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Abstract: The article deals with the problem of detecting moisture in the walls of historical buildings.
As part of the presented research, the following four methods based on mathematical modeling and
machine learning were compared: total variation, least-angle regression, elastic net, and artificial
neural networks. Based on the simulation data, the systems for the reconstruction of “pixel by
pixel” tomographic images were trained. In order to test the reconstructive algorithms obtained
during the research, images were generated based on real measurements and simulation cases. The
method comparison was performed on the basis of three indicators: mean square error, relative
image error, and image correlation coefficient. The above indicators were applied to four selected
variants that corresponded to various parts of the walls. The variants differed in the dimensions of
the tested wall sections, the number of electrodes used, and the resolution of the 3D image meshes.
In all analyzed variants, the best results were obtained using the elastic net algorithm. In addition,
all machine learning methods generated better tomographic reconstructions than the classic Total
Variation method.

Keywords: machine learning; electrical tomography; moisture inspection; dampness analysis; non-
destructive evaluation; neural networks; elastic net

1. Introduction

Research teams all over the world have long been interested in investigating the level
of moisture in the walls of historic buildings. Over the years, the issue of preserving
valuable, old architectural objects in good condition for future generations becomes more
important. Porous materials were used in the construction of most historic buildings.
Usually, it was a ceramic brick that is very susceptible to the phenomenon of capillary
leakage, otherwise known as rising damp. Capillary leakage is a physical phenomenon
in which water in a porous material moves upward by capillary forces. There are many
elements in the building through which moisture can penetrate the walls. In the case
of historical buildings, the most common cause of moisture is faulty waterproofing of
foundations or its complete absence. Defective insulation of foundations may cause long-
term dampness of the walls, which in turn leads to the appearance of fungi, microorganisms,
and molds that are harmful to health [1,2].

The water that penetrates the foundations contains various chemical compounds,
such as sulfates, nitrates, chlorides and carbonates. The salt contained in the water in
particular has a destructive effect on plaster and the appearance of facades. The condition
for effective drying of walls and their restoration is the correct location of the damp places
and elimination of the cause of the problem by making appropriate repairs.
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1.1. The Impact of Damp Walls on Energy Consumption and Costs

Moisture in walls of historical monuments is of great importance for economic reasons.
Damp external walls limit the thermal insulation of the building. In practice, this means
that the external walls will cool down faster, and thus increase the demand for thermal
energy of the building. The level of dampness in walls is determined using the percentage
of moisture by weight (Um). The permissible level of mass humidity of the U-value brick
wall should not exceed Um = 3%. If the moisture content by weight exceeds Um = 5%, it is
absolutely necessary to take steps to reduce it to the acceptable level [3].

Previous studies have shown that the increase in wall humidity increases the thermal
transmittance (U-value (W/m2K)) by 30% to 50% or even by 50% to 100% [4–7]. The U-value
indicator has a strong influence on the energy performance of residential buildings [8],
which is especially important for buildings located in colder climates. In the case of
negative temperatures, the water contained inside the walls may freeze, which results
in the destruction of the walls, their bursting and erosion. Rising dampness in walls is
usually accompanied by their salinity. Salt transported deep into the walls together with
moisture has a negative effect on the plaster structure, the aesthetics of the facade and the
appearance of the walls inside the rooms. In extreme situations, excessive salinity may
disturb the internal structure of construction materials.

Damp and saline walls accelerate the degradation of the facade, which increases the
frequency of renovation. Apart from the foundations, moisture can penetrate the walls of
the building through air vents, external timbers like windows and doors, roof, chimneys
and flashings, high ground levels, cracks in masonry, etc.

The need to automate the processes of monitoring various-purpose facilities – includ-
ing industrial, military, medical or public facilities—necessitates the use of advanced IT
techniques [9–11]. Due to declining costs and better availability of computing power, the
cost-effectiveness of methods based on machine learning and other artificial intelligence
techniques is increasing [12,13]. Monitoring the dampness in the walls of historic buildings
is in line with the above needs of process automation.

1.2. Dampness-Related Health Risks in Buildings

Building wall humidity is usually correlated with indoor air humidity. In turn, the air
quality, measured by the presence of fungi, bacteria and microorganisms, as well as the
musty smell, affects the well-being and health of people staying indoors. This means that
the level of humidity inside the building walls is clearly and strongly associated with an
increased likelihood of negative health effects for residents, which include conditions such
as asthma, rhinitis, rhinoconjunctivitis or other allergies. It should be noted that no specific
humidity thresholds have been established and not all people are equally susceptible to
the adverse effects of indoor humidity.

1.3. Methods of Measuring Humidity in Walls

The basic division of all methods of examining the moisture content of building walls
concerns the criterion of the effects on the appearance and structure of the tested object,
which the application of a given method brings. Taking into account the above criterion, the
methods can be divided into destructive and non-destructive or invasive and non-invasive.
Direct measurements are characterized by no need to perform additional calculations. As a
result, the value of the measurand is obtained directly. However, it is impossible to make
such measurements without physically separating the sample, which involves the necessity
to violate the integrity of the tested object. Destructive, direct methods, i.e. gravimetry, are
considered the most reliable.

