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Abstract: Drilling more efficiently and with less non-productive time (NPT) is one of the key enablers
to reduce field development costs. In this work, we investigate the application of a data-driven
optimization method called extremum seeking (ES) to achieve more efficient and safe drilling through
automatic real-time minimization of the mechanical specific energy (MSE). The ES algorithm gathers
information about the current downhole conditions by performing small tests with the applied weight
on bit (WOB) and drill string rotational rate (RPM) while drilling and automatically implements
optimization actions based on the test results. The ES method does not require an a priori model
of the drilling process and can thus be applied even in instances when sufficiently accurate drilling
models are not available. The proposed algorithm can handle various drilling constraints related to
drilling dysfunctions and hardware limitations. The algorithm’s performance is demonstrated by
simulations, where the algorithm successfully finds and maintains the optimal WOB and RPM while
adhering to drilling constraints in various settings. The simulations show that the ES method is able
to track changes in the optimal WOB and RPM corresponding to changes in the drilled formation.
As demonstrated in the simulation scenarios, the overall improvements in rate of penetration (ROP)
can be up to 20–170%, depending on the initial guess of the optimal WOB and RPM obtained from
e.g., a drill-off test or a potentially inaccurate model. The presented algorithm is supplied with
specific design choices and tuning considerations that facilitate its simple and efficient use in drilling
applications.

Keywords: real-time drilling optimization; extremum seeking; data-driven optimization; mechanical
specific energy; rate of penetration

1. Introduction

Drilling a petroleum well is a complicated process with a multitude of factors that
affect the drilling efficiency. Because of the high costs associated with well construction, the
industry has for more than a century sought to improve drilling performance, in particular
through automation and mechanization; a process which has been traced by Eustes [1]. The
current state of drilling automation mainly consists of separate functionalities that can aid
the driller by performing tasks like providing envelope control [2,3], fault detection [4,5],
vibration mitigation [6,7] or selection of the best suited weight on bit (WOB) and drill
string rotational rate (RPM) for rate of penetration (ROP) optimization [8,9]. The focus of
this study is on developing an automatic system for real-time drilling optimization that
automatically seeks out and maintains the WOB and RPM resulting in optimal and safe
drilling for the current downhole conditions.

To apply any automated algorithm to drill more efficiently, an objective function
is needed to quantify what is meant by optimal drilling conditions. In this work, we
employ the mechanical specific energy (MSE) as the objective function to be minimized.
The MSE is a measure of the energy required to excavate a unit volume of rock and can
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be expressed as a ratio between the rate of energy usage to the rate of penetration [10],
which provides a relative measure of the drilling efficiency [11]. The MSE is strongly
dependent on the relationship between the ROP and the applied WOB and RPM. It is
expected that for a certain region of WOB and RPM values, the bit will drill at peak
efficiency [12]. Increasing the WOB or RPM inside the efficient drilling region will result in
corresponding proportional gains in the ROP, while the MSE decreases or stays constant.
At some threshold value, often referred to as the founder point, further increases in WOB
or RPM will no longer yield a proportional response in ROP. The lower than expected
response in ROP is caused by a drilling dysfunction such as vibrations, bit- or bottomhole
balling, which reduces the drilling efficiency and drastically increases the MSE. The founder
point can therefore be identified as the combination of WOB and RPM that corresponds to
the minimum MSE. If there is no specific operating point that results in minimal MSE, but
rather a range of WOB and RPM values at which the MSE is minimal and nearly constant,
the founder point can be identified by increasing the WOB and RPM until the MSE starts
to grow [12].

It is important to note that drilling at the founder point results in high ROP and
the most energy-efficient drilling, but moderately higher ROP can in most cases be ob-
tained by increasing the WOB and/or RPM somewhat past the point of founder. Drilling
with dysfunctions can however be deleterious for the bit, downhole tools and borehole
quality [12,13], which can result in equipment wear and NPT by having to pull the bit pre-
maturely [14]. The ROP that is achieved when the MSE is at its minimal value is therefore
the maximal “good ROP” that can be attained without re-engineering drilling equipment
or procedures [11].

In addition to drilling dysfunctions that should be avoided, there are also process
constraints that the driller or an algorithm controlling the drilling must adhere to. Drilling
at the founder point might not be feasible because of process constraints such as a maximal
allowable ROP related to hole cleaning, an upper limit on the WOB to prevent bit damage
or top-side energy constraints. In these constrained cases, the authors consider the optimal
drilling conditions to be at the smallest MSE value that can be attained without violating
the process constraints.

Selecting the optimal WOB and RPM is not a trivial task. Available drilling models
might not be accurate enough in predicting the relationship between the ROP and related
drilling parameters [15,16]. Varying downhole conditions such as changes in pore pressure
or formation properties as well as degradation of the bit teeth/cutters can alter drilling
efficiency so that the combination of WOB and RPM that was optimal a short time ago
might no longer be the best solution. Historically, designated testing procedures like the
Drill-off test [12] or five-point test [17] have been used to empirically explore how the
ROP responds to various combinations of WOB and RPM. The downside of this type of
“one-time testing” is that the results are only valid for the current downhole conditions,
and as soon as the conditions change, the test will have to be repeated.

An alternative to optimization based on models and on “one-time testing” are ap-
proaches employing “testing on the fly”. In these approaches, the relation between the
WOB and/or RPM and an objective function such as the ROP or MSE is explored by
performing tests while drilling ahead and selecting more optimal WOB and RPM based
on the obtained information. As the downhole conditions change, the repeated tests can
identify how the WOB and RPM should be adjusted to drill more efficiently, given the
new circumstances. Rommetveit et al. [18] describe an approach of making changes in
the WOB and RPM to gather information on how the ROP reacts to these changes. The
gathered information can then be used to generate recommendations for the driller or
for closed loop control by an optimization algorithm [18]. An automated golden search
algorithm that varies the WOB to identify drilling with minimal MSE has been tested on a
lab-scale drilling rig [19]. Field trials of advisory systems that can suggest variations in the
applied WOB and RPM to search for the drilling conditions that yield the lowest MSE have
been described in [20,21]. In recent years, several authors have investigated a data-driven
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method called extremum seeking (ES) for drilling optimization. This method relies on
continuous testing and optimization based on the test results. Banks [22] explored single
variable ES to minimize the MSE with a laboratory drill rig. Aarsnes et al. [23] showed
with simulations that ES can be used to seek out the optimal WOB to drill with. A method
for adhering to process constraints while optimizing the applied WOB with ES has also
been investigated [24]. A drilling optimization system that employs multivariable ES has
been tested in the field with good results [25], although no specific details on the algorithm
have been provided in that paper.

Extremum seeking is a model-free control algorithm that provides a framework for
automatically conducting small tests of the current operating conditions and adapting to
the results of the tests to optimize the process. ES has previously been utilized in a variety
of engineering systems; an extensive list is provided by Tan et al. [26]. In the context of
drilling optimization, the ES algorithm can be employed to find the combination of WOB
and RPM which minimizes the MSE (or some other objective function). While drilling
ahead, small periodic variations in the WOB and RPM are automatically implemented
by the algorithm to test the current drilling conditions. How the MSE responds to these
variations is calculated and logged from real-time measurements of the relevant drilling
parameters. This generates a local linear “map” of how the MSE is related to the WOB
and RPM, which is used by the ES algorithm to make small adjustments in the WOB and
RPM in the direction that lowers the MSE. By iteratively performing this procedure of
testing and adapting to the results, the WOB and RPM will be steered to the values which
result in drilling with minimal MSE. As new tests are performed and new data is recorded,
older measurements are discarded from the analysis so that the information used by the
algorithm is up to date and representative of the current downhole conditions. In this way,
the algorithm will be able to adapt to downhole changes like drilling into a new formation
where new values of WOB and RPM might be more beneficial to drill with.

The main advantage of applying the ES method for drilling optimization is that
it is model-free, and therefore requires limited a-priori knowledge about the current
drilling environment to be employed. When using models to predict how to drill opti-
mally [8,9,15,16,27], the models need to be tuned based on data that is representative of the
current downhole conditions. When the conditions change, the models will no longer be
valid before they are re-tuned to the new circumstances, which can limit their applicability
for real-time optimization. Nevertheless, the drilling models are still a valuable tool that
can be combined with data-driven approaches such as Extremum Seeking. The models
can provide an initial estimate of the optimal WOB and RPM to drill with, which the ES
method can use as a starting point to further improve the drilling efficiency.

In this paper, we present a multivariable ES algorithm that automatically adjusts the
WOB and RPM to reach drilling with a minimal MSE value. Although an application
of multivariable ES to drilling was presented in [25] with successful field trials, limited
details of the algorithm were provided. The algorithm presented in our paper is given
in detail with a description of specific design choices and tuning considerations that lead
to its simple and efficient use for drilling applications. In addition to that, the presented
algorithm can automatically handle operational constraints relevant to safe drilling. The
paper details several options on how this functionality can be implemented. Finally, to
test the algorithm, a new qualitative model that links the ROP, WOB, RPM and Torque as
well as drilling dysfunctions is presented. Without dysfunctions, the model coincides with
the drilling model developed by Detournay et al. [28]. This combined model is qualitative
when it comes to modelling the dysfunction effects. Yet, it represents phenomena observed
in field operations where drilling with dysfunctions result in reduced ROP and high
MSE [12–14], and can be utilized for testing of ES algorithms as well as other data-driven
(model-free) drilling optimization approaches.

The remainder of the paper is organized in the following way: in Section 2, we
formulate the challenge of achieving safe and efficient drilling as an optimization problem
and present models that qualitatively describe the relations between the drilling efficiency
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in terms of MSE, drilling dysfunctions and operational constraints. These models will be
used for testing the proposed algorithm in a simulation environment. In Section 3, the
multivariable extremum seeking method and different techniques for constraint handling
are detailed together with practical aspects on how to apply and tune the algorithm.
Section 4 presents simulation results that demonstrate the performance of the proposed
algorithm and highlight its properties. Section 5 contains a discussion of the results of the
study, while Section 6 presents conclusions and directions for further work.

2. Safe and Efficient Drilling as an Optimization Problem

The overall goal in drilling optimization (when it comes to mechanical aspects of
drilling) is to ensure WOB and RPM that result in drilling that is both safe for the on-
site personnel and drilling equipment (including wear minimization) and provides high
efficiency. To achieve this goal, the concept of MSE can be used as a performance index
to identify the most efficient drilling conditions, which will generate high ROP without
exposing the bit and downhole tools to excessive vibrations. The latter can accelerate
equipment wear and reduce the ROP.

