5, 1132–1144. [Google Scholar] [CrossRef]
- Chen, C.; Chen, D.; Xie, S.; Quan, H.; Luo, X.; Guo, L. Adsorption behaviors of organic micropollutants on zirconium metal–organic framework UiO-66: Analysis of surface interactions. ACS Appl. Mater. Interfaces 2017, 9, 41043–41054. [Google Scholar] [CrossRef]
- Xiao, X.; Sheng, G.D.; Qiu, Y. Improved understanding of tributyltin sorption on natural and biochar-amended sediments. Environ. Toxicol. Chem. 2011, 30, 2682–2687. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Xu, Z.; Zhou, Y.; Wei, Y.; Long, X.; He, Y.; Zhi, D.; Yang, J.; Luo, L. A sustainable ferromanganese biochar adsorbent for effective levofloxacin removal from aqueous medium. Chemosphere 2019, 237, 124464. [Google Scholar] [CrossRef] [PubMed]
Compounds (Abbreviation) | Formula | Structure | MW (g/mol) | Health Hazards a | Charge b | Log D a | pKa a | Solubility in Water c (g/L, pH 7) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH 3.0 | pH 7.0 | pH 11.0 | pH 3.0 | pH 7.0 | pH 11.0 | |||||||
Alachlor (ALA) | C14H20ClNO2 | 269.77 | Inhalation, Irritation (Skin) | 0 | 0 | 0 | 3.59 | 3.59 | 3.59 | - | 0.240 | |
Diuron (DIU) | C9H10Cl2N2O | 233.09 | Inhalation, Irritation (Eyes, Skin) | 0 | 0 | 0 | 2.53 | 2.53 | 2.53 | 13.18 | 0.042 | |
Simazine (SIM) | C7H12ClN5 | 201.66 | Irritation, Organs damage (Liver, Kidney) | 1 | 0 | 0 | 0.60 | 1.78 | 1.78 | 4.23 | 0.006 |
Properties | GCRB | GCRB-N | |
---|---|---|---|
Bulk elemental constitutions (%) | C | 83.5 | 82.9 |
H | 1.8 | 1.4 | |
O | 3.7 | 3.6 | |
N | 3.4 | 1.3 | |
Ash | 7.6 | 10.8 | |
Atomic ratio | H/C | 0.022 | 0.017 |
O/C | 0.044 | 0.043 | |
(O+N)/C | 0.085 | 0.060 | |
Specific surface area (m2 g−1) | 3.83 | 405.33 | |
Average pore size (nm) | 5.59 | 3.05 | |
Total pore volume (cm3 g−1) | 0.014 | 0.293 |
Absorbents | Compounds | Qe,exp (μmol/g) | Pseudo-Fist-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|---|---|
Qe,cal (μmol/g) | k1 (1/h) | R2 | Qe,cal (μmol/g) | k2 (g/μmol·h) | R2 | |||
GCRB | ALA | 11.74 ± 0.14 | 4.12 ± 0.25 | 0.17 ± 0.03 | 0.916 | 12.00 ± 0.08 | 0.13 ± 0.01 | 0.999 |
DIU | 9.95 ± 0.06 | 5.95 ± 0.56 | 0.14 ± 0.02 | 0.953 | 10.07 ± 0.001 | 0.06 ± 0.002 | 0.995 | |
SIM | 6.53 ± 0.06 | 4.31 ± 0.70 | 0.19 ± 0.02 | 0.959 | 6.75 ± 0.05 | 0.10 ± 0.007 | 0.997 | |
GCRB-N | ALA | 122.71 ± 0.23 | 84.62 ± 2.04 | 0.14 ± 0.05 | 0.985 | 123.11 ± 0.07 | 0.004 ± 0.0003 | 0.996 |
DIU | 166.42 ± 0.66 | 97.69 ± 3.74 | 0.18 ± 0.006 | 0.989 | 167.08 ± 1.56 | 0.005 ± 0.0004 | 0.999 | |
SIM | 99.16 ± 0.88 | 69.81 ± 3.71 | 0.21 ± 0.07 | 0.993 | 100.01 ± 1.88 | 0.006 ± 0.003 | 0.999 |
Absorbents | Compounds | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|---|
Qmax (μmol/g) | KL (L/μmol) | R2 | n | KF (μmol1−(1/n) L1/n/g) | R2 | ||
GCRB | ALA | 90.91 ± 1.72 | 0.006 ± 0.0003 | 0.919 | 1.15 ± 0.002 | 0.69 ± 0.007 | 0.999 |
DIU | 115.12 ± 1.38 | 0.004 ± 0.0004 | 0.885 | 1.10 ± 0.002 | 0.58 ± 0.0008 | 0.999 | |
SIM | 106.38 ± 0.65 | 0.004 ± 0.0001 | 0.905 | 1.11 ± 0.001 | 0.54 ± 0.002 | 0.999 | |
GCRB-N | ALA | 231.48 ± 0.44 | 0.11 ± 0.0004 | 0.999 | 2.73 ± 0.004 | 51.05 ± 0.08 | 0.982 |
DIU | 322.58 ± 1.91 | 0.82 ± 0.05 | 0.999 | 5.13 ± 1.91 | 166.26 ± 0.05 | 0.885 | |
SIM | 144.92 ± 0.55 | 0.15 ± 0.0009 | 0.999 | 3.72 ± 0.006 | 46.72 ± 0.03 | 0.980 |
Biomass | Pyrolysis Temperature (°C) | Application Matrix | Herbicides | Initial Concentration (µM) | 1/n | KF (μmol1−(1/n) L1/n/g) | References |
---|---|---|---|---|---|---|---|
Paper mill sludge | 550 | 0.5%, Highly permeable red Ferrosol | DIU | 4.3–43 | 0.67 | 133 | [37] |
Mixture of maple, elm, and oak woodchips and bark | 450 | Aqueous solution | SIM | 0.248–24.8 | 0.68 | 2.55 | [38] |
Fly ash (Olive cake) | 450 | Aqueous solution | DIU | 10.7 | 0.42 | 184 | [39] |
Ground coffee residues | 800 | Aqueous solution | ALA | 10 | 0.37–0.87 | 0.69–51.05 | This study |
DIU | 0.19–0.91 | 0.58–166.26 | |||||
SIM | 0.27–0.90 | 0.54–46.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-G.; Shin, J.; Kwak, J.; Kim, S.; Son, C.; Cho, K.H.; Chon, K. Effects of NaOH Activation on Adsorptive Removal of Herbicides by Biochars Prepared from Ground Coffee Residues. Energies 2021, 14, 1297. https://doi.org/10.3390/en14051297
Lee Y-G, Shin J, Kwak J, Kim S, Son C, Cho KH, Chon K. Effects of NaOH Activation on Adsorptive Removal of Herbicides by Biochars Prepared from Ground Coffee Residues. Energies. 2021; 14(5):1297. https://doi.org/10.3390/en14051297
Chicago/Turabian StyleLee, Yong-Gu, Jaegwan Shin, Jinwoo Kwak, Sangwon Kim, Changgil Son, Kyung Hwa Cho, and Kangmin Chon. 2021. "Effects of NaOH Activation on Adsorptive Removal of Herbicides by Biochars Prepared from Ground Coffee Residues" Energies 14, no. 5: 1297. https://doi.org/10.3390/en14051297
APA StyleLee, Y. -G., Shin, J., Kwak, J., Kim, S., Son, C., Cho, K. H., & Chon, K. (2021). Effects of NaOH Activation on Adsorptive Removal of Herbicides by Biochars Prepared from Ground Coffee Residues. Energies, 14(5), 1297. https://doi.org/10.3390/en14051297