For obvious reasons, when examining the walls of historical buildings, the use of
destructive methods is highly undesirable. Any interference that affects the structure
and appearance of historical buildings requires a special permit from the conservator of
monuments or specific government institutions.
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In the case of indirect measurements, the value of the measured quantity is obtained by
appropriate recalculation of the results of direct measurements of other physical quantities
correlated with the measured quantity [14]. As shown in Figure 1, the group of indirect,
non-destructive methods is the most numerous. The reason is that this group of methods,
although the most desirable because there is no need to damage the test object, is also the
least effective. Determining the boundaries and levels of moisture inside a building wall is
very difficult without the ability to physically separate and test the sample. For this reason,
the known and currently used non-destructive methods have a number of shortcomings,
which means that research into their improvement and development of new methods is
constantly being conducted.
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Electrical tomography includes impedance, resistance [15–17], and capacitance to-
mography [18–21]. Electrical impedance tomography (EIT) is a dynamically developing
non-destructive method, successfully used to detect moisture inside the walls of build-
ings [22,23]. It is an indirect method in which the voltage values between multiple pairs
of electrodes are measured [24]. The set of measurements obtained in this way is used to
solve the so-called inverse problem. To do this, appropriate mathematical models, statisti-
cal methods or machine learning algorithms can be applied [25,26]. The methods based
on mathematical modeling include total variation (TV). Algorithms such as least-angle
regression (LARS), elastic net, and artificial neural networks (ANN) belong to the group
of machine learning methods. There are several main advantages of the EIT method over
other known methods:

(1) It is a non-invasive method, and the supervisors of monuments do not allow the
examination of historical buildings with invasive methods.

(2) Using the EIT method, it is possible to visualize wall humidity in 3D space, which
is not possible with other methods. For example, the thermographic method shows
only the moisture of the visible wall, not the changes inside the object.

(3) EIT is not influenced by salt and other chemicals present in masonry walls and bricks.
Metallic components are also not a problem.

(4) Inhomogeneities of the tested object (cracks, voids, presence of different materials in
the wall) complicates the calibration but does not preclude the EIT method.

(5) EIT can identify spatial areas with different moisture content.
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(6) EIT method allows to perform multiple reconstructions in a second. Measurements
can be carried out in the same place continuously, which enables continuous monitor-
ing of changes in moisture.

(7) EIT allows deep penetration.

1.4. Objective of Research and Novelties

The aim of the research described in this article was to compare the efficiency of
machine learning methods in applications related to tomographic detection of moisture in
the walls of historical buildings. In particular, the algorithms performing tasks related to
solving the inverse problem in electrical tomography were compared.

The major contribution of this paper is the verification of the effectiveness of detecting
moisture in the walls of historical buildings using EIT by comparing selected algorithmic
methods. The results of the research increase the current state of knowledge in two aspects.
First, they provide reliable information on the effectiveness of electrical tomography in
detecting moisture in the walls of historic buildings. Secondly, by applying strict quan-
titative criteria for each of the methods, the research paper provides the knowledge to
evaluate and compare selected statistical and machine learning methods in the field of
tomographic imaging.

An important element that distinguishes the presented approach to the inverse EIT
problem is the use of many functions that simultaneously transform the measurements
into individual pixels of the output image [27]. The number of these functions depends
on the number of pixels that make up the image. Such an approach increases the overall
computational complexity of the model but simplifies the partial computation by dividing
the main problem into many sub-problems. In classic models, on the basis of a certain
number of m measurements, an image with a resolution of n-pixels is created, where m << n.
The applied solution makes n = 1 for each partial sub-problem, therefore m >> 1. As a
result, the obtained tomographic reconstructions are more accurate compared to the classic
EIT models.

1.5. Structure of the Paper

The article consists of four sections. Section one, Introduction, is theoretical. It
describes the current state of knowledge in the field of moisture detection methods in
the walls of historical buildings and the classification of these methods. The second
section titled Materials and Methods describes the research object, which was a historical
building. This section characterizes the tomographic hardware used in the research, the
procedure of obtaining measurement data, and describes the mathematical and machine
learning methods used in the research. The third section contains the research results
obtained thanks to the use of particular algorithms in order to obtain the best quality
tomographic reconstructions. The last chapter contains a discussion of the results obtained
and conclusions preceded by an analysis of the key aspects of the research work carried out.

2. Materials and Methods

This section describes the historical building as a research object. The tomographic
hardware used and the way of taking measurements was also included. The last part of this
section presents the methodological basis of the statistical and machine learning methods
used to solve the inverse problem in electrical tomography.

2.1. Historical Building as a Research Object

The object of research, i.e. the place where the research was carried out, were historic
buildings located in the Partisan Hill area in Wroclaw, Poland. The first traces of buildings
in this area date back to the Middle Ages when the city gate was built in the area of the
hill, which was then called Sakwowy. Along with the expansion and strengthening of
Wrocław’s city fortifications, in 1591, a bastion designed by Hans Schneider was erected on
the hill. During the dismantling of the city fortification system in the first decade of the 19th



Energies 2021, 14, 1307 5 of 24

century, the Sawkowy Bastion was one of the few buildings not pulled down. It was only
deprived of military equipment and transformed into an observation hill of a park complex
called the Old Town Promenade, which was created in the area of the former fortifications.
In the 1860s, the hill was built over with a complex of entertainment and recreational
buildings founded by Adolf Liebich and designed by architect Carl Schmidt. The complex
consisted of a belvedere with an observation tower, a colonnade, and a peristyle pavilion
on the plateau of the hill, which was integrated with a terrace arrangement into the western
slope of the hill (Figure 2). The colonnade building shown in Figure 3 is two-story, one
floor of which is underground.
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On the other hand, the peristyle pavilion is one-story, partially recessed into the
ground, as shown in Figure 4. The supporting structure of the buildings, i.e. the founda-
tions, external and internal walls, and internal pillars, are brick walls made of solid ceramic
bricks on a lime mortar. There are also brick vaults. The thickness of the brick walls is in
the range of 50–90 cm. The walls are preserved in relatively good condition, they are not
cracked or deformed, but they are strongly damp and are covered with salt blooms and
mold fungi (Figures 3b and 4b). These statements concern both the walls sunk into the
ground and the walls above the ground level up to a height of about 2 m. In the joints
between bricks, the lime mortar has crumbled to a depth of several centimeters due to
moisture destruction and salt crystallization. The strong dampness of the walls is the result
of the lack of horizontal and vertical anti-damp insulation.
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2.2. Measuring System

Impedance tomography is based on imaging voltage drops measured between indi-
vidual pairs of electrodes. Dry walls have lower electrical conductivity than wet walls,
which affects the differences in voltages between different points of the walls. Solving the
inverse problem, the tomograph creates an image of the internal dampness in the walls.

The measuring system used in the described experiments consisted of electrodes
placed on metal rails and an EIT tomograph enabling imaging of the obtained measurement
data. Measurements were made using a single rail containing 16 electrodes or a set of two
rails containing a total of 32 electrodes. The simultaneous use of two rails extends the
examined area of the walls, which speeds up the analysis of their moisture and improves
the quality of imaging.

Figure 5 demonstrates the method of mounting the electrodes on a damp wall and
shows the structure of the electrode rail. Metal electrode rails were designed to ensure
the best adhesion of the electrodes to the walls even in the case of a rough surface. All
devices, from electrodes to the prototype tomographic device, have been designed and
manufactured in our own research laboratory. The number of measurements of a single
case, making up the so-called measurement vector depends on the number of electrodes. If
the measurement is performed using a single rail with 16 electrodes, then the measurement
vector has 96 measurements. This is due to the adopted method of applying a voltage to
successive pairs of electrodes and measuring the voltages on the remaining electrode pairs.
Suppose the number of all electrodes is n = 16. Since the electrodes to which the voltage is
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applied are excluded from the measurement, n − 2 = 14 electrodes remain. The order and
duration of measurements are controlled by the multiplexer. Since a pair of electrodes is
used for a single measurement, we obtain the final number of electrodes participating in
the measurement cycle n − (2 + 2) = 12.
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Each of the selected pairs of electrodes to which we apply voltage is called the projec-
tion angle. In this case, the number of projection angles is n/2 = 8. Finally, the formula for
making the number of electrodes dependent on the number of measurements in a single
measurement cycle takes the form (1):

m =
n2 − 4n

2
(1)

where m is the number of measurements and n is the number of electrodes.
Taking into account the above Equation (1), the number of measurements for 16

electrodes is 96, and for 32 electrodes the measurement vector consists of 448 values. In the
case of machine learning-based tomographic methods, it is necessary to provide a large
number of measurement cases. When the measurements are performed manually, it is not
possible to obtain several or tens of thousands of measurement vectors necessary for the
iterative optimization procedure. In this situation, a measurement data simulator is used.
To generate reliable measurement data, a very dense finite element mesh with a defined
conductivity distribution was developed (Figure 6). Then, the simple problem thus defined
was solved using the generalized Laplace Equation (2) [28].

Figure 6 shows conductivity distributions defined for the purpose of creating simu-
lation data frames. Using 16 electrodes, a part of the wall measuring 50 × 30 × 100 cm
was examined. Using two rails with 16 electrodes each, a wall section with dimensions of
50 × 60 × 100 was tested. In this way, we obtain simulation measurement data. Pixels in
the 3D images are tetrahedra. In the mathematical sense, we have a boundary between the
dry and wet areas. The transition color applies to tetrahedra located on this border. Colors
are set by volume—the greater the volume of the wet (lower) part of the tetrahedron, the
darker its color.
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2.3. Compared Methods of Creating a Tomographic Image

Taking measurements is very important because noisy data reduces the amount of
information it contains, which in turn makes it unhelpful. However, data collection is only
the first step in the tomography process. The next step is to transform the data into an
image, which entails the need to solve the inverse problem.

The classic approach to formulating mathematical models takes into account forward
problems, which in the case of electrical tomography would mean determining the values of
voltage measurements made on the wall surface based on the known electrical conductivity
of the tested object. However, the purpose of tomography is quite the opposite. It is the
determination of the electrical conductivity of individual parts inside the monitored object
based on measurements made on the surface of the tested object. This is called the ill-posed
problem because due to too little or too much data, it may not be possible to find a real
solution. Inverse problems are often ill-posed problems, and to solve them, regularization
methods or machine learning are used. The EIT forward problem can be represented by
the generalized Laplace Equation (2):

∇·(σ∇u) =
3

∑
i=1

∂

∂xi

(
σ

∂u
∂xi

)
= 0,

ωε

σ
� 1 (2)

where σ—electrical conductivity, u—electric potential, ω—angular frequency, ε—permittivity.
Equation (2) describes a potential distribution in a heterogeneous, isotropic area. If

Λσ is the operator that takes the Dirichlet to Neumann map u
∣∣∣∂Ψ →

(
σ ∂u

∂n

)∣∣∣
∂Ψ

, where n
is the outward normal vector then the inverse problem is to find σ from Λσ. Solving the
inverse problem, we obtain the distribution of material coefficients inside the tested wall.
Figure 7 shows the concept of generating a tomographic image "pixel by pixel" using the
full vector of input variables to create single pixels.

In the presented research, the effectiveness of four selected methods were compared:
total variation (TV), least-angle regression (LARS), elastic net (EN), and artificial neural
networks (ANN). Each of the compared methods is briefly characterized below.
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2.3.1. Total Variation (TV)

Suppose the test object can be divided into a finite number of piecewise constant
conductivity sub-areas. The reconstruction of the inside image of such an object, obtained
by means of generalized Tikhonov regularization, contains a characteristic blur that does
not allow for a precise indication of the border between sub-areas with different specific
conductivities. Regularization by total variation regularization can be an effective way to
avoid this effect. For these studies, the objective function was defined as follows:

F(σ) =
1
2
||Us(σ)−Um||2 + λ

N

∑
i=1
| Ri σ | (3)

where σ—electrical conductivity as a column vector (M× 1), Us(σ)—numerically calcu-
lated voltages as a column vector (P× 1), Um—voltages obtained with a tomograph as a
column vector (P× 1), N—number of finite element mesh edges (excluding edge bound-
aries), Mnumber of finite elements, P—number of elements in the test voltage table Um.
Ri is a line vector in i-th iteration that represents the discrete approximation of a gradient
operator. When a given edge belongs to two different finite elements, then this vector is
given by Equation (4):

Ri = di
[

0, · · · , 0, 1, 0, · · · , 0, −1, 0, · · · , 0
]

(4)

where di is the length of the i-th edge. The vector Ri has M elements, with only two
components assuming values other than zero. Note that the regularization term defined
as above is not differentiable at the points where the expression under the absolute value
is zero.

In the case considered, the idea of image reconstruction is based on the application of
the primal dual-interior point method. The primal problem is defined as:

min
σ

(
1
2
||Us(σ)−Um||2 + λ

N

∑
k=1
||Li σ||

)
(5)

The matrix Li is of the N ×M type and has elements other than zero only in the i-th
row [ Li ]ab = δai [ Ri ]b where δai is the Kronecker symbol.

2.3.2. Least-Angle Regression (LARS)

LARS is a method that allows the elimination of correlated input variables. The
methods of converting measurements into tomographic images are the more effective
the clearer are the relationships between individual independent variables (inputs) and
dependent variables (outputs). If there are mutual correlations between the measurements,
then the correlated input fields should be eliminated as they unnecessarily complicate
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the calculation model. The excessive complexity of the model results in lower imaging
efficiency. The LARS algorithm is based on a linear model and takes into account only
causal variables. In other words, the LARS method selects from the set of predictors only
those exogenous variables that have a direct impact on the endogenous variable. The a
linear model is built using stepwise regression. In each subsequent iteration, a variable
of the highest quality is added to the model. Let’s assume that the considered system is
described by Equation (6):

Y = Xβ + ε while X ∈ Rn×(n+1), Y ∈ Rn, β ∈ Ri+1, ε ∈ Rn (6)

where X is a matrix of input variables, Y denotes the matrix of responses, β is a vector of un-
known parameters, ε is a sequence of disturbances, n is the number of observations, i is the
number of LARS predictors. If the linear model (11) contains the point of intersection with
the axis, then the first column X consists of 1’s. The variable ε is usually defined as a vector
of random, independent, similar distributed variables with normal distribution N

(
µ, σ2 I

)
,

where µ ∈ Rn is a vector of zeros, σ2 > 0 is a variance of disturbances in linear model and
I ∈ Rn×n is an identity matrix. The typical LARS method relays on the identification of
unknown parameters β = (β0, β1, . . . , βi) in (7) by meeting the condition (8):

min
β∈Ri+1

||Y− Xβ||2 (7)

The best unbiased linear estimator of unknown parameters β̌, provided that det
(
XTX

)
6= 0,

can be determined by Equation (8).

β̌ =
(

XTX
)−1

XY (8)

The above problem is often accompanied by a situation where XTX is singular.
The simplified workflow of the described LARS problem can be described in four ba-
sic steps [29].

Step one involves standardizing the predictors. The intercept β0 in Equation (11) is
equal to a mean of the response variables so we set β1 = β2 = · · · = βi = 0. The active set
of predictors T is empty.

In the second step, the residuals r for the linear model are calculated according to
the formula r = Y− β0 − X(A)β(A). The calculation takes into account all predictors from
active set T. Determine the predictor Xj outside the active set T that is most correlated with
the residuals of r. Let’s add it to the active set T.

In the third step, the values of the coefficients β j are iteratively shifted from 0 to its
least squares coefficient Xj, r. The condition for terminating the iteration loop is that the
other competitor Xi will have a strong correlation with the current residuals, similar to Xi.

In the last fourth step, move the values of the coefficients β j and βs in the direction
determined by their joint least square factor of the current residual on Xj, Xs until some
other competitor Xl has a strong correlation with the present residual. Steps 2 through 4
should be repeated until all the number i predictors have been included.

2.3.3. Elastic Net (EN)

As mentioned above, the inverse problem is usually ill-placed, meaning that the
solution does not meet the criteria of uniqueness, existence, and stability at the same time.
Noise in the EIT electric field measurement can lead to a large error in the calculation
results of the test object. Moreover, the number of discretized current elements is usually
much bigger than the number of measuring points. Due to these features, measurement
results are usually insufficient to obtain accurate reconstructions.

Therefore, in order to solve the above problems, regularization is used, which makes
it possible to approximate the solution to the exact solutions. Elastic network regulation
has proved to be a viable approach to solving a misplaced inverse problem in mathemat-
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ics and avoiding over-fitting in statistics. Elastic net is a compromise between L1 and
L2 norms or in other words between the least absolute shrinkage and selection operator
(LASSO) introduced by Roberta Tibshirani and ridge regression called Tikhonov regu-
larization. The method is also effective in situations where there are many correlated
predictors or the number of discretized current elements is much larger than the number of
measurement points [30].

The problem that determines the elastic net can be represented by Equation (9)

min
(β0,β′)∈Ri+1

1
2n

n

∑
i=1

(
yi − β0 − xiβ

′)2
+ λPα

(
β′
)

(9)

where yi − β0 − xiβ
′ are the residuals of the linear model, xi is the vector of measurements,

yi is the vector of reference values, β0 is the intercept equal a mean of the response variable
parameter, β′ denotes unknown parameters, λ is the penalty coefficient, Pα is an Elastic Net
penalty clarified by Equation (10):

Pα

(
β′
)
= (1− α)

1
2
||β′||L2

+ α||β′||L1
(10)

From Equation (15) it follows that the elastic net penalty Pα is a summary combination
of the L1 and L2 norms of unknown parameters β′. Parameter 0 ≤ α ≤ 1 represents a
trade-off between LASSO and ridge regression. If α = 0 then it is pure ridge regression but
when α = 1 then it is pure LASSO.

2.3.4. Artificial Neural Networks (ANN)

ANNs were the last of the machine learning methods compared. A set of shallow
neural networks was used, of which each ANN had one hidden layer containing 20 neurons
for 2 × 16 = 32 electrodes and 448 measurements, and 10 neurons for 16 electrodes and
96 measurements. Each single ANN generated the value of one pixel on the tomographic
image mesh. The output value visualized with color corresponds to the value of the
electrical conductivity of a given finite element. The structure of a single ANN dedicated
to a single image point is 96→10→1 or 448→20→1.

The system of all ANNs for the case when the measurement vector has 96 val-
ues and the output image mesh consists of 6215 pixels, has the following structure:
(96→10→1)×6215. Neural networks were trained using the scaled conjugate gradient
backpropagation. This algorithm requires less memory and enables parallel training on
GPU, which is not possible with e.g. the Levenberg-Marquardt method. The hidden layer
uses the hyperbolic tangent sigmoid transfer function, and the output layer uses the linear
transfer function. The set of cases used to train ANNs was 35,000 cases. It was divided in
the proportion of 70:15:15 into training, validation and test sets. Table 1 shows the results of
the ANN learning process along with the division of data into sets for a randomly selected,
single pixel of an image.

Table 1. The results of the learning process along with the division of data into sets.

Data Division Number of Cases in
A Given Set

Mean Square Error
(MSE) Regression (R)

Training set (70%) 24,500 1.50735 0.961016
Validation set (15%) 5250 2.12389 0.945380
Testing set (15%) 5250 2.42436 0.936677

For the analysis of the results included in Table 1 (especially MSE), it is important that
the reference conductivity values in the test object were 1 for a dry object and 10 for a wet
object. In order to protect the network against overfitting, the early stopping method was
used. This is also the purpose of extracting the validation set. The rule is that if the MSE
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error for the validation set does not decrease for six consecutive iterations, then the neural
network training process is completed.

Figure 8 shows the course of the ANN learning process for a single pixel. The best val-
idation performance is 2.1239 at epoch 27. The shape of the MSE slope curve is hyperbolic
and has no significant fluctuation. A trained network obtains the best results for the train-
ing set, slightly worse for the validation set and the worst for the test set. It is worth noting
that the differences in MSE for all three sets are not large. All this, combined with high R
regression values, proves that a trained neural network has great generalization potential.
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Figure 9 shows the states of the ANN during individual epochs of the learning process.
Scaled conjugate gradient backpropagation is an optimization algorithm that searches for
the minimum of the objective function. Learning rate measures how much your current
state affects your next step, while momentum measures how past steps affect your next step.
The simultaneous, appropriate selection of the gradient and momentum values guarantees
good training of the neural network. Figure 8 also shows the number of consecutive
validations without the improvement effect. After six such epochs without reducing the
validation error, the learning process is interrupted.
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The real measurements allowed for the effective validation of the script, thanks to
which a large number of simulation cases were generated. Based on the simulation data
produced in this way, the model of ANNs was trained. In order to make the generated cases
more realistic, the script simulating the measurements also introduced noise of several
percent. The final verification of the ANN model, like all other methods, was based on
real data. Numerical analysis of the problem was presented on the basis of EIT and finite
element method (FEM). MatLab software with the Eidors toolbox was used to develop the
numerical models [31].

2.4. Result Validation Methods

In the wall tomography of historical buildings, as in the soil tomography, the basic
problem is the validation of the methods. There is no non-destructive method to determine
the exact moisture distribution in the wall. Since it is not possible to obtain learning
data (voltages and conductivity distributions) from direct measurements and observations
of a real historical object, simulation algorithms are used to generate the learning sets.
Physical masonry models are used to validate the performance of the EIT models trained
on the simulation data. By performing tomographic measurements on models of brick
walls, after examining them with the EIT method, the model is tested using the most
accurate destructive (direct) methods. By comparing the results of the EIT test with e.g. a
gravimetric method, the tomographic methods are effectively validated. Both the direct and
indirect methods were used to validate the tomographic algorithms presented in this paper.
Figure 10 shows how to perform measurements using two standard methods—dielectric,
microwave and gravimetric.
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Figure 10. Validation of humidity tests carried out with the use of: (a) the dielectric method; (b)
microwave method.

The following approaches were used as comparative methods for testing the humidity
of brick walls in a historical building: non-destructive dielectric with the use of a UNI
GANN 2 meter (GANN Mess- u. Regeltechnik GmbH, Stuttgart, Germany) equipped
with a B50 ball probe, the research range of which is up to about 50 mm into the wall,
non-destructive microwave using the meter T 600 (TROTEC GmbH & Co. KG, Heinsberg,
Germany) with a test range up to about 300 mm into the wall and a destructive gravimetric
method. The above traditional methods of measuring the moisture content of masonry
have been used to validate the concept of EIT based on machine learning algorithms.
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To match single point measurements with EIT measurements using two rails with 16
electrodes each, the locations of the individual measurements have been carefully defined.
The distribution of measurement points for individual validation measurements is shown
in Figure 11.
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2.5. Preliminary Evaluation of Algorithmic Methods through Voltages

In order to pre-evaluate the EIT algorithmic methods used in the research, Algo-
rithm 1 was used. Employing a very dense finite elements mesh, a set of training cases
was generated, including independent variables (voltages) and output variables (con-
ductivity distribution). Using a coarse finite elements mesh, four algorithmic models
were trained for all tested tomographic methods (TV, LARS, Elastic Net, and ANN).

Algorithm 1. Generation of training data and preliminary evaluation of the effectiveness of EIT
algorithmic methods

1. Build a very dense finite element mesh for the object under study
2. Develop an algorithm (function) F to generate simulation cases that solves a forward

problem using the generalized Laplace equation, converting the conductivity distribution σ

into voltage values U such that F(σ) = U
3. Generate a set of training cases using the developed algorithm F
4. Build a coarse finite element mesh for the object under study
5. Train machine learning model T with the use of previously generated training cases
6. Solve inverse problem - compute conductivity distribution σ for coarse finite element mesh

such that T(U) = σrec
7. Use algorithm (function) F to obtain voltages based on reconstruction obtained on coarse

finite element mesh: F(σrec) ≡ U(σrec)
8. For U and U(σrec) calculate PE and PC

Then conductivity distributions σ were reconstructed using each of the methods.
Finally, by solving a forward problem using the same algorithm that was used to generate
the training cases, a set of reconstructed measurement voltages U(σrec) was obtained. By
comparing the reference with the reconstructed voltages, a preliminary assessment of
the quality of the compared tomographic methods was achieved. Algorithm 1 shows an
ordered sequence of operations described above.
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Figure 12 shows a comparison of 96 measurements consisting of reference voltages
U and voltages reconstructed U(σrec) after applying the artificial neural networks (ANN)
algorithm. For ANN the mean percentage error is PE = 11.6358%, while the Pearson’s
correlation coefficient PCC = 0.9993 [32].
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In this way, simulation measurements were performed for the purposes of this com-
parative study. High correlation coefficients and low percentage deviations of the voltages
prove that the measurement voltage values obtained from the conductance distribution
reconstructed with a given method as a result of solving a forward problem are correct.
Table 2 shows the values of PE and PCC voltage indicators for all tested methods.

Table 2. Preliminary evaluation of algorithmic methods through voltages.

Methods of Reconstruction PE (%) ICC

TV 1.9652 0.9997
LARS 26.7330 0.9970
Elastic Net 12.6800 0.9986
ANN 11.6358 0.9993

The analysis of Table 2 leads to the conclusion that the best values for both indicators
were obtained by the TV method, and the worst were obtained by the LARS method. The
ICC indicators for all methods are similar and very high.

When using the above algorithm of assessing the quality of the methods, based on
comparing voltages, it should be taken into account that the main goal of tomography is
to obtain a reliable image illustrating the interior of the tested object. It may happen that,
despite minimal differences in the voltages, and even in the conductances, the tomographic
image will be blurry, noisy or inaccurate. Another weakness of the PE and ICC indicators
is that they average the measurement values. In total, for all measurements, the PE
percentage error may be close to zero but the inverse, ill posed problem has no unequivocal
solution. This means that despite the high compliance of the reconstructed voltages with
the reference voltages, there is no guarantee that the reconstructive images will be of high
quality. Therefore, in these studies, the evaluation of methods based on the comparison of
electrical voltages was treated as auxiliary. The main evaluation of the results of the four
tested methods is presented in the next section of this paper.

3. Results

This section presents the results of the previously described tests of electrical tomogra-
phy divided into the methods used to create reconstructive images. Obtaining high-quality
tomographic images in the examined case was extremely difficult because the examined
wall fragments are mostly insulators. This fact made it very difficult to select the appro-
priate current-voltage parameters. Moreover, the reconstructions made with the methods
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described were spatial (3D) and not cross-sectional (2D), which significantly increases the
resolution of the tomographic image and at the same time deepens the ill-posedness of the
problem. It is obvious that due to the impossibility of separating the examined fragment
of the historical object, it was not possible to unequivocally and presuppose the actual
distribution of moisture inside the wall.

To objectively assess the quality of the reconstructions obtained with each of the
tested methods, three well-known indicators were used: mean square error (MSE), relative
image error (RIE), and image correlation coefficient (ICC). The MSE metric was evaluated
according to Equation (11):

MSE =
1
N

N

∑
i=1

(yi − ŷi)
2 (11)

where N—number of finite elements or image resolution, yi—reference conductivity of i-th
pixel, ŷi—reconstruction conductivity of i-th pixel.

The second measure of reconstruction quality RIE was calculated according to
Equation (12)

RIE =
||y− ŷ||
||y|| (12)

where y is the ground-truth (pattern) conductivity distribution, ŷ is the reconstructed
conductivity distribution.

The third measure of reconstruction quality ICC was calculated according to Equation (13):

ICC =
∑N

i=1(yi − y)
(
ŷi − ŷ

)√
∑N

i=1(yi − y)2 ∑N
i=1
(
ŷi − ŷ

)2
(13)

where y is the mean ground-truth conductivity distribution of pattern image, and ŷ is the
mean conductivity distribution of the reconstructed image. ICC is based on Pearson’s
correlation coefficient. It is used to determine the correlation between the reference image
and the reconstruction image. The smaller the values of the MSE and RIE metrics, the better
the quality of the tomographic image. The closer the ICC to 1, the better the correlation
of the output image with the reference image, which translates into a more accurate
reconstruction.

3.1. Visualization of Real Measurements

Figures 13a and 14a show spatial tomographic images illustrating the moisture distri-
bution in the wall of the historic building located in the Partisan Hill in Wroclaw, Poland.
The analyzed part of the wall was 50 × 30 × 100 cm. With the use of 16 electrodes, a set
of 96 measurements was generated, which allowed for the reconstructions. Both figures
demonstrate the same fragment of the wall, however, they differ in the method of recon-
struction. Figure 13 was made using the ANN method, while Figure 14 was made using
the Elastic Net.

Figures 13a and 14a are analogous to Figures 13b and 14b. The difference is that
in order to better represent the imaging depth, the images have been rotated so that the
electrodes are on the right side of each of the figures. As all the electrodes are on the same
side of the tested object, it should be expected that the imaging depth is limited. This is
confirmed by tomographic images, which in both methods show a similar level of moisture
at a distance up to about 15 cm from the electrodes.

The further away from the electrodes, the greater the differences. The further away
from the electrodes, the less certain the reconstruction is, hence the differences in mapping
the same fragment of the wall with different methods. As the distance from the electrodes
increases, the electric field intensity decreases, and thus the measurement accuracy drops.
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Figure 14. Reconstruction of real measurements made in a historical building located on the Partisan Hill in Wroclaw,
Poland using the Elastic Net method: (a)—spatial view, (b)—side view.

The color bar has been calibrated so that the value of 1 indicates a dry wall. Values
greater than 1 indicate internal moisture. The higher the values, the higher the moisture
level. Although Figures 13 and 14 are slightly different, there is a significant correlation
between them. In addition, the use of other methods also confirmed a comparable level
and distribution of moisture, which proves the efficiency of the reconstruction based on
real measurements.

There is no easy way to verify reconstructions made on a real object such as a historical
building. Therefore, the validation of methods based on algorithms trained with simula-
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tion data was performed mainly on the basis of physical models tested with destructive
(invasive) methods in laboratory conditions.

3.2. Comparison of Methods

As mentioned before, the comparison of EIT tomographic reconstruction methods
was carried out on the basis of three indicators – MSE, RIE, and ICC. All indicators
require comparing the results of the reconstruction with the pattern. Due to this fact,
it was necessary to generate simulation cases that were used to train the EIT systems
and to evaluate their effectiveness. Tables 3 and 4 present the parameters of the 4 tested
variants (wall sections), which were reconstructed using all methods compared. Parameters
such as number of electrodes, type of electrodes, number of nodes, and number of finite
elements refer to the sparse meshes, i.e. those that have been used for imaging tomographic
reconstructions.

Table 3. Parameters of the finite element mesh—variants No. #1 and #2.

Description
Variant No. #1 Variant No. #2

Values Dense Mesh, Axes
(cm) Values Dense Mesh, Axes

(cm)

Number of electrodes 16
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Type of electrodes
surface surface

Number of nodes
1569 3051

Number of finite elements
5102 10,752

In variant No. #1, 16 electrodes were used to analyze a cuboid with dimensions of
50 × 20 × 160 cm, imaged on a grid consisting of 6408 pixels. Variant No. #2 included a
wider 50 × 60 × 160 cm fragment of the wall. It used 32 electrodes and a mesh containing
13,004 pixels. Variants No. #3 and #4 refer to the part of the wall with dimensions of
60 × 20 × 100 cm and 60 × 60 × 100 cm, respectively, they contain 16 and 32 electrodes,
and their meshes have a resolution of 5102 and 10.752 pixels.

Figures 15–18 show 4 variants for which the individual EIT algorithmic methods of
electrical tomography were tested. The color bars for figures marked with (e) also apply
to (c) and (d). Figure 15 shows a variant with 16 electrodes placed on a single, vertical
rail. The dimensions of the tested section (cuboid) of the wall are 50 × 20 × 160 cm. In
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this variant, the TV visualization is definitely the worst. The EN method best reflects the
shape of the pattern, but the conductance value is too low. Conductivity is best represented
by the ANN method, but the area of moisture is incomplete. In the variant presented in
Figure 16, a wall segment with dimensions of 50 × 60 × 160 was examined with the use of
32 electrodes. The TV method indicates moisture up to 60 cm, while the pattern is wet up
to 80 cm. Also, the intensity of moisture is much lower than the reference one. A subjective
feeling indicates that also in this variant, the EN method worked best.

Figure 17 concerns variant #3, in which a section of the wall with dimensions of
50 × 20 × 100 cm was examined with the use of 16 electrodes.

In variant #4 (Figure 18), the section examined in the previous variant was extended
three times (x-axis), at the same time doubling the number of electrodes from 16 to 32. In
variants 3 and 4, the EN method is also the best, although the classic TV method is not as
significantly inferior to the methods of machine learning as seen in variant 1. It is worth
noting that the ANN method in Figures 16–18 is the only one to reveal faint, non-existent
artifacts visible in the upper part of the spatial image. The evaluation of 4 tomographic
methods (TV, LARS, Elastic Net, and ANN) was carried out on the basis of 4 simulation
cases (variants). The pattern image of the variant #1 is shown in Figure 15a, while the
pattern images of the variants #2, #3 and #4 are shown in Figures 16a, 17a and 18a, respectively.
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Table 5 presents the results of the above reconstructions in numerical form. The MSE,
RIE and ICC metrics were used for this purpose.

Table 5. Indicators characterizing the quality of reconstruction for individual methods and variants.

Methods of
Reconstruction Indicator

Variant No.
Mean

#1 #2 #3 #4

TV
MSE 17.15476 21.63204 14.39486 15.05821 17.05997
RIE 0.668432 0.779286 0.682255 0.700165 0.707535
ICC 0.666223 0.74076 0.834452 0.703908 0.736336

LARS
MSE 11.92607 3.462529 1.224107 5.508663 5.530342
RIE 0.557331 0.311777 0.198954 0.423484 0.372887
ICC 0.726455 0.906298 0.969256 0.824197 0.856552

Elastic Net
MSE 7.614354 2.23404 1.253634 1.031945 3.033493
RIE 0.445329 0.250434 0.201339 0.183291 0.270098
ICC 0.851874 0.955191 0.975278 0.975083 0.939357

ANN
MSE 8.722011 8.13319 3.019731 3.49561 5.842636
RIE 0.476621 0.477836 0.312484 0.337345 0.401072
ICC 0.801593 0.808106 0.919449 0.904321 0.858367

The reconstructions presented in Figures 15 and 16 are similar to each other because
the pattern images for variants #1 and #2 have a similar moisture distribution (up to 80 cm
high), identical height (160 cm) and the same depth (50 cm) of the investigated area of the
masonry wall. The difference concerns the width of the tested wall section and the number
of electrodes. In the variant #1, the width of the tested wall is 20 cm and the number of
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electrodes is 16. In the variant #2, the width of the wall is 60 cm and the number of electrodes
is 32 (2 × 16). A similar analogy holds for variants #3 and #4 (Figures 17 and 18). For both
variants the pattern parts of the wall have the same level of moisture distribution (30 cm),
the same height (100 cm) and depth (50 cm) of the tested wall section. In the variant #3, 16
electrodes were placed on the wall 20 cm wide. In the variant #4, 32 (2 × 16) electrodes
were used for the wall 60 cm wide.

A visual comparison of some images, e.g. Figures 15b and 16b, may appear to be in
contradiction with the indicator values in Table 5. This apparent contradiction has the
following reasons:

(1) Figures 15b and 16b are examples of how misleading an assessment of a reconstruction
based solely on deviation (e.g. MSE or RIE) can be. A cursory visual observation is
insufficient to conclude that the values of the tetrahedra (pixels) for Figure 15b contain
as many as 216 elements for which the conductance is maximum (i.e. 10). It turns
out that these "wet" pixels are concentrated around the electrodes, where the finite
elements are much more densely packed (and therefore smaller) than in other areas of
the wall section under study. It should also be noted that in 3D images only the outer
pixels are visible, while many pixels are still hidden. Of the 6408 mesh elements total,
the values of 316 pixels are greater than 3 and less than 10, which should give some
colors. Unfortunately, they are mostly invisible. To see them, many cross-sections of
the spatial part of the wall should be analyzed.

(2) In Figure 15b many pixels have values greater than 1 and smaller than 2 and they are
all transparent. The reason is that a gradual (not continuous) color scale was used.
In fact, the entire output band (conductances) has been divided into 9 categories, as
shown in the color bars for Figures 15–18.

(3) In the case of variants with 32 electrodes, the tested part of the wall is much larger
than in the case of 16 electrodes. The width of the wall section in Figure 15 is 20 cm,
and in Figure 16 it is 60 cm. It means that doubling the number of electrodes (from
16 to 32) is accompanied by tripling the width of the wall section being tested (from
20 cm to 60 cm). This is the reason why the reconstruction errors for larger wall
sections (#2 and #4) are bigger than in variants #1 and #3. It follows from the above
considerations that the ICC indicator that reflects the regression of pixel values, not
their deviation, is better suited for the comparative analysis of the variants shown in
Figures 15–18. “Mean” (right column of Table 5) is also a good indicator as it combines
all four variants into one metric, which overcomes the disadvantages of MSE and RIE.

As mentioned before, Table 5 shows the objective, numerical results of the reconstruc-
tions. For all four variants, the best results were obtained by the Elastic Net algorithm. It is
worth noting that in each case this method obtained the best scores for all three indicators:
MSE, RIE, and ICC. Corresponding values - mean of all variants - for the Elastic Net method
were underlined as the best. The results, based on the objective criteria of the mathematical
indicators, are valuable because when comparing the reconstructive images one cannot
draw such unambiguous and unbiased conclusions.

Examples of validation of tomographic methods in laboratory conditions can be found
in our publications [2,33–35]. However, it should be taken into account that due to the spot
nature of traditional methods, it is not possible to physically verify the moisture of each
tetrahedron (pixel) visible on the reconstruction tomographic image.

4. Conclusions

The article presents the results of the research in which, using an electrical tomog-
raphy, an attempt was made to detect moisture inside the walls of a historic building.
The main objective of the research was to compare the efficiency of spatial tomographic
reconstructions for four algorithms using mathematical modeling and machine learning.
The following methods were compared: total variation (TV), least-angle regression (LARS),
elastic net (EN), and artificial neural networks (ANN). Three measures of the quality of
the reconstruction were adopted—mean square error (MSE), relative image error (RIE),
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and image correlation coefficient (ICC). All the mentioned above methods: TV, LARS, EN,
and ANN were applied to four independent variants, differing in the dimensions of the
analyzed section of the wall, the number of electrodes, and the number of finite elements
used to design the 3D mesh of the tomographic image. The obtained results undoubtedly
indicate that for the examined object, which was the historical building, the best results
were obtained using elastic net. The results in Table 5 clearly show that the classic TV
method is the worst and is only a background for machine learning based methods. All
machine learning algorithms perform better than the TV method taking into account all
the evaluation criteria used (MSE, RIE, and ICC).

In order to check the effectiveness of the reconstruction methods in real conditions,
a section of the wall with dimensions of 50 × 30 × 100 cm was reconstructed using
mutually the elastic net and ANN methods. Both obtained images showed similar moisture
distribution and intensity. Since the reconstruction results presented in Table 5 indicate
that the best images were obtained with the elastic net, it should be assumed that the
reconstructions of the real measurements in Figure 14 (elastic net) are more reliable than in
Figure 13 (ANN). The acquired real measurement reconstructions were validated using
traditional methods—dielectric and microwave. Top left part of images are empty, most
likely because the applied methods and measuring devices did not register any moisture in
this area. Recognizing that the elastic net method has been properly validated and obtained
the best results of the MSE, RIE and ICC indicators (Table 5), it can be concluded with high
probability that the real distribution of moisture and dry areas inside the tested part of the
building wall are as shown in Figure 14.

Noteworthy is the general concept of reconstructing EIT images that were used for all
four methods. It is a “pixel by pixel” approach, that consists of using all input variables
to reconstruct a single pixel. This methodology requires training as many independent
subsystems as the resolution of the output image, but the high quality of the reconstruction
compensates for this inconvenience. Taking into account the dynamic development of
information technologies, which results in a decrease in computing power costs, such an
approach seems to be justified. Future research will focus on differentiating tomographic
methods depending on the reconstructed pixel. It will be a special kind of hybrid approach
defining the association of the method with the pixel (“method to pixel”).
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