Although it is theoretically possible to develop accurate models describing both the
rock cutting process and various dysfunctions (e.g., using bit-rock interaction models [28]
and advanced proprietary drill string models [14]), such models can be of limited value for
real-time drilling optimization. They require detailed knowledge of downhole conditions
like mechanical rock properties, the current bit wear state and formation characteristics
such as heterogeneity, anisotropy and interbedding [14,28], parameters that change over
time and are hard, if possible at all, to measure while drilling. Field experience do however
show that at certain combinations of WOB and RPM, downhole vibrations that can be
detrimental to the ROP and drilling equipment do occur [9,14,29]. Situations where the
drilling efficiency is hampered by vibrations should therefore be accounted for in any
optimization approach that attempts to seek out the optimal WOB and RPM to drill with.

To study drilling optimization in the presence of vibrational effects, we have chosen
an approach which qualitatively includes vibrational dysfunctions into a drilling model for
polycrystalline diamond compact (PDC) bits [28], and refer to this combined model as the
extended model. The extended model accounts for vibrations by reducing the ROP and thus
the drilling efficiency when drilling with combinations of WOB and RPM that places the
operation in regions with expected vibrations. The extended model is qualitative when it
comes to modelling the dysfunction effects. Yet, it represents phenomena observed in field
operations where drilling with dysfunctions result in reduced ROP and high MSE [12–14].
When applying static models to replicate the bit/rock interaction, as is commonly done
in the literature [28,30], the model variables such as the WOB, RPM and ROP need to be
averaged over a suitable time-window for the model to be representative [28]. The same
logic is applied in the extended model; it will not capture the dynamics of the dysfunction
effects, but it will on average qualitatively represent drilling responses that could be
seen in field operations. Because the underlying drilling model [28] in the extended
model is defined for PDC bits, we focus on vibrational dysfunction effects, which tend to
dominate bit dysfunction with PDC bits [12]. Yet, the extended model could be applied to
qualitatively account for other types of dysfunction such as bit- and bottomhole balling as
well.

2.1. Drilling Model

The drilling model developed by Detournay et al. [28] is used in this work as a base
case scenario to simulate the drilling response of a PDC bit operating under ideal conditions.
What is meant here by ideal conditions is that the drilling response for a given bit and
formation is fully determined by the interface laws proposed by Detournay et al. [28],
which define static relationships between the WOB, RPM, ROP and the bit torque (T) based
on bit and formation properties. Drilling dysfunctions such as vibrations are however not
covered by this drilling model and will be introduced in the next section. The Detournay
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model relies on the existence of three distinct drilling regimes that relate the amount of
applied WOB and the resulting ROP (for a given RPM), separated into

• Phase I drilling, where the WOB is not adequate to force the cutters to fully engage
the formation, resulting in inefficient drilling. It is postulated that this inefficiency is
caused by the cutters having a blunt underside, a wear flat, which supports some of
the WOB and is a source of friction that does not contribute to the excavation of rock.
In phase I, drilling with higher WOB will increase the depth of cut, which translates to
higher ROP. At the same time, the increased depth of cut will expose a larger area of
the wear flats to contact with the formation, which in turn makes the wear flats carry
more WOB. The WOB being translated partly to increased cutting action and partly as
friction on the wear flats continues until a threshold WOB which marks the onset of
the next drilling phase. An ideally sharp bit will in theory never drill in phase I, as it
has no wear flats.

• Phase II drilling, which is characterized by efficient drilling with the bit acting incre-
mentally as an ideally sharp bit. At the onset of phase II drilling the contact forces
between the wear flat and the formation are fully engaged. Further increases in WOB
value will result in the rock deforming beneath the cutters without any increase in the
contact area between the wear flat and formation. An increase in WOB while in phase
II will be transferred solely to increasing depth of cut and correspondingly increasing
ROP at peak efficiency, up to a point where a drilling dysfunction starts diminishing
the efficiency of the cutting action.

• Phase III drilling, where an increase in contact forces between the bit and formation
results in less of the applied WOB being translated to cutting action, which leads to a
reduction in depth of cut and less efficient drilling. The onset of phase III drilling is
referred to as the founder point and is often considered the optimal conditions to drill
at [12,31].

The relationship between the applied WOB and RPM and the resulting bit torque (T)
and ROP in phase I and phase II drilling can be expressed as [28]:

ROP(WOB, RPM) =

{
c1·WOB·RPM

r , WOB ≤WOB∗
c2·(WOB−WOB∗)·RPM

r + ROP∗, WOB > WOB∗
, (1)

T(WOB) =
{

c3·r·WOB, WOB ≤WOB∗
c4·r·(WOB−WOB∗) + T∗, WOB > WOB∗

, (2)

where the asterisk subscript signifies the transition point between phase I and phase II
drilling, which is determined by bit bluntness and the formation strength. The values of
ROP∗ and T∗ correspond to the ROP and torque at a weight on bit of WOB∗. The parameter
r is the bit radius, and c1, c2, c3 and c4 are model parameters dependent on bit and formation
properties.

Equation (1) can be viewed as a calculated depth of cut per bit revolution, determined
by the model parameters and the applied WOB, which is multiplied with the RPM to find
the equivalent ROP. The torque can be observed from Equation (2) to be independent
of the RPM, as is often assumed in drilling models [32]. The modelled drilling response
from Equations (1) and (2) for a relatively sharp 12 1

4 ” diameter PDC bit drilling through
a generic formation A is shown in Figure 1, where the transition between phase I and
phase II drilling occurs at a WOB value of approximately 2700 kg. As Equations (1) and (2)
do not account for phase III effects, Figure 1 shows drilling at high efficiency throughout
the investigated WOB and RPM interval after the onset of phase II drilling. In real world
drilling operations, the ROP response to increasing WOB and RPM will at some point
deviate from the ideal phase II drilling, but the ROP response in region III is not unique and
depends on the loading path [28] as well as the dysfunction which causes the foundering
to occur [12,31]. Region III drilling is therefore not explicitly included in the Detournay
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drilling model [28]. A qualitative way of including vibrational drilling dysfunctions in the
model is proposed in the next section.
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2.2. Drilling Dysfunctions and Constraints

There are a multitude of factors that can affect the drilling efficiency. For an efficient
bit drilling with the expected depth of cut, the ROP will increase linearly with applied
WOB or RPM as shown in Figure 1, unless a dysfunction reduces the drilling efficiency
or a constraint limits the application of additional input energy [12,31]. The factors that
influence the ROP can in general be grouped into two categories [13]

• Foundering effects that reduce the efficiency of energy transferal between the bit and
the formation, which causes inefficient drilling. They can be caused by vibrations such
as stick-slip and whirl, as well as bit or bottomhole balling. These dysfunctions will
result in ROP values that are lower than what would be seen with an efficient bit for a
given WOB and RPM.

• Energy input limiters, which constrain the amount of energy that can be applied through
the input parameters WOB and RPM when drilling. In the case when the input energy
is constrained before the onset of foundering effects, the bit would still be able to
drill more efficiently at higher values of WOB and/or RPM, but because of a system
constraint these parameters cannot be increased. A multitude of input energy limiters
have been reported in the literature, such as a maximal WOB or RPM determined by
bit or bottom hole assembly (BHA) design, a maximal ROP dictated by hole cleaning or
solids handling capacity on the surface, a maximal top drive torque rating or top-side
vibrations [8,9,13].

The onset of foundering effects and non-bit limiters can in many cases be extended
to higher values of WOB and RPM through reengineering of the drilling equipment [13],
but such considerations are beyond the scope of this study. Here, we rather focus on the
existence of these effects and how they can be qualitatively included in a drilling model
to explore the performance of a data-driven optimization technique in drilling simulation
scenarios.

Critical values of RPM and WOB that trigger the onset of whirl and stick-slip vi-
brations are heavily affected by bit and BHA characteristics, as well as mechanical rock
properties [14]. For an appropriately designed drill string, it is expected that there is a
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region of WOB and RPM which is not notably affected by vibrations, while a combination
of high WOB and low RPM can result in stick-slip vibrations, low WOB and high RPM
can result in forward whirl, and a combination of high WOB and high RPM can induce
backward whirl [9,14,29]. Figure 2 shows the concept of different regions in the WOB-RPM
plane where the drilling process can be affected by vibrations, together with the ROP
contours calculated from the Detournay model for formation A. The shaded center region
in Figure 2 where one would drill with an acceptably high ROP while not being affected by
the foundering effects was dubbed the optimum zone by Wu et al. [14], as it is in this region
the combination(s) of WOB and RPM which results in the most efficient drilling can be
found. The locations of the dysfunction regions for formation A, as seen in Figure 2, are
generically placed in the WOB-RPM plane to qualitatively represent a scenario where there
is an optimum zone surrounded by regions where dysfunctions will occur [14].
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effects when drilling in this formation.

To incorporate vibrational foundering effects in the drilling model described by
Equations (1) and (2) in a qualitative way, a penalty term proposed by the authors is
included in the model. The penalty is formulated by defining limits in the WOB-RPM plane
at which the dysfunctions start to occur, as illustrated in Figure 2. When drilling with a
combination of WOB and RPM that places the operation in a region that is not affected by
vibrations, the drilling response is dictated entirely by Equations (1) and (2). When drilling
in the regions where vibrations are occurring, the proposed penalty term reduces the ROP
calculated from Equation (1) by an amount that is dependent on the specific dysfunction
and how far into the dysfunction region we are operating. This logic mimics the response
seen in field operations for a bit drilling with a dysfunction; if we keep increasing the WOB
and/or RPM further into the dysfunction regions, the experienced ROP will deviate further
and further away from the straight-line ROP response that was expected if the bit was still
drilling efficiently [12,13].

In this modified model, which we refer to as the extended model, the torque is not
affected by the dysfunctions and is calculated from Equation (2) for all values of WOB and
RPM. This property can be argued for from an MSE perspective. In the field, drilling with
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vibrational dysfunctions can reduce the drilling efficiency to the extent that the energy
consumption at the bit is more than an order of magnitude higher than what the rock
strength would indicate [33]. This implies that either the torque continues to grow with
the applied WOB also in the dysfunction region while the ROP is moderately reduced, or
that the torque stays constant or decreases while the ROP is severely reduced as a response
to increasing WOB. The former logic is applied in the extended model. Exactly how the
torque and ROP reacts to drilling with dysfunctions cannot be captured adequately by
a static model like the one we are proposing, but the model will be able to qualitatively
capture the expected behavior of reduced ROP and increased MSE when drilling in the
dysfunction regions.

The penalty functionality is implemented by means of straight-line functions (as
shown in Figure 2) that mark the onset of drilling dysfunctions, but the method we propose
is generic and could be applied to other curves as well. The method is in the following
explained by an example of drilling with backward whirl, but the same logic applies to the
other dysfunctions as well. If we are currently drilling ahead at an RPM of 150 and a WOB
of 11,500 kg, Equation (1) predicts that the resulting ROP will be approximately 45 m/h in
formation A, as can be seen from the contour lines in Figure 2. A penalty for drilling in the
whirl region is calculated based on how far into the dysfunction region we are operating,
which can be quantified by:

L =

√(
WOB−WOB′

WOBmax

)2
+

(
RPM− RPM′

RPMmax

)2
. (3)

In Equation (3), WOB and RPM are the current operating parameters, WOB’ and
RPM’ signifies the point on the dysfunction curve closest to the operating parameters,
and WOBmax and RPMmax are normalizing values of 20,000 kg and 200 RPM, respectively.
The normalization is performed to assign approximately equal weight to the WOB and
RPM when calculating the parameter L, which is a normalized measure of how far into
the dysfunction region we are operating. When drilling in regions that are not affected
by the dysfunctions, the parameter L is set equal to zero. Equation (3) is used to find the
magnitude of the penalty, R, from:

R = S(mL) =
{

3(mL)2 − 2(mL)3, 0 < mL < 1
1, mL ≥ 1

, (4)

where S is the smoothstep function, which is a clamping function that gives smooth s-shaped
output values between 0 and 1. Using Equation (4) to calculate the penalty, the ROP will
only be marginally reduced when drilling slightly into any of the dysfunction regions
where L will take on small values, and more severely affected as L grows. The parameter m
in Equation (4) is a model constant that can be used to customize how much the ROP is
penalized by the different dysfunctions, so that e.g., whirl can have a stronger negative
impact on the ROP than stick-slip [12]. In this work, the authors have used generic values
of m = 1 to calculate the penalty in the forward and backward whirl regions, and m = 0.5
for the stick-slip region. When drilling at a point that simultaneously falls within two
dysfunction regions, e.g., in the intersection between the stick-slip and backward whirl
regions at an RPM value of 100 and a WOB value of 16,000 kg, the calculated penalty is the
sum of the penalties incurred for drilling in both dysfunction regions.

The output ROP from the extended model is calculated from:

ROP = (1− R)ROPD, (5)

where the parameter ROPD signifies the ROP calculated from the “ideal” Detournay model
in Equation (1), while R is calculated from Equations (3) and (4). From Equation (5), the
penalized ROP that would be output from the model when operating at a WOB of 11,500
and an RPM of 150 is reduced from 45 to 36 m/h. Figure 3 displays how the ROP varies
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as a function of WOB and RPM when the proposed extended model is applied to model
drilling in formation A. Figure 3a shows a drilling curve for a constant RPM value of 90,
where it can be observed that WOB values above 12,900 kg correspond to drilling with
dysfunction, which reduces the ROP compared to the straight-line response predicted by
the Detournay model. At even higher values of WOB, the penalty is further increased and
the ROP starts decreasing. In Figure 3b, it can be seen from the ROP contours produced by
the extended model that drilling in the dysfunction regions reduces the ROP so that the
highest ROP that can be achieved in this formation is approximately 38 m/h, which occurs
in the region around a WOB value of 14,000 kg and an RPM value of 120. This maximal
ROP value does however correspond to drilling somewhat into the backward whirl region
(as can be seen from Figure 2), and it does not necessarily represent the optimal conditions
to drill at, as will be explained in the next section.
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2.3. Mechanical Specific Energy

The concept of mechanical specific energy (MSE) was investigated by Simon [34]
and Teale [10] in the sixties and has since been used for applications such as drilling
optimization [11,13] and lithology identification [35]. MSE is defined as the energy required
to excavate a unit volume of rock, and can be expressed as [10]:

MSE =
gWOB

πr2 +
120RPM·T

r2ROP
, (6)

where g is the gravitational acceleration constant with a value of 9.81 m/s2. Equation (6)
can be seen as the ratio between the energy input to the drilling process and the output ROP.
This ratio will assume its minimal value when drilling at peak efficiency in the transition
between phase II and phase III, with higher MSE values when drilling in phases I and
III [13]. It can be noted that of the two right-hand terms in Equation (6), the rightmost
term will normally be larger by a substantial margin and chiefly dictate the value of the
calculated MSE [10]. To calculate an MSE value that reflects the actual energy expenditure
at the bit, the downhole torque should be used when using Equation (6) [11,36]. This is
because friction along the drill string will cause the surface torque to be higher than the
torque on bit. When used as a trending tool, the MSE calculated from the surface torque can
still be applied to identify more efficient drilling, but with the risk of possible inaccuracies
in the analysis caused by fluctuations in the drill string frictional losses. The authors have
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assumed in this work that we have access to the downhole torque values, which could
come from either measurements from a downhole tool or be calculated from the topside
torque with a torque and drag model.

Figure 4 illustrates how the MSE varies with WOB in formation A together with the
corresponding drill-off curve. The plot is generated using the extended model detailed
in Equations (1)–(5) and a constant RPM value of 90. From Figure 4, it can be seen that
the minimum MSE occurs at a value of approximately 12,900 kg of WOB, at the founder
point at which the ROP starts deviating from straight-line phase II drilling. Higher values
of ROP can be achieved by increasing the WOB past the founder point, but this increase
will come at the cost of detrimental foundering effects which can damage the downhole
equipment. The minimum MSE will therefore correspond to the maximal “good ROP” that
can be achieved without deleterious side-effects [11]. The shape of the ROP-WOB curve in
region III will determine how rapidly the MSE increases when entering this region, but as
long as the ROP deviates from the efficient phase II drilling, the MSE will increase at this
point. This property makes the MSE a valuable diagnostic tool for drilling optimization; as
long as the MSE shows an increasing trend in regions I and III (when moving “outward”
from region II drilling in either direction), the most efficient drilling can be identified by
seeking out the highest WOB that does not make the MSE increase.
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Figure 5 shows how the MSE and ROP varies with RPM for a constant WOB value
of 10,000 kg in formation A. It can be observed that RPM values in the optimum zone,
approximately 65 to 115 RPM, results in a flat minimum value in the MSE. Outside of this
region, where dysfunctions affect the drilling efficiency, the MSE is seen to increase. This
relationship can be deduced from the rightmost term in Equation (6) under the assumption
that the RPM and torque are not coupled, as is the case with Equation (2). As long as the
ROP scales linearly with the RPM, the MSE ratio will remain constant. In the dysfunction
regions, where the gain in ROP is less than the expected linear relationship with the RPM,
the numerator in Equation (6) will grow faster than the denominator. The highest RPM
that can be applied without increasing the MSE above the constant minimum value in
the optimum region will therefore yield the highest dysfunction-free ROP and the most
efficient drilling.
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Figure 5. MSE and ROP as functions of RPM, illustrated for a constant WOB value of 10,000 kg.

A contour plot detailing how the MSE varies as a function of applied WOB and RPM
is shown in Figure 6. This plot is generated using the proposed extended model, where
the ROP is penalized when drilling in the three dysfunction regions (as shown in Figure 2).
As can be seen in Figure 6, there is a region around the point at which the WOB value is
approximately 12,900 kg and the RPM value is 90, where one would drill with the minimal
MSE value of 180 MPa. This point corresponds to the top corner of the optimum zone
depicted in Figure 2. Moving away from this low MSE region in any direction will increase
the MSE; at first with small values and then progressively larger values as we move into the
different dysfunction regions where drilling is less efficient. Comparing Figures 6 and 3b,
it can also be observed that the highest possible ROP values which are found in the region
around a WOB of 14,000 and an RPM of 120, correspond to drilling with a dysfunction, as
is reflected by the higher MSE values around this point in Figure 6.
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3. Drilling Optimization with Extremum Seeking

As detailed in Section 2, accurate modelling of the drilling process, which regions
will be affected by dysfunctions and which combination(s) of WOB and RPM which will
yield the most efficient drilling is a challenging task. Not knowing at which point drilling
dysfunctions will be induced can cause the driller to use conservative limits imposed on the
WOB and RPM, which can result in sub-optimal drilling. Accurate modeling of the drilling
process will often require detailed knowledge of downhole parameters which cannot be
measured directly and are therefore hard to obtain in real-time operations. The situation is
further complicated by changes in downhole conditions which can cause models tuned to
data from before the change to no longer be valid for the current circumstances.

Employing a data-driven optimization technique like ES can be used to solve these
challenges, as the method does not rely on having detailed a priori knowledge of the
downhole conditions. The ES algorithm relies instead on executing small tests while
drilling ahead by varying the applied WOB and RPM. Real-time measurements of how
drilling parameters such as the ROP, T and calculated MSE vary when the tests are
performed are recorded by the algorithm. The measured response to the tests represents
the most up to date knowledge on how the drilling process reacts to changes in WOB
and RPM and are automatically used by the algorithm to perform optimization actions
that reduce the MSE if possible. When a change in downhole conditions occurs, such as
a formation shift, this will be reflected in the measured drilling parameters and the ES
algorithm will be able to adapt to the new downhole circumstances.

Using the MSE as an objective function to quantify when we are drilling efficiently
can be a powerful tool for drilling optimization. If the MSE exhibits the general shape
shown in Figure 6; where drilling efficiently will result in lower MSE values and drilling
into the dysfunction regions will make the MSE progressively increase, the proposed ES
algorithm can be used to seek out the WOB and RPM that result in drilling with minimal
MSE. The only a priori information that is needed is knowing the general shape of the MSE
response to drilling efficiently and inefficiently, as well as some general drilling engineering
knowledge that is needed to initiate and tune the algorithm. The ES method is an iterative
algorithm, which means that it needs to be initiated when drilling at some WOB and RPM
and use this as a starting point from which it can perform optimization actions. This
starting point can be viewed as an “initial guess” of the optimal WOB and RPM, and can
be based on the drillers experience, data from an offset well or an estimate provided by a
drilling model.

3.1. The Extremum Seeking Algorithm

Extremum seeking is in essence a hill climbing optimization method that is applied
to a process in real-time. ES works by systematically exciting the system to gather in-
formation about the current operating conditions by varying one or several controllable
input variables. Real-time and recent measurements are used to calculate an objective
function that quantifies the system’s reaction to the excitations. Based on how the ob-
jective function changes with the variations in the input parameters, the ES algorithm
will automatically make small changes to the input variables that steers them towards
the values optimizing the objective function. This happens in an iterative fashion, where
new measurements are continuously included in the analysis and old measurements are
discarded. The optimization method does not require a model of the system, since all
adjustments are performed based on measurements of how the process performs with
different values and combinations of the input variables.

In this work, we consider a multivariable ES approach in which the controllable
variables we seek to manipulate to drill more optimally are the WOB and RPM. The MSE,
as detailed in Equation (6), is used as an objective function to quantify what combination of
WOB and RPM constitutes optimal drilling. The procedure is illustrated in Figure 7, where
the left-hand plot demonstrates how the ES algorithm automatically varies the WOB and
RPM to investigate the drilling response in the local region marked with green shading.



Energies 2021, 14, 1298 13 of 35

The right-hand tracks show the varying input variables and the resulting MSE as functions
of time. It can be observed from Figure 7 that, in this case, higher values of both WOB and
RPM results in lower MSE, which would prompt the ES algorithm to slowly increase the
WOB and RPM, as indicated by the dotted lines. This procedure of testing and adapting to
the MSE-response is performed continuously and will over time drive the system to drill
at the optimal conditions that minimize the MSE. In cases where the MSE does not change
when the WOB and/or RPM are varied, this is interpreted by the proposed ES algorithm as
a situation where it should increase the applied WOB and/or RPM further, as explained in
Section 2. Several techniques for avoiding violation of drilling constraints are proposed
and implemented in the following, to ensure that the ES algorithm will adhere to process
limitations while seeking out the minimal MSE.
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The ES algorithm can be split into three main components:

• The excitation signal, which varies the input variables around a base value to investigate
the current drilling conditions.

• Gradient estimation, which quantifies how the process reacts to the excitation signal
by estimating partial derivatives of the objective function with respect to the input
variables.

• Adaptation, which adjusts the base values of the input variables with a magnitude and
direction determined by the estimated gradients, to seek out drilling conditions that
result in lower MSE values.

These components are detailed in the subsequent sections. Because the measurements
of drilling parameters and commands given to the control system on the rig are performed
at regular intervals, discrete time notation is used. It is assumed that relevant measurements
are performed at a time interval of ∆t seconds, and that the top drive and autodriller can
receive updated setpoints for target RPM and WOB every ∆t seconds. For simplicity, ∆t
is set to a value of 1 s. The current timestep is denoted by t, so that a command for the
coming timestep is indicated by the notation t + ∆t.

3.1.1. The Excitation Signal

To probe the current drilling conditions, a periodic excitation signal is continuously
applied to the input variables. Assume that we are currently drilling ahead with the base
values WOB and RPM as initial guesses of the optimal input variables. These initial values
could be based on e.g., data from an offset well or estimates given by a drilling model.
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The ES algorithm dictates a periodic variation in the WOB and RPM about the base values
according to:

WOB(t) = WOB(t) + d(t, Awob, Pwob), (7a)

RPM(t) = RPM(t) + d
(
t, Arpm, Prpm

)
, (7b)

where the left-hand sides signify the WOB and RPM that will be sent to the control system
on the rig as setpoints. The parameters A and P are the amplitude and period of the
excitation signal, d, which is given by:

d(t, A, P) = A·sgn
(

sin
(

2πt
P

))
. (8)

Equation (8) describes a square wave, where sgn is the signum function which takes
a value of 1 when the argument is positive, a value of 0 when the argument is zero and
a value of −1 when the argument is negative. The applied WOB and RPM prescribed
by Equations (7a) and (7b) will oscillate about the base values, WOB and RPM, with
amplitudes of ± Awob kg and ± Arpm rpm, respectively. Through the information gathered
from the excitation signals, the ES algorithm will adjust the base values in the direction
that reduces the MSE.

The induced variations in RPM and WOB can potentially influence the measured MSE
to different extents and in different directions. For the ES algorithm to be able to draw
conclusions as to how the two input variables individually affect the drilling efficiency,
the parameters Pwob and Prpm should be designed to minimize the coupling between the
MSE-responses resulting from the two signals. In this work, the periods of the excitation
signals are set so that Pwob = 2Prpm. This tuning is illustrated in the right-hand tracks in
Figure 7, where the RPM oscillates with twice the frequency of the WOB-signal. For each
half-period of the WOB fluctuations, the WOB remains relatively constant while the RPM
performs a full oscillation, from which the dependency between the MSE and RPM can be
deduced by the gradient estimator. The frequency of the RPM signal is an even multiple
of the WOB signal frequency, causing the average RPM value during each period of the
WOB oscillation to be approximately RPM. This allows for estimation of the relationship
between the MSE and the varying WOB as if the RPM was held constant. The tuning of the
excitation signals is further explored in Appendix A.

3.1.2. Gradient Estimation

To estimate a local model of the MSE as a function of the applied WOB and RPM, a
lest-squares approach is used in this work. As we drill ahead, measurements of the WOB,
RPM, T and ROP as well as the calculated MSE are stored in buffers containing a few
minutes of the most recent data. These buffers contain a sliding window time series of data
that represents the most up to date information that is available about the current drilling
conditions. At each update of measurements, the newest measurements are included in
the buffers, while the oldest are discarded. The buffers contain data from one period of the
excitation signal with the longest period time, which in this case is Pwob seconds.

The excitation signals are designed to elicit responses in MSE that can be associated
with each individual signal. This allows the gradient estimation to be performed by
correlating the variations in measured MSE with the applied WOB and RPM. At each new
timestep, ∆t, the updated buffers are used to solve the least-squares problem:

Pwob−1

∑
i=0

(
MSE(t− i∆t)−

(
awobWOB(t− i∆t) + arpmRPM(t− i∆t) + b

))2 → min
awob ,arpm , b

. (9)

In Equation (9), awob, arpm and b are the slopes and intercept, respectively, of the lest-
squares fit. The parameters a and b represent a linear approximation (local model) of how
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the MSE correlates with the input variables. The calculated slopes are used as estimates of
the partial derivatives of the MSE with respect to WOB and RPM by setting:

∂MSE
∂WOB

∣∣∣∣
WOB(t),RPM(t)

≈ awob(t),
∂MSE
∂RPM

∣∣∣∣
WOB(t),RPM(t)

≈ arpm(t). (10)

The gradients described by Equation (10) are based on the Pwob
(
= 2Prpm

)
seconds of

the most recent measurements and represent the current best estimate of how the MSE is
related to the input variables in the local region that has been explored by the excitation
signals. Because of the symmetry of the excitation signals, the average values for WOB and
RPM during PWOB seconds of drilling will on average be close or equal to WOB(t) and
RPM(t), respectively, which is why the gradients in Equation (10) are evaluated at this
point.

3.1.3. Adaptation

Assuming that there is a response in the MSE to the variations in the input variables,
the gradients calculated from Equations (9) and (10) determine in which direction the WOB
and RPM should be adjusted to reduce the MSE. When drilling in the optimum zone,
the changes in MSE resulting from variations in the WOB and RPM are expected to be
small. This results in zero or near zero values for the estimated gradients. When using
MSE to increase real-time performance, a negative or zero gradient value indicates that
drilling is efficient and the input WOB and/or RPM should be increased until the point
of foundering [12]. To include this logic in the ES algorithm, a tuning parameter, k, is
subtracted from the estimated gradients. This makes the algorithm see a zero gradient as a
scenario where the corresponding input should be increased.

From the estimated gradients at the current timestep, the ES algorithm prescribes
updated base values for the input variables for the coming timestep from:

WOB(t + ∆t) = WOB(t)− γwob·sat

(
∂MSE
∂WOB

∣∣∣∣
WOB(t),RPM(t)

− kwob, σwob

)
∆t, (11a)

RPM(t + ∆t) = RPM(t)− γrpm·sat

(
∂MSE
∂RPM

∣∣∣∣
WOB(t),RPM(t)

− krpm, σrpm

)
∆t. (11b)

The left-hand sides of Equation (11) denote the new base values that will be used
in Equations (7a) and (7b) in the next iteration of the algorithm. It can be observed from
Equations (11a) and (11b) that for each iteration, the input base values, WOB and RPM,
will change incrementally from their previous values with a magnitude dictated by the
rightmost terms. The magnitude of this incremental change is determined by the adaptation
gain, γ, and the output of the saturation function, sat, which is given by:

sat(x, σ) =


−1, x ≤ − σ

x/σ, −σ < x < σ.
1, x ≥ σ

(12)

The use of Equation (12) in combination with Equation (11b) is illustrated in Figure 8.
In Equation (12), σ is a tuning parameter that determines the width of the region where the
saturation function shifts from negative to positive output values. The saturation function
is used to limit the maximal step size that the ES algorithm is able to implement per iteration
by using the principle of sliding mode extremum seeking control [37]. As the maximal
output of Equation (12) is a value of ±1, the greatest rate of change that the algorithm can
demand in the input variables is given by γ. This property makes the algorithm easier to
tune from a safety standpoint, as the maximal adaptation rate is explicitly stated by the
parameter γ in units of kg or rpm per second.
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The maximal limit on adaptation rate is useful in cases where an abrupt change
in drilling conditions occurs, e.g., a formation change, as the gradients calculated by
Equations (9) and (10) can be erroneous in this situation. This error would be introduced by
the algorithm’s assumption that any changes in the MSE can be attributed to the variations
in the WOB and RPM. For a large change in MSE caused by differences in lithology, the
estimated gradients could become artificially large as the algorithm relates the relatively
small WOB and RPM oscillations to a large change in MSE. If the adaptation was directly
proportional to the estimated gradients in this scenario (as is done in conventional ES
algorithms, see e.g., Tan et al. [26]), it could cause the ES algorithm to demand large
and rapid changes in the WOB and/or RPM that could steer the system away from the
optimum and into the dysfunction regions. It should be noted that in a case like this, the
estimated gradients would only be erroneous for a brief time window before the buffers
would be filled with data representative of the new formation, which would produce more
accurate gradient estimates. The downside of limiting the adaptation with Equation (12) is
that in cases where the estimated gradients correctly indicate that large improvements in
drilling efficiency could be achieved by adapting the inputs, the rate at which the inputs
are adapted to more suitable values will be limited. Weighing faster adaptation versus
more robust control is an algorithm design and tuning consideration, where the authors
have opted to lean towards more robust control through the use of the saturation function.

The saturation function is illustrated in Figure 8, which exemplifies how this func-
tion is applied in Equation (11b) for RPM optimization. The example parameter values
σrpm = 2, krpm = 1 and γrpm = 1 are used in Figure 8. It can be seen that for a gradient
value of zero, the saturation function will yield an output of −0.5, which will translate
to an increase of γrpm/2 in the base value RPM for the next timestep. When drilling in
the optimum zone, the estimated gradient is expected to have a low or zero value, and
the proposed ES algorithm relies on the parameter krpm to indicate that the RPM should
be increased to reach the foundering point, see Section 2.3. With this configuration, the
algorithm will request increasing RPM until the estimated gradient is equal to krpm in
magnitude and the saturation function’s output is zero. At some point, the ES algorithm
will drive the value of RPM close to the dysfunction region. Because the MSE is expected
to increase drastically when drilling dysfunctions occur [13], the gradients estimated past
this point will take on relatively large, positive values. A suitably small value of krpm
will therefore provide increasing RPM values up to the limit at which foundering starts
to occur. If, for some reason, drilling outside of the optimal region occurred, the large
estimated gradients would make the ES algorithm adapt at its maximal rate of γrpm rpm/s
to exit the dysfunction region as quickly as possible. The same logic as described above
also applies to the adaptation in WOB determined by Equation (11a).

A block diagram of the proposed ES algorithm is shown in Figure 9. A loop through
this diagram represents an iteration of the ES algorithm, which is continuously repeated
every ∆t seconds. Starting from the lower left corner, the updated base values and excitation
signal values are combined to produce new values for the WOB and RPM, which are fed
as setpoints to the control system on the rig. The resulting ROP, torque, WOB and RPM
values are measured and used to calculate the current MSE value. The new measurements
are subsequently included in the buffers, while the oldest measurements are discarded.
The updated buffers are used to estimate the current gradient values, which are translated
to updated base values that are employed in the next iteration of the algorithm.
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Figure 8. Illustration of the saturation function and how it is applied in Equation (11b), with the
example parameter values σrpm = 2, krpm = 1 and γrpm = 1.
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3.2. Algorithm Design Choices

The Extremum Seeking method provides a whole range of algorithms and tools
suitable for various applications, starting with the fundamental ES controllers described
in [26,38]. The ES algorithm presented in this paper is a result of selection various elements
from this toolbox to make it robust and well suited for drilling applications.

In particular, the square wave excitation signal was chosen because this is the signal
shape that, for a given amplitude, gives the maximal (output) signal power and results in
faster convergence to the optimal values at least for the standard ES algorithm configura-
tions [39]. It is also expected that square excitation waves are more suitable for realizing
WOB variations with a standard autodriller functionality.
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We can expect that due to transients and various disturbances acting on the drill string,
the actual WOB and RPM realized by the autodriller and top drive may noticeably deviate
from the corresponding setpoints requested by the ES algorithm. Gradient estimation by
the selected least-squares method is less affected by these deviations. In addition to this,
the selected gradient estimation technique accounts for changes in WOB and RPM (caused
by adaptation) and will therefore calculate more accurate gradients than the standard ES
method.

Finally, we have opted to use the saturation function in the adaptation block defined
in Equation (11), to limit the rate of change for WOB and RPM. This makes the algorithm
more robust when experiencing sudden changes in downhole conditions, e.g., a formation
shift.

3.3. Constraint Handling

The ES algorithm detailed in the previous section will automatically steer the WOB
and RPM towards the optimal values that minimize the MSE. As the MSE will increase
greatly when foundering occurs, the ES algorithm will inherently try and avoid these
dysfunctions by seeking out dysfunction-free combinations of WOB and RPM. There are
however many situations where drilling at the minimal MSE is not feasible, as the drilling
process is restricted by energy input limiters, as described in Section 2.2. It is imperative
that the ES algorithm does not exceed these process constraints in the search for the minimal
MSE.

A distinction can be made between constraints that are known a priori in the RPM-
WOB plane and constraints related to process output values that are not known in advance.
In the former category, a maximal WOB associated with e.g., a buckling criterion can be
implemented in the algorithm with a logic condition that would not allow for increase in
the WOB past a certain point, even if the algorithm recognized potential for lower MSE at
WOB which would exceed the buckling criterion. A similar logic condition could enforce
e.g., a maximal RPM value related to surface vibrations. In the latter category, where e.g., a
maximal ROP related to hole cleaning should not be exceeded, the combinations of WOB
and RPM that produce too high ROP are not known in advance and a different approach is
needed. Three techniques that can be used to ensure that the ES algorithm does not violate
constraints related to process outputs while searching for the optimum drilling conditions
are investigated in the following. The constraint handling techniques are generic and
can be applied to different types of limitations. To demonstrate the constraint handling
techniques, we apply them to maximal values imposed on the torque and the ROP that the
ES algorithm must adhere to.

3.3.1. Modified Objective Function

A practical way of making the ES algorithm avoid e.g., ROP values above a given
threshold, is through modification of the objective function. Instead of trying to minimize
the MSE, an objective function on the form:

J = MSE·
(

1 + ρ
max(0, ROP− ROPthreshold)

ROPthreshold

)
(13)

is used in the ES algorithm to identify the optimal combination of WOB and RPM. A
function similar to Equation (13) has previously been explored to limit drilling with
stick-slip [40]. In Equation (13), max is a function which outputs the largest of the input
arguments and ρ is a tuning parameter that determines how much the objective function
increases when drilling with higher than allowed ROP. The modified objective function, J,
will start increasing when the threshold ROP is exceeded, which will make the ES algorithm
avoid higher ROP values. Different constraining parameters can be added to Equation (13)
in a similar fashion as the ROP term, to penalize the presence of e.g., measured vibrations
or high torque, making this constraint handling technique very versatile. A downside of
this approach is that if e.g., a sudden change in drilling conditions makes the ROP increase
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by a some margin above the threshold, the time it takes for the ES algorithm to steer the
WOB and RPM to better values is determined by the rather slow adaptation rate dictated
by γ. A more prudent approach would then be to use a separate control loop with the
ability to modify the applied WOB and/or RPM more rapidly.

3.3.2. Predictive Constraint Handling

A combination of a predictive and a reactive constraint handling technique that can
be used to avoid violation of a constraint related to the torque has been tested in the case of
single variable ES [24]. Here, we demonstrate that these techniques can also be applied in
a multivariable ES approach. It must be noted that when using the predictive constraint
handling technique, it should be combined with the reactive approach, as this ensures that
the constraint handling does not make the ES algorithm “get stuck”.

The predictive constraint handling method [24] relies on obtaining additional infor-
mation about the downhole conditions by relating changes in measured output parameters
to the known variations of the excitation signals. For this purpose, the same least-squares
technique as detailed in Equation (9) can be used to estimate a gradient of how the torque
relates to the WOB. This technique relies on the assumption that the torque is mainly a
function of the WOB, as is commonly assumed in the literature [28,32]. Considering a
sliding window time series that contains measured values of the torque and WOB for the
past Pwob seconds, a gradient describing the current T-WOB relationship can be estimated
from:

Pwob−1

∑
i=0

(T(t− i∆t)− (α·WOB(t− i∆t) + β))2 → min
α, .β

, (14)

∂T
∂WOB

∣∣∣∣
WOB(t),RPM(t)

≈ α(t). (15)

In Equations (14) and (15), α and β are the least-squares slope and intercept, respec-
tively. As the parameter α is a linear fit to how the torque has changed recently as a function
of WOB, α can be used to predict what the torque will be if the WOB is increased or lowered
in the region around WOB. As long as a reasonably accurate estimate of the torque gradient
can be obtained, it can be used to stop the WOB from being steered to a region where the
torque is higher than allowed, assuming that we are operating at a point where the torque
constraint is currently not violated.

Let Tavg denote the average measured torque value for the past Pwob seconds. The
torque constraint which we do not want to exceed is represented by Tlimit. To avoid the
WOB being steered to values which would cause the torque to grow past the allowable
limit, the following rule is imposed on the WOB adaptation gain:

γwob =

{
γwob,

(
TB,avg + Awobα(t)SF

)
< Tlimit

0 ,
(
TB,avg + Awobα(t)SF

)
≥ Tlimit

. (16)

The rule formulated in Equation (16) takes advantage of the fact that during one
oscillation of the excitation signal, the weight on bit will take on values in the range
WOB(t) ± Awob. Assuming that the adaptation gain is low, the value of WOB will be
nearly constant in this time interval and the average weight on bit will be approximately
equal to WOB. The average torque value, Tavg, will therefore correspond to drilling with a
weight on bit of WOB kg. The product Awobα(t) is a projection of how much the torque
will grow if the WOB is increased by a value of Awob kg. This product is multiplied by a
safety factor with a value greater than 1, which determines how far away from the torque
limit we wish to stop the WOB adaptation. Using e.g., a safety factor of 2, Equation (16)
will stop the WOB adaptation when WOB is 2Awob kg away from the weight on bit value
which would make the torque exceed its limit. Stopping the adaptation with some margin
will allow the ES algorithm to continue performing the WOB excitations without the torque
limitation being violated.
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3.3.3. Reactive Constraint Handling

There are instances where Equation (16) will not be adequate to avoid violation of the
torque constraint. The torque measurements are commonly very noisy, which can cause
the estimated gradient to be inaccurate. Changes in downhole conditions could affect the
torque in a way that cannot be predicted by the gradient, causing the torque to exceed its
maximal limit. In this case, a reactive constraint handling technique should be used in
combination with the predictive method to automatically steer the WOB back to the safe
region if the torque constraint is violated [24]. At each timestep a variable, e, is calculated
that quantifies if the constraint is violated and in which case by how much:

e(t) =
{

0, T(t) < Tlimit
T(t)− Tlimit, T(t) ≥ Tlimit

. (17)

If the variable e takes on a value larger than 0, this indicates that the constraint is
violated and the adaptation gain, γwob is set to zero. In Equation (17), T is the measured
torque value at the current timestep. If the torque measurements are very noisy, the torque
used in Equation (17) should be filtered to avoid that the constraint handling reacts too
aggressively as a response to noise [24]. The variable e from Equation (17) is used as the
error term in a discrete proportional-integral (PI) controller which calculates a penalty, λ,
from:

λ(t) = KPe(t) + KIΨ(t)∆t, (18)

Ψ(t) =


0, T(t) < Tlimit

t
∑

i=n
e(i), T(t) ≥ Tlimit

. (19)

In Equation (18), KP and KI are the proportional and integral gains, respectively.
These parameters are used to tune the controller and determine how fast the WOB will be
adjusted if the torque exceeds the imposed limit. If the torque constraint at some point in
time is violated, the summation term, Ψ, will continue to grow and make the penalty term
larger until the torque is adjusted down to acceptable levels. At the time when the torque
is returned to a level below the limiting value, the summation term is reset by setting
the parameter n equal to this time, t, essentially forgetting that the torque constraint has
previously been violated and continuing optimization with the ES algorithm from this
point on.

The WOB that is requested by the ES algorithm is adjusted based on the penalty
according to:

WOBconstrained(t + ∆t) = WOB(t + ∆t)− λ(t). (20)

The first term on the right-hand side of Equation (20) is the WOB value calculated from
Equation (11a). The variable WOBconstrained is used in Equation (7a) as the base WOB value
when the constraint handling is activated. As long as the torque limit has not been violated,
λ will be equal to zero and the WOB will not be adjusted by Equations (17)–(20). The
penalty term, λ, will grow if we are drilling with torque values above the allowable limit,
which will cause the applied WOB to be reduced according to Equation (20) until the torque
is within the allowable bounds and λ is reset to a zero value. Making these adjustments
to the WOB with Equation (20) rather than Equation (13) allows the algorithm to reduce
the applied WOB faster, which will cause the torque constraint to be violated for a shorter
period of time. It can be noted that the reactive constraint handling method will not make
any adjustments to the WOB until the torque limit is exceeded. For this reason, a lower
value for Tlimit than the actual system’s limit should be used in Equations (17) and (19).

3.4. Practical Requirements and Algorithm Tuning

Implementation of the proposed algorithm requires the following measurements:
WOB, RPM, bit torque (either calculated or measured), and calculated ROP. These mea-
surements are used to calculate the MSE from Equation (6). In essence, the components of
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the ES algorithm act like filters when calculating the gradients and performing adaptation
of the WOB and RPM values. Yet, if the measurements are too noisy, appropriate filtering
should be applied before using them in the algorithm.

The algorithm automatically adjusts the setpoints for the WOB and RPM, which are
then used by the autodriller to control the actual WOB and by the top drive to control the
actual RPM. The internal control algorithms in the autodriller and top drive must be able to
realize the requested small changes in the setpoints corresponding to the excitation signals.
This places a lower bound on the excitation signals’ amplitudes, based on the resolution of
these control systems.

There are several key parameters in the ES algorithm that need to be tuned. These
parameters are the period (P) and amplitude (A) of the excitation signals (defined in
Equations (7a), (7b) and (8)), as well as the adaptation rate (γ) and the tuning parameter k
in Equations (11a) and (11b). These parameters should be tuned taking into account the
guidelines presented in Table 1.

Table 1. Tuning considerations for key parameters in the ES algorithm.

Parameter Tuning Considerations

Excitation amplitude, A

• Large enough to be realized by the autodriller and the top
drive, as well as to cause a measurable response in the
objective function through the ROP, RPM, WOB and torque.

• Not too large, to avoid large disturbances to the overall
process.

• Scaled based on the planned range of WOB and RPM for the
drilled section.

Excitation period, P

• Set Pwob = 2Prpm to minimize the interplay between the
identified gradients with respect to WOB and RPM (see
Appendix A).

• Larger Pwob and Prpm result in gradient estimates less
sensitive to noise.

• Trade-off between noise sensitivity and responsiveness to
changes in drilling conditions

Adaptation rate, γ

• Larger γ results in faster convergence to the optimal WOB
and RPM and higher responsiveness to changes in
downhole drilling conditions.

• Overly large γ makes the algorithm too sensitive to gradient
estimation errors, e.g., when a formation shift occurs.

• Trade-off between fast convergence and robustness.

k parameter • As small as possible, yet leading to increase in WOB and
RPM in the optimum zone (see Section 3.1.3)

4. Simulation Results

To simulate the dynamics of a control system on the rig that receives setpoints for
WOB and RPM from the ES algorithm and steers the input variables to the requested
setpoints as a function of time, the following functions were used to emulate this effect:

WOB(t) = WOB(t− 1) +
1

τwob
[WOBSP(t− 1)−WOB(t− 1)], (21a)

RPM(t) = RPM(t− 1) +
1

τrpm
[RPMSP(t− 1)− RPM(t− 1)]. (21b)

In Equations (21a) and (21b), the left-hand sides represent the current values of the
WOB and RPM that are applied at the bit, while WOBSP and RPMSP are the corresponding
setpoints. How quickly the control system is able to steer the WOB and RPM from their
current values to new values dictated by the setpoints is determined by the time constants,
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τ. For small values of τ, the WOB and RPM will quickly converge to their respective
setpoints. For larger values of τ, convergence to the setpoints will take longer time.

The optimization algorithm and constraint handling approaches detailed in the
previous sections were investigated by using the proposed extended model detailed in
Equations (1)–(5) coupled with Equations (21a) and (21b) as a drilling simulator. In the
simulation scenarios, the ES algorithm provides setpoints for the WOB and RPM, which
are translated to applied WOB and RPM through Equations (21a) and (21b). The model
simulates the ROP and torque response to these values of WOB and RPM that could be
seen in the field for a given bit and formation. The current values for the WOB, RPM, T
and RPM are “measured” from the extended model and used to calculate the MSE with
Equation (6). These updated measurements are read by the ES algorithm and used to per-
form the optimization actions described in Section 3. It must be re-emphasized that the ES
algorithm only uses measurements taken from the simulated drilling process to minimize
the MSE, it has neither prior knowledge about the drilling model nor the locations of the
different drilling dysfunctions.

The simulations emulate drilling in two generic formations, Formation A and Forma-
tion B. Formation A is described in detail in Section 2, where the optimal point to drill at
in this lithology was identified to be at a WOB of 12,900 together with an RPM value of
89.5, as this combination minimizes the MSE. Formation B represents a softer formation
than Formation A, otherwise they are identical. To emulate a preference for drilling with
lower WOB and higher RPM in softer rocks, the onset of dysfunctions in Formation B are
slightly different than in Formation A, placing the optimal point to drill at in Formation B
at a WOB of 12,000 kg and an RPM value of 109. The parameters c1, c2, c3 and c4 that are
used by the extended model in Equations (1) and (2) are provided in Table 2. These values
are generated by picking generic values for the bit and formation parameters in the ranges
suggested by Detournay et al. [28], and correspond to using units of kg for the WOB, rpm
for the drill string rotational rate and the bit radius given in meters in Equations (1) and (2).

Table 2. Parameter values used in Equations (1) and (2).

Parameter Fm. A Value Fm. B Value Units

c1 1.4× 10−6 1.7× 10−6 m2/(kg·rpm·h)
c2 4.9× 10−6 5.9× 10−6 m2/(kg·rpm·h)
c3 3.05 3.05 m/s2

c4 7.01 7.01 m/s2

All the simulation scenarios are initiated by ramping up the WOB and RPM to their
starting setpoints, which is an initial guess at the optimal input values, which could e.g., be
based on the driller’s experience, a drill-off test, data from an offset well or estimates given
by a drilling model. When the WOB and RPM have reached their initial values, the ES
algorithm is activated and starts testing the drilling conditions with the excitation signals
described by Equations (7a), (7b) and (8). After one full period of the WOB excitation signal,
Pwob = 120 s, the buffers needed for the gradient estimation are filled up with the relevant
measurements and the algorithm starts adapting the WOB and RPM in the direction that
will reduce the MSE. The parameter values that are common in all the simulations are
provided in Table 3.
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Table 3. Parameter values that are common for all the simulations.

Parameter Value Units

Dbit 12 1
4 Inches

γwob 2.5 kg/s
Awob 200 kg
kwob 0.001 MPa/kg
σwob 0.002 MPa/kg
Pwob 120 s
τwob 4 s
γrpm 0.02 rpm/s
Arpm 2 rpm
krpm 0.05 MPa/rpm
σrpm 0.1 MPa/rpm
Prpm 60 s
τrpm 3 s

4.1. Unconstrained Drilling Optimization

This section contains the results from two runs of simulated drilling through the
homogeneous Formation A. The theoretical optimal point in this scenario is located approx-
imately at a WOB of 12,900 kg in combination with an RPM value of 89.5. No constraints
are considered in these two simulations, meaning that the ES algorithm is free to search
for the drilling conditions that will minimize the MSE without any limits imposed on the
torque or ROP.

Figure 10 shows the WOB, RPM, MSE and ROP for Simulation 1. The orange lines in
the WOB and RPM tracks marks the base values, WOB and RPM. This run was initiated
with conservative values of 8000 kg WOB and 60 RPM, which resulted in drilling at a low
ROP of about 11.5 m/h and a calculated MSE of approximately 184 MPa. After performing
the initial variations in the input variables, the ES algorithm detects that increasing the
WOB and RPM will result in more efficient drilling. Both the WOB and RPM are steadily
increased by the algorithm until they converge to the region of the founder point after
drilling for about 2700 s. The rest of the interval is drilled at peak efficiency, where the
average ROP is 31.5 m/h, which is an increase of more than 170% from the starting point.
Throughout the simulation, the MSE is only marginally reduced by the adaptation in the
input variables. This is because the initial WOB and RPM from the start of the simulation
resulted in dysfunction free phase II drilling, where the MSE was already close to its
minimal value. The proposed ES algorithm is designed to interpret small or zero MSE-
gradients as a situation where the corresponding input variable should be increased, which
is why the WOB and RPM was adapted to the optimum in this scenario.

The values of WOB and RPM where the ES algorithm converges to in Simulation 1
are approximately 13,000 kg and 90 rpm, respectively, which are slightly higher than the
pre-calculated values of 12,900 kg and 89.5 rpm. The ES algorithm’s convergence to this
point is caused by the k parameters used in Equation (11). The k values dictate that a (small)
positive gradient must be calculated before the algorithm stops adaptation, and the point
at which this occurs is slightly into the dysfunction region. This property can also be seen
from Figures 4 and 5; the MSE does not significantly grow before the WOB and/or RPM
has moved slightly into the dysfunction region, which is why the ES algorithm converges
to the point seen in this simulation scenario.
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Figure 11 shows the calculated gradients for Simulation 1, where it can be seen from
the lower track that the estimated ∂MSE/∂RPM values show some oscillatory behavior
until the MSE and RPM has converged to the optimum. This is caused by the adaptation
in the WOB and RPM signals, which can sometimes interfere with accurate gradient
estimation. A moving average of ∂MSE/∂RPM is plotted in the same track, which shows
that the estimated gradient on average is unaffected by the oscillations. As long as the
average gradients indicate which way the ES algorithm should adapt the input variables,
the algorithm will be able to steer the WOB and RPM to the optimum. Figure 11 also
shows the estimated gradients converging to a value equal to the k values for the respective
signals, at which point the algorithm stops adjusting the WOB and RPM.

Figure 11. Estimated gradients in Simulation 1.
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The results from Simulation 2 are displayed in Figure 12. This scenario is the same as
Simulation 1, with the exception that the we initiate drilling at a WOB of 13,000 kg and with
an RPM value of 160, which is in the dysfunction region (see Figure 2). The initial WOB is
in fact the optimal WOB value, but only when combined with the appropriate RPM. As can
be seen from Figure 12, drilling commences at a high average MSE value of about 300 MPa.
The ES algorithm recognizes that we are drilling with a dysfunction and reduces both the
WOB and RPM for the first 1800 s to exit the dysfunction region. At this point, the average
MSE has been reduced to a value of approximately 181 MPa. As soon as the optimum
zone is entered and it is safe to increase the WOB again, and the algorithm spends the next
3500 s converging more slowly to the optimal point. It can be noted that the adaptation in
WOB and RPM that occurred during the first 1800 s happened at the algorithms maximal
rate of 2.5 kg/s and 0.02 rpm/s, respectively. This is because of the large variations in
MSE seen when drilling in the dysfunction region and the correspondingly large estimated
gradients, which prompts the algorithm seek out better operating conditions as quickly as
it is allowed to.

It can also be observed from Figure 12 that the adaptation that happens from 1800 s and
onwards only results in small enhancements in ROP and MSE, the larger gains in drilling
efficiency occurred during the early adaptation when moving out of the dysfunction region.
At the start of the simulation, the ROP was about 33 m/h, which has been slightly reduced
when compared to the ROP at the end of the run. The MSE has however been reduced
substantially, which means that the drilling has become more energy efficient and possibly
less detrimental for the bit and downhole tools.
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Figure 13 depicts the WOB and, RPM values from Simulations 1 and 2 in the WOB-
RPM plane, together with contours which mark the MSE values for drilling in Formation A.
The blue and orange datapoints can be viewed as the “path” that the ES algorithm took to
converge to the founder point in these two scenarios. In the case of Simulation 2, it can be
seen that the path taken by the algorithm is not the most efficient way to reach the founder
point. It is however close to the most efficient path to exit the dysfunction region as quickly
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as possible. Because of this “detour”, more time is spent to converge to the optimum in
Simulation 2, compared to Simulation 1.
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4.2. Constrained Drilling Optimization

In this section, the proposed constraint handling techniques are demonstrated in two
simulation scenarios of drilling through the homogeneous formation A. In Simulation 3,
we have imposed a maximal ROP of 20 m/h on the system through the use of Equation (13)
with a ρ value of 0.1. This means that in this scenario, we seek to minimize the modified
objective function given by Equation (13) and not the MSE. This run is initiated with the
same values as in Simulation 1; a WOB of 8000 kg and an RPM value of 60. The results from
Simulation 3 are shown in Figure 14, where it can be seen that the ES algorithm increases
the applied WOB and RPM for the first 1300 s, before the ROP reaches the limiting value
and the algorithm determines that any further adaptation will cause the ROP to exceed the
allowable amount. Because of this constraint, the ES algorithm converges to the minimal
MSE value that it can obtain while still drilling at an ROP at or below 20 m/h, which it
finds at a WOB of 10,900 and an RPM of 71. There are several operating points at which the
ES algorithm could converge to in this scenario, based on the initial values for WOB and
RPM. Because the MSE response in the optimal region is relatively constant, the algorithm
will seek out the first combination of WOB and RPM that it can find that drills at the ROP
limit. Any adaptation in the input variables beyond this operating point will cause the
objective function to artificially grow through Equation (13), which will discourage any
further changes to the WOB or RPM unless it significantly decreases the MSE.

In Simulation run 4, a maximal torque limit of 10,000 Nm is enforced by the predictive
and reactive constraint handling approaches detailed in Equations (14) through (20). A
safety factor of 2 is used in Equation (16), and the parameters KP and KI in Equation (18)
have values of 0.05 kg/Nm and 0.001 kg/Nm·s, respectively. The initial setpoints for the
WOB and RPM are 8000 kg and 100 rpm, respectively.
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Figure 14. Simulation run 3, a scenario with a maximal limit imposed on the ROP.

Figure 15 displays the results from Simulation 4. In the first 1200 s, both the WOB and
RPM are adapted to higher values, which results in drilling with lower MSE and higher
ROP. At around 1200 s, Equation (16) predicts that the torque will surpass the allowable
amount of 10,000 Nm if the WOB is increased any further. The adaptation in WOB is halted
at this point and onwards, while the RPM continues to grow up to a value of approximately
111, where further increases in RPM would result in drilling in the dysfunction region.
After 2000 s, an unexpected torque-increase of 1000 Nm is simulated, which makes the
torque exceed its limit. This rise in torque could represent e.g., a build-up of cuttings
around the BHA. As the torque is increased, the average MSE is elevated from about 180
to 200 MPa. The predictive constraint handler rapidly lowers the WOB until the torque
is again within the allowable bounds, resulting in a reduction in WOB of about 900 kg.
The reduction in WOB steers the drilling further away from the optimum, and the MSE is
somewhat increased as a response. When drilling with this lower WOB, the ES algorithm
detects that it is now safe to increase the RPM without encountering any dysfunctions
which would increase the MSE. The RPM is seen to adapt to a value of 120, where the ROP
is increased to approximately 29 m/h and we are drilling at the highest efficiency that can
be obtained given the constraint on the torque.



Energies 2021, 14, 1298 28 of 35
Energies 2021, 14, 1298 28 of 35 
 

 

 
Figure 15. Simulation run 4, a scenario where the torque is not allowed to exceed 10,000 Nm. 

4.3. Unconstrained Drilling with Formation Shifts 
The results from Simulation 5 are shown in Figure 16, where we investigate how the 

proposed optimization algorithm handles abrupt formation changes. This scenario can be 
though as a continuation of Simulations 1 or 2, where the optimum for formation A was 
identified by the algorithm as 13,000 kg WOB and an RPM of 90. This scenario could also 
represent a setting where e.g., a drill-off test has been performed in formation A, which 
identified the optimal WOB and RPM. We initiate drilling with these optimal input values. 
After drilling 5 m in Formation A, we enter an 18-m-thick layer of the softer Formation B, 
at approximately 580 s. The optimal point in Formation B is located at a WOB of 12,000 kg 
and an RPM of 109, as indicated by the dotted lines in Figure 16. As we enter the softer 
formation, the WOB and RPM that were optimal for formation A are no longer the optimal 
input values to drill with and should be adjusted to drill more efficiently. Shortly after the 
formation shift occurs, the ES algorithm recognizes that the downhole conditions have 
changed and spends the following 1200 s converging to the optimal point in Formation B, 
where the MSE is minimized at an average value of 149 MPa and the average ROP has 
increased by approximately 20% from 36 to 43 m/h. At around 2200 s of simulation time, 
we enter Formation A again, and the WOB and RPM are slowly adjusted back to the opti-
mal values that the simulation started out with. It can be seen that the “path” taken by the 
algorithm back to the optimum in Formation A consists of first reducing the 𝑊𝑂𝐵തതതതതതത value 
before building it up to 13,000 kg, in the same manner as was done in Simulation 2 (see 
Figures 12 and 13) to quickly exit the dysfunction region. 

Two important aspects of the proposed ES algorithm are shown in Figure 16. First, 
the advantage of continuously applying the excitations in WOB and RPM also even when 
we are operating at the current optimum, becomes apparent. When the drilled formation 
suddenly changes, the information gathered by the excitation signals is used by the ES 

Figure 15. Simulation run 4, a scenario where the torque is not allowed to exceed 10,000 Nm.

4.3. Unconstrained Drilling with Formation Shifts

The results from Simulation 5 are shown in Figure 16, where we investigate how the
proposed optimization algorithm handles abrupt formation changes. This scenario can be
though as a continuation of Simulations 1 or 2, where the optimum for formation A was
identified by the algorithm as 13,000 kg WOB and an RPM of 90. This scenario could also
represent a setting where e.g., a drill-off test has been performed in formation A, which
identified the optimal WOB and RPM. We initiate drilling with these optimal input values.
After drilling 5 m in Formation A, we enter an 18-m-thick layer of the softer Formation B,
at approximately 580 s. The optimal point in Formation B is located at a WOB of 12,000 kg
and an RPM of 109, as indicated by the dotted lines in Figure 16. As we enter the softer
formation, the WOB and RPM that were optimal for formation A are no longer the optimal
input values to drill with and should be adjusted to drill more efficiently. Shortly after the
formation shift occurs, the ES algorithm recognizes that the downhole conditions have
changed and spends the following 1200 s converging to the optimal point in Formation
B, where the MSE is minimized at an average value of 149 MPa and the average ROP
has increased by approximately 20% from 36 to 43 m/h. At around 2200 s of simulation
time, we enter Formation A again, and the WOB and RPM are slowly adjusted back to the
optimal values that the simulation started out with. It can be seen that the “path” taken
by the algorithm back to the optimum in Formation A consists of first reducing the WOB
value before building it up to 13,000 kg, in the same manner as was done in Simulation 2
(see Figures 12 and 13) to quickly exit the dysfunction region.

Two important aspects of the proposed ES algorithm are shown in Figure 16. First,
the advantage of continuously applying the excitations in WOB and RPM also even when
we are operating at the current optimum, becomes apparent. When the drilled formation
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suddenly changes, the information gathered by the excitation signals is used by the ES
algorithm to rapidly recognize that the conditions have changed, and adjustments should
be made in the applied WOB and RPM to drill more efficiently. These adjustments resulted
in an increase in ROP of about 20%, compared to a setting where formation B had been
drilled with constant WOB and RPM based on what was the optimal point when the
simulation was initiated in formation A.

A second and closely related aspect is seen in the adjustments in WOB,and RPM
performed by the algorithm immediately after the formation change occurs at about 580 s
of simulation time. In the following we consider the WOB, but the same analysis applies to
the RPM. When the drilled formation becomes softer at 580 s, the calculated MSE is reduced.
The ES algorithm relates this reduction in MSE to the currently applied WOB, which at this
time was in an elevated position of WOB + Awob kg. This causes the algorithm to estimate
an artificially large and positive gradient for a short period of time, as higher values of
WOB are related to a significant reduction in MSE. This erroneous gradient indicates that
large improvements to the drilling efficiency can be made if WOB is increased. At this
point, the adjustment of WOB in the wrong direction is limited by the saturation function
and the adaptation gain in Equation (11), that disallows adaptation faster than 2.5 kg/s
even if the estimated gradient is large. During the 50 s that the WOB is steered in the
wrong direction, the WOB is only increased by about 125 kg. The requested changes in
WOB would be much higher if the adaptation was directly proportional to the estimated
gradient (as is usually the case in classical ES algorithms [26]). After drilling in this new
formation for 50 s, the buffers used in the algorithm contain enough data sampled from the
current conditions to detect that the WOB should be reduced to minimize the MSE, and
the algorithm subsequently steers the WOB to the correct optimal value. The same effect
as just described also occurs at the second formation shift at about 2200 s.
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5. Discussion of Results

The five simulation scenarios detailed in the previous section demonstrate how the
proposed ES algorithm can be utilized to automatically steer the drilling process to the
optimum conditions where the MSE is minimized. Since the optimization algorithm
inherently requires full control of the WOB and RPM to continuously adjust these variables
towards the optimal point, it is of utmost importance that the algorithm recognizes and
avoids circumstances that could be damaging to the drilling equipment or could cause
a contingency situation. In simulation 2 it was shown that the algorithm automatically
steers away from drilling with dysfunctions, as drilling in this region resulted in high MSE
values that could be reduced by regulating the WOB and RPM. In simulation runs 3 and 4,
the possibly detrimental effects that we wish to avoid are not directly related to the MSE,
but rather to other parameter that we wish to keep within certain limits. Simulations 3
and 4 demonstrate generic approaches to how we can avoid these types of constraints. In
Simulation 4, the predictive constraint handling routine stops WOB adaptation before the
constraint is violated. A separate control loop (the reactive constraint handling) is able to
adjust the WOB back to the safe region when the limit is violated, much faster than if this
constraint was implemented through modification of the objective function. This technique
is however only applicable when the constrained output (the torque) is related to only one
of the input variables, in this case the WOB. When several of the input variables are related
to the output constraint, as is the case between the WOB, RPM and ROP in simulation run
3, the modified objective function described in Equation (13) is a better alternative to avoid
the limit being exceeded.

The main advantage of using a data-driven algorithm like ES to optimize the drilling
process is that it does not require detailed a priori knowledge of the downhole conditions
or a drilling model to seek out more efficient drilling, and it can adapt to downhole changes.
Both of these properties are shown in Simulation 5, where two formation shifts occurred
which prompted the ES algorithm to seek out the new optimal conditions shortly after
the changes happened. The ES algorithm considers a fixed window of time to perform
its analysis and inherently tries to relate any change in the MSE to the applied excitations
in WOB and RPM. If the MSE changes without any relation to the excitation signals,
e.g., at a formation shift, the estimated gradients can become inaccurate when the data
series used to estimate the gradients contain measurements from two differing downhole
conditions. To avoid the algorithm having an exaggerated reaction to disturbances like
this, the saturation function together with moderate values for the gain parameters, γ,
is used to limit the algorithm’s maximal adaptation rate regardless of the magnitude of
the estimated gradients. This design encourages slow and steady adaptation towards the
optimum. Faster convergence could be achieved by increasing γ, but this would also make
the algorithm more susceptible to disturbances and noise.

Although the ES algorithm performs optimization actions without using a model of
the system, engineering knowledge about the process is required to tune the algorithm
and provide appropriate initial values for the WOB and RPM. In the simulation scenarios,
the starting points were chosen to showcase different properties of the ES algorithm
like constraint handling, convergence to the optimum and avoidance of drilling with
dysfunctions. In simulation scenarios 1 and 5, the ES algorithm was able to increase the
ROP by about 170% and 20%, respectively. How much the algorithm can improve the
drilling efficiency (through higher ROP and/or lower MSE) is strongly related to how far
away from the optimal WOB and RPM that the algorithm is initiated. In a field application,
the initial WOB and RPM values should be a best guess of the optimal drilling conditions,
which could be based on the driller’s experience, a drill-off test, data from an offset well or
estimates given by a drilling model.

There are both benefits and drawbacks to choosing MSE as the objective function to
minimize. The MSE can be used to identify the founder point by seeking out the maximal
WOB and RPM values that results in a decreasing or flat response in MSE. The expected
flat region in MSE when operating in drilling region II can however pose some challenges
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when applying the ES algorithm. When drilling in this region, the estimated gradients
will have zero or near zero values and the ES algorithm depends on the parameters kwob
and krpm to indicate if the input variables should be increased. In field applications, the
calculated MSE could be susceptible to noise (especially though the torque) which could
make it hard to estimate zero or close to zero valued gradients. This complication could be
alleviated by increasing the amplitudes and periods of the excitation signals or considering
a longer sliding window time series that encompassed several oscillations of the excitation
signals, which would average out disturbances. Another possible alternative could be to
use a combination of ROP and MSE as the objective function, as in [25].

There are several paths for further research that could be explored. Additional stud-
ies on a more advanced drilling simulator, field trials or lab experiments are needed to
investigate how dynamic effects such as vibrations affect the performance of the proposed
algorithm. Tests in the field or in the lab would also provide the opportunity to compare
the ES method with other optimization methods, either data-driven or model based, in a
realistic setting. Testing the algorithm in e.g., a lab setting would allow us to study if the
algorithm in its current form will be able to converge to the optimum if it is initiated in
a region where severe vibrations occur. The extended model used to simulate drilling in
this study assumes that the MSE will keep increasing when operating further into regions
where vibrations are expected to occur (see Figures 4 and 5). If this is not the case, and the
MSE rather reaches some plateau value that does not change as a function of WOB and
RPM in these regions, the proposed ES algorithm would not be able to find the optimum
if the initial point was in the MSE plateau region. If this is the case, a different objective
function, e.g., on the form of Equation (13) could be used to remedy the issue.

A second possibility for further work relies on the ES method’s inherent nature of
relating measurements of drilling parameters to the known variations in WOB and RPM
induced by the excitation signals. If available, additional measured and/or calculated
parameters such as the magnitude of different forms of vibrations could be related to the
variations in WOB and RPM. Knowing how downhole vibrations vary as a function of
WOB and/or RPM could be utilized for constraint handling or be displayed as useful
information for the driller.

6. Conclusions

We have presented an algorithm based on the multivariable extremum seeking method
that automatically optimizes the WOB and RPM to achieve drilling with minimal MSE,
while adhering to operational constraints for safe and efficient drilling. The algorithm
detailed in the paper is data-driven and does not require detailed a priori knowledge
or models of the drilling process. The algorithm gathers information about the current
downhole conditions by continuously performing small tests with the applied WOB and
RPM while drilling and automatically implements optimization actions based on the test
results. To investigate the algorithm’s performance in a simulation environment, a drilling
model for bit-rock interaction has been extended by the authors to qualitatively account
for drilling dysfunctions. The simulations demonstrate that the proposed algorithm is
able to find and maintain the WOB and RPM that result in drilling with minimal MSE,
while adhering to operational constraints. The constraint handling functionality has been
demonstrated with limits imposed on the ROP and torque. Yet, it is generic and can
be applied to other constraining factors. The simulations show that the ES method is
able to track changes in the optimal WOB and RPM corresponding to changes in the
drilled formation. As demonstrated in the simulation scenarios, the overall improvements
in ROP can be up to 20–170%, depending on the initial guess of the optimal WOB and
RPM obtained from e.g., a drill-off test or a potentially inaccurate model. Along with the
algorithm’s description, we provide an explanation of specific design choices and tuning
guidelines that simplify the use of the algorithm in practice.
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Abbreviations

BHA Bottom Hole Assembly
ES Extremum Seeking
MSE Mechanical Specific Energy
NPT Non-Productive Time
PDC Polycrystalline Diamond Compact
PI Proportional-Integral
RPM Revolutions Per Minute (drill string rotational rate)
T Torque
WOB Weight on Bit

Appendix A. Period Selection for the Excitation Signals

The tuning of the excitation signals is an important part of the extremum seeking
algorithm. To extract a gradient of how the MSE relates to the WOB and RPM indepen-
dently, setting PWOB = 2PRPM is suggested by the authors. Under some simplifying
assumptions, it can be shown that this tuning of the excitation signal’s periods allows for
exact estimation of ∂MSE/∂WOB and ∂MSE/∂RPM without interference between the
two excitation signals. Here, we investigate this property by considering the estimation
of ∂MSE/∂WOB with a continuous-time, single-variable version of Equation (9), which
is applied to a system where both the WOB and RPM is varied according to Equations
(7a), (7b) and (8). A similar analysis can also be performed to show how the least-squares
estimation of ∂MSE/∂RPM is not affected by the variations in the WOB.

Although the MSE is a non-linear function of both WOB and RPM when considering
the entire span of WOB and RPM values (see Figures 4 and 5), the extremum seeking
algorithm uses only a local region of this non-linear relationship when estimating gradients.
The extent of this local region is determined by the amplitudes of the excitation signals.
If suitable (not too large) amplitudes are used, it can be assumed that locally there is an
approximately linear relationship between the MSE and the applied WOB and RPM, which
is the relationship that is estimated by the least-squares gradient calculation in Equation (9).
Using compact notation, let the WOB be denoted by x = x+ dx and the RPM be represented
by y = y + dy, as detailed in Equations (7a) and (7b). In the neighborhood of the point
(x, y), the non-linear relation between the MSE, WOB and RPM can be approximately
described by:

z = β + αxy, (A1)

where z represents the MSE and the parameters α and β take on constant values in this
local region. We further assume that the adaptation in WOB and RPM is small so that x
and y are approximately constant throughout the investigated time interval of Px seconds,
as is common practice for average analysis of extremum seeking algorithms [26].

www.ntnu.edu/bru21
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We consider a scenario where we are drilling ahead through a homogeneous formation
and have varied the WOB (x) and RPM (y) according to Equation (8) while recording the
MSE (z) for the past Px seconds. The measured drilling data is used to solve for the least-
squares slope and intercept parameters, a and b, using a continuous-time, single-variable
version of Equation (9):

t∫
t−Px

[z(τ)− ax(τ)− b]2dτ → min
a,b

, (A2)

where a represents the gradient-estimate, ∂MSE/∂WOB. Substituting in the previously
defined relationships for x and y and approximating the response of the drilling system
with Equation (A1) yields:

t∫
t−Px

[
β + α

(
xy + dx(τ)

)(
y + dy(τ)

)
− α
(

xy + dx(τ)
)
− b
]2dτ → min

a,b
. (A3)

Further, using Equation (8) to describe the excitation signals, dx and dy, gives:

t∫
t−Px

[
α + β

(
x + Axsgn

(
sin
(

2πτ

Pxy

)))(
y + Aysgn

(
sin
(

2πτ

Py

)))
− a
(

x + Axsgn
(

sin
(

2πτ

Pxy

)))
− b
]2

dτ → min
a,b

. (A4)

At any point in time, t, the integral in Equation (A4) can be split into intervals in which
the signum function takes on constant values of ±1. Using the relation Px = 2Py and the
assumption that x and y are constant values, Equation (A4) can be expressed as:

min
a,b

[
Px

(
x2

y + A2
x

)(
α2y2 + α2 A2

y − 2αay + a2
)
+ 2Pxx(β− b)(a− αy) + Px(b− β)2

]
. (A5)

Taking the partial derivatives of Equation (A5) with respect to a and b and equating
them to zero results in the set of equations:

(b− β) + x(a− αy) = 0,(
x2 + A2

x
)
(a− αy) + 2x(b− β) = 0,

(A6)

which has the solution a = αy and b = β. The estimated gradient, αy, corresponds to the
slope of ∂MSE/∂WOB described by Equation (A1) evaluated at the average RPM value,
y. This shows that in an ideal scenario where the simplifying assumptions are met, the
tuning Px = 2Py allows for accurate estimation of ∂MSE/∂WOB without interference from
the variations in RPM. The same analysis can be repeated for estimation of ∂MSE/∂RPM
to find the expected gradient, αx, for this case. Other combinations of periods for the
excitation signals can also be employed based on similar analysis, as long as one of the
periods is an even multiple of the other, Pwob = nPrpm or Prpm = nPwob where n is an even
number larger than zero.

In reality, the applied WOB and RPM will exhibit dynamics and cannot be expected to
perfectly follow the square wave setpoints requested by the extremum seeking algorithm.
Any deviations from the setpoints will however be dealt with by the least-squares approach
to gradient estimation, which will incorporate these transient periods into the analysis.
Furthermore, if the system is not currently at the optimal point, there will be adaptation
in both WOB and RPM which will make the base values, x and y, change throughout the
investigated time interval. The adaptation can cause some inaccuracies in the estimated
gradients, but this effect can be kept to a minimum by choosing conservative values for the
adaptation gains as well as through appropriate filtering of the data.
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