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Abstract: This paper presents an advanced adaptive single-pole auto-reclosing (ASPAR) scheme
based on harmonic characteristics of the secondary arc voltage. For analysis of the harmonics, short-
time Fourier transform (STFT), which is a universal signal processing tool for transforming a signal
from the time domain to the frequency domain, is utilized. STFT is applied to extract the abnormal
harmonic signature from the voltage waveform of a faulted phase when a transient or permanent
fault occurs on a power transmission line. The proposed scheme uses the total harmonic distortion
(THD) factor to determine the fault type based on the variation and distortion characteristics of the
harmonics. Harmonic components in the order of odd/even are also utilized to detect the secondary
arc extinction time and guide the reclosing operation. Based on these factors, two coordinated
algorithms are proposed to reduce the unnecessary dead time in conventional auto-reclosing methods
and enable an optimal reclosing operation in the event of a single-pole to ground fault. The proposed
ASPAR scheme is implemented using the electromagnetic transient program (EMTP), and various
simulations are conducted for actual 345 and 765 kV Korean study systems.

Keywords: adaptive single-pole auto-reclosing; harmonic; power system protection; secondary arc

1. Introduction

It has been established that the most frequent faults on overhead high-voltage trans-
mission lines are single-pole to ground faults, which are primarily non-permanent faults.
The large majority of these faults are transient faults caused by natural events, such as
flashover of the insulator caused by a high transient voltage induced by lightning or tem-
porary tree contact [1–4]. For such faults, the single-pole auto-reclosing (SPAR) method
can be implemented to improve the transient stability and reduce the reclosing voltage
transients [1]. Generally, transient single-pole to ground faults are accompanied by arcs
that can be classified as either primary or secondary arcs. A primary arc exists before the
faulted-phase circuit breaker (CB) is tripped to remove the fault from the power system
after the fault event, whereas a secondary arc occurs after the faulted-phase CB is tripped.
In particular, secondary arcs are sustained by the electromagnetic and electrostatic coupling
between the faulted phase and the remaining two sound phases. If the SPAR operation
is performed before complete extinction of the secondary arc, it can adversely affect the
power system stability. For a successful SPAR from these risky arcs, it is necessary to
conduct the reclosing after the occurrence of the final extinction of the secondary arc.

In general, there are two types of SPAR schemes: traditional auto-reclosing [5–8] and
adaptive auto-reclosing [9–12]. The traditional methods use a constant predetermined time
called the “fixed dead time” for the arc extinction, whereas the adaptive methods monitor
the conditions of the power system in real-time to determine whether the secondary arc is
extinct and then perform the reclosing after the secondary arc is completely eliminated.
Currently, traditional auto-reclosing methods are widely used in numerous transmission
systems. However, these traditional methods have three potential disadvantages. The first
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problem arises after the fixed dead time. If the fault still remains as a result of allowing
insufficient time to deionize the arc completely, the reclosing can cause an overvoltage
across the CB poles and an arc restrike. The second problem occurs when the fault is
cleared much sooner than the reclosing command with a fixed dead time. In this case, the
power system stability and reliability can be reduced. The third problem is the unnecessary
reclosing of permanent faults, which may aggravate critical damage to the power system
and equipment. To overcome these limitations of traditional auto-reclosing methods, sev-
eral studies on adaptive single-pole auto-reclosing (ASPAR) schemes have been performed
in recent years [1,9–20].

In [1], a reclosing method based on the root mean square (RMS) of the faulted phase
voltage is presented. In this method, the RMS is calculated over a certain period, and
the obtained value is used to generate a reclosing command signal; the CB is tripped
when the difference between the present RMS value and previous value at each time
step exceeds a threshold level. In [15], a fundamental component of the zero-sequence
power measured at both ends of the transmission line is used as the primary factor to
detect the secondary arc extinction time. However, the aforementioned methods focus only
on detecting the optimal reclosing time, while there is a risk of performing an incorrect
reclosing operation in the event of a permanent fault. A variable dead time control-
based auto-reclosing algorithm considering the stability margin of the power system is
proposed in [16]. A disadvantage of this scheme is that it can be applied only when the
relative degree of transient stability is sufficiently high. In [17], a fuzzy logic-based fault
discrimination algorithm is proposed, but the development and application of the fuzzy
rules are complex. In addition, artificial neural network (ANN)-based schemes have been
proposed in several studies [4–6]. In [18], various components of the faulted-phase voltage
are extracted using the Fourier transform (FT), and these data are applied to an ANN
system. The proposed ANN system is sufficiently trained using more than 25,000 transient
and permanent single-pole to ground faults. In [19], a wavelet transform is applied to the
faulted-phase voltage, and the obtained values are used as the input data for an ANN
system. However, these ANN-based schemes must be suitably trained for each individual
transmission system condition and topology, such as the transmission line length, cable
parameters, operation/rated voltage level, and various fault situations. Moreover, the
performance of the ANN system cannot be predicted when it is exposed to unusual
patterns outside the training boundaries. In [20], a mathematical morphology (MM)-based
technique, which is a nonlinear time domain signal processing method that transforms the
shapes of signals, is introduced. This method requires a high sampling frequency to obtain
reliable results. In addition, several ASPAR schemes proposed in [9–14] use high-frequency
data demanding a sampling frequency that exceeds 100 kHz. These schemes can provide
high-quality performance, but they increase the computational burden and operation time
of the reclosing.

This paper presents an advanced non-communication and harmonic characteristic-
based ASPAR scheme. Because the voltage waveform of the faulted phase during a
secondary arc has significant distortion features compared with the waveforms both before
fault occurrence and after secondary arc extinction, the proposed scheme utilizes the total
harmonic distortion (THD) factor and odd/even-order harmonic components using short-
time Fourier transform (STFT). These factors are used to discern the fault type and detect the
secondary arc extinction. Verification of the proposed scheme in a modeled Korean power
transmission system ensures that the fault types are correctly identified and the extinction
time of the secondary arc for optimal reclosing is detected without any communication
channel. The remainder of this paper is organized as follows. Section 2 describes the major
concepts, such as the ASPAR operation sequence, characteristics of the secondary arc, and
the STFT signal processing method for analyzing the harmonics in the secondary arc. In
Section 3, harmonic characteristics, particularly THD and odd/even-order harmonics, of
the faulted-phase voltage are introduced. Based on these characteristics, new factors for
implementing the proposed algorithms are defined, and an advanced ASPAR scheme is



Energies 2021, 14, 1311 3 of 18

proposed in Section 4. Section 5 describes the actual Korean systems used as case studies
and the electromagnetic transient program (EMTP) simulation results. Finally, conclusions
are discussed in Section 6.

2. Basic Concepts
2.1. Principle of Adaptive Single-Pole Auto-Reclosing

Figure 1 shows the four stages in the operation sequence for ASPAR in a power
transmission line. Figure 1a,b demonstrates the normal pre-fault operation of the system
and the occurrence of a single-pole to ground fault in the system, respectively. In the case
of the fault type in Figure 1b, two possibilities can be considered: a transient/arcing fault
or a permanent fault. Regardless of the fault type, a high fault current flows through the
transmission line in both cases. After a few cycles, the protective relays operate to isolate
the faulted phase, as depicted in Figure 1c. A primary arc is completely quenched by
opening the CBs of the faulted phase. After isolation of the faulted phase, however, a
secondary arc caused by coupling between the faulted and sound phases still remains at the
fault point. Once the faulted phase is isolated, the voltage initially decreases sharply. If the
arc length starts to increase for any reason (e.g., a wind blow-up), an increase in the voltage
will occur. Consequently, the increase in voltage overcomes the secondary arc voltage
source and clears the secondary arc completely, as illustrated in Figure 1d. After detection
of the secondary arc extinction, the CBs at both ends of the isolated phase are closed,
and the transmission line returns to the normal operation condition, as demonstrated in
Figure 1a, completing the ASPAR sequence.
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Figure 1. Advanced adaptive single-pole auto-reclosing (ASPAR) operation sequence: (a) transmis-
sion line under normal operation; (b) single-pole to ground fault (transient or permanent); (c) isolation
of the faulted phase through a conventional scheme; (d) extinction of the secondary arc due to a
transient fault after an unknown time.

2.2. Secondary Arc

A primary arc caused by a transient single-pole to ground fault can be eliminated by
the SPAR operation, which isolates the faulted phase from the power system. During the
opening of the faulted phase, the voltage of the faulted-phase conductor is induced by
capacitive and inductive mutual coupling between the faulted-phase conductor and sound-
phase conductors. Because the air around a fault point is already ionized by the primary
arc, this induced voltage creates and sustains a secondary arc for an unpredictable amount
of time after the opening of the faulted phase. Numerous previous experimental studies
and field tests have demonstrated that secondary arcs are an extremely complex electrical
phenomenon that are influenced by various parameters [21]. In terms of protecting the
power system, the secondary arc extinction time is considered the most important point in
SPAR studies. The extinction time of a secondary arc depends on several factors, such as the
magnitudes of the primary and secondary arc currents, recovery voltage, system voltage,
interphase coupling, line compensation level, and length of the transmission line [21,22].
These factors can be affected by weather conditions, such as temperature, humidity, wind
speed, and atmospheric conditions. Usually, the secondary arc is self-extinguished, but if
the faulted phase is reclosed before the secondary arc is removed, the fault will reestablish,
resulting in an unsuccessful reclosing. A prolonged delay (>2 s) in reclosing to compensate
for the secondary arc extinction time can adversely affect the stability of the power system.
When a secondary arc occurs due to a transient fault in the transmission line, in general,
the secondary arc voltage has an irregular characteristic owing to the shoulder behavior
of an arc current, with repeated intermittent arc extinction and re-ignition. Consequently,
the secondary arc voltage exhibits a distorted shape, as demonstrated in Figure 2. This arc
voltage waveform tends to differ from a typical voltage waveform that takes the shape of a
sine wave under normal conditions. From the distorted shape of the voltage waveform, it
can be concluded that the arc voltage contains harmonic components. In this study, these
harmonic components are defined as a signature of the secondary arc voltage and are used
as a factor to discern the fault type and detect the secondary arc extinction time.
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2.3. Short-Time Fourier Transform

The fast Fourier transform (FFT), a signal processing tool, is the most commonly used
mathematical technique for transforming a signal from the time domain to the frequency
domain. The FFT method can calculate harmonic distortion and separate odd/even/inter-
harmonics. FFT has been widely implemented in various power quality fields to analyze
harmonic characteristics owing to its computational efficiency. However, the major disad-
vantage of using FFT arises when time data are needed in the frequency domain. In the
time domain, frequency information cannot be obtained by FFT and vice versa, i.e., in the
frequency domain, time data are not available [23].

One solution to this issue is STFT. STFT is commonly known as a sliding-window
version of FFT. This method consists of sliding a window function over the signal and taking
its Fourier transform (FT) for every half-window length. Accordingly, time information
is available in the frequency domain with a resolution that depends on the width of the
window function [23]. The window function, ω(t), with a size equal to each section is
chosen, and it is placed at the beginning of the signal. The window shifts along the signal
according to the hop size, repeating the FT for the new window with updated wave data.
Moreover, based on the hop size and sampling, a number of samples will be released from
the end of the windows. Then, the same number will be added to the front by making a
time-based move. The following two equations describe the continuous and discrete forms
of STFT, respectively [24]:

STFT(tω) =
∫ +∞

−∞

[
x(t)ω

(
t− t′

)]
e−j2π f tdt, (1)

DSTFT(mk) =
n=N−1

∑
n=0

[x(n)ω(n−mH)]e−j( 2πnk
N ), (2)

where x(n) is the input function, ω(n) is the window function, N is the number of FFT
points, n is the number of input samples, and H is the hop size. STFT can also express the
FT of the signal multiplied by the window function in a complex conjugate form. The time
resolution depends on the hop size, as shown in Equation (3):

k =
Nx − Noverlap

Nω − Noverlap
, (3)

where k is the amount of data in the time axis, Nx is the data length, Noverlap is the window
size minus the hop size, and Nω is the window length. The higher the value of k, the
better the time resolution will be. In several studies, STFT has shown better results in
terms of frequency selectivity compared with wavelets having fixed center frequencies and
bandwidths [24,25]. Because STFT has a fixed frequency resolution for all frequencies, it has
proven to be more suitable for harmonic analysis of voltage disturbances than other signal
processing methods. As described above, STFT has several advantages and is superior
for extracting the fundamental and harmonic components. Thus, STFT is effective for
analyzing the harmonic characteristics related to power quality disturbances.

3. Fault Characteristics Based on Harmonic Analysis
3.1. Study System Conditions

The Korean 345 kV power transmission line illustrated in Figure 3 is considered a study
system to simulate and analyze the harmonic characteristics of line faults. This transmission
system has a single-machine infinite bus consisting of a 6300 MVA synchronized generator,
step-up transformers, CBs, and 100 km of transmission line. Detailed parameters of the
transmission line are listed in Table 1, and the study system is modeled using the EMTP
software. In the study system, transient and permanent single-pole to ground faults
are simulated. In the case of transient faults, the arc model proposed by Saul Goldberg
is utilized [26]. The transient analysis of control systems (TACS) source and MODELS
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library in the EMTP software are used to implement the realistic nonlinear primary arc
and secondary arc [20,21]. In addition, a linear fault resistance is applied to represent a
permanent fault event. The total length of the transmission line is 100 km, and the fault
location is 10% the length of the transmission line, i.e., at 10 km. For all the fault cases, a
single-pole to ground fault occurs at t = 0.2 s. The fault is cleared after four cycles from the
fault inception time, and only single-pole operation of the CBs is considered.
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Table 1. The 345 kV transmission line parameters.

Parameter Value

Transmission Line
Impedance

R
Zero Sequence 0.2511 Ω/km

Positive Sequence 0.0345 Ω/km

L
Zero Sequence 1.0200 Ω/km

Positive Sequence 0.3666 Ω/km

C
Zero Sequence 0.0045 Ω/km

Positive Sequence 0.0117 Ω/km

3.2. Harmonic Analysis of the Faulted-Phase Voltage (Transient/Permanent)

First, the voltage waveforms of the faulted phase for transient and permanent faults
are analyzed. For this analysis, two fault simulations are performed for the 345 kV study
system described in Figure 3 and Section 3.1, and the simulation results are presented
in Figure 4. Figure 4 shows the result for one of the many simulation cases. In terms of
basic fault phenomena, we confirmed that an arc voltage caused by a secondary arc still
exists after tripping the CB in the transient fault situation. Then, a recovery voltage is
observed after final extinction of the secondary arc. However, for the permanent fault,
the fault persists, and thus the system voltage does not recover to a steady state even
after the voltage drops sharply following tripping of the CB. Depending on the simulation
conditions, the magnitude of the voltage or the shape of the waveform can be varied.
However, a series of processes in which the secondary arc occurs after CBs trip following
a fault, and then the recovery voltage arises after the secondary arc is eliminated are a
general trend for fault covered in this study.

Second, a harmonic analysis of the faulted-phase voltage is performed for both the
transient and permanent faults. To identify several significant features, THD analysis is
performed. The distortion rate of the signal, i.e., the normalized value of the harmonic
ratio contained in a signal, is called the THD. THD can be defined as the relative signal
energy present at non-fundamental frequencies, and this factor is commonly utilized to
quantify waveform distortion in the power quality analysis field. In general, the THD of a
voltage is expressed by the following equation:

THDV = VH/V1 × 100 =

√
(V/V1)

2 − 1× 100, (4)

where V means the RMS value of the voltage. V1 and VH represent the RMS of the
fundamental wave and the RMS of the harmonics included in the signal, respectively. For
general power system analyses, up to fiftieth harmonics can be considered. However, the
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signal energy is drastically reduced at high harmonic frequencies, and thus most of the
THD energy is usually contained in low-order harmonic frequencies [27,28]. In addition,
dealing with a wide range of frequencies makes the computational process more complex
and burdensome. For these practical reasons, it is reasonable to only consider the low-
order harmonics, which are sufficient to verify the major features of the harmonics of the
faulted-phase voltage. In this study, the THD factor is calculated using harmonics up to
the seventh order. To extract the harmonic components and calculate the THD from a fault
voltage waveform, STFT is applied. The sampling frequency is 7.2 kHz, and the size of the
window function is set to 16.67 ms, which is approximately one cycle at 60 Hz. Figure 5
depicts the results of the THD calculation for the voltage waveforms in Figure 4.
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Figure 5. Total harmonic distortion (THD) calculation results for the waveforms shown in Figure 4: (a) transient fault;
(b) permanent fault.

In Figure 5, three simple features are observed:

1. The THD of the faulted-phase voltage during the transient fault exhibits a sharp
increase and decrease at the time when the CB is tripped, after which it gradually
increases until the final extinction of the secondary arc.

2. The THD of the faulted phase voltage during the transient fault depicts a drastic
decrease immediately after the final extinction of the secondary arc.

3. In the case of the permanent fault, the THD of the faulted-phase voltage shows a
rapid increase only at the time when the CB is tripped and then continues to decrease.

A common characteristic verified by the above THD analysis is that the increase and
decrease of the THD are repeated locally in both faults. In addition, there are some different
trends between the two faults: (1) the magnitudes of the increase and decrease of the THD
differ, and (2) there is variation in the frequency of the THD. These definite signatures can
be utilized as important factors for distinguishing whether the fault type is transient or
permanent. In the next section, Sequence 1 algorithm for discrimination of the fault type is
introduced by applying the aforementioned features.
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Furthermore, the characteristics of the harmonic components contained in the sec-
ondary arc voltage caused by the transient fault are analyzed. To identify certain clear
features that can be utilized to detect the extinction time of the secondary arc, components
up to the seventh harmonic are extracted for the transient fault case, and the results are
shown in Figure 6. The major characteristics derived from the extracted odd/even-order
harmonics can be summarized as follows:

1. In the case of even-order harmonics of the faulted phase, the harmonics is quite large
near the extinction point of the secondary arc, while the magnitude is considerably
small before that.

2. The odd-order harmonics of the faulted phase are not only relatively large around the
extinction point of the secondary arc, but also have a certain value before that.

3. After secondary arc extinction, there is a significant difference in the harmonic varia-
tion between the odd- and even-order harmonics.

4. A common characteristic is that the higher the order of the harmonics, the lower the
number of harmonics included in the voltage waveform will be. In other words, most
of the harmonic components tend to be distributed toward the low-order harmonics.

5. Therefore, when analyzing and utilizing the harmonic components contained in the
secondary arc voltage during the transient fault condition, it is sufficient to consider
the low-order harmonics.
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By analyzing the difference in the THD variation according to the fault type and the
characteristics of the harmonics in the secondary arc voltage, we can verify the important
features in each fault situation. During the transient fault, the voltage of the faulted phase
fluctuates more frequently because of the intermittent extinction and re-ignition of the
secondary arc, including the occurrence of a recovery voltage. Consequently, the change
in the THD is more severe than that for the permanent fault. In addition, in the case of
a transient fault, the magnitudes of the odd- and even-order harmonics are significantly
different before and after the extinction of the secondary arc. In particular, the difference
in the harmonics is significantly polarized after the secondary arc extinction. In Section 4,
several new factors are defined to normalize these features. Based on these results, an
auto-reclosing scheme is proposed for both discrimination of the fault type and detection
of the secondary arc extinction time.

4. New Adaptive Auto-Reclosing Scheme

The ASPAR scheme proposed in this study consists of two sequences as shown in
Figure 7. The first sequence determines whether a fault type is transient or permanent. In
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this step, the fault type is accurately discriminated. In the event of a permanent fault, a
reclosing operation is not performed to protect the system stability from being affected
by an unnecessary reclosing. In the case of a transient fault, however, the final extinction
time of the secondary arc is detected through the second sequence. This step is aimed at
determining the instant of the optimal reclosing operation. Two algorithms are applied
to perform the above operations for the two sequences. The basic concept of the total
operation of the developed algorithms is based on the THD and harmonic features of the
faulted-phase voltage according to the fault conditions analyzed in the previous section.
Details of the suggested algorithms are described in the sections below.
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4.1. Algorithm for Discrimination of the Fault Type—Sequence 1

The primary function of the Sequence 1 algorithm is to accurately distinguish the fault
type and then rapidly prepare the subsequent operation for a transient fault. In addition,
it prevents unnecessary reclosing caused by a malfunction of the protective relay for a
permanent fault. This algorithm utilizes the pattern in which the THD of the faulted-phase
voltage locally increases and decreases during a fault period. To represent these THD
variations, a new variable called ∆THD is defined as follows:

∆THD = THDavg(i)− THDavg(i− 1), (5)

where THDavg is the average value of the THD during one cycle, THDavg(i) is the value
of THDavg for the current cycle, and THDavg(i–1) is the value of THDavg calculated in the
previous cycle. The reason for deriving THDavg is that, as mentioned previously, the THD
of the faulted-phase voltages in both transient and permanent faults repeatedly increase
and decrease. As a result, an overall pattern of changes in the THD can be identified by
analyzing the variation and deviation based on the average value of the THD. Next, new
count functions, Count_P and Count_M, are defined as indicators to quantify the frequency
of the changes in the THD during the fault period. If ∆THD has a positive value, Count_P
is increased by 1 for every sample, whereas Count_M is increased by 1 for every sample
when ∆THD has a negative value. In general, the magnitude or shape of a harmonic
varies considerably according to the voltage fluctuation and fault duration that depend on
the fault type, which can result in THD variations. If limited to the fault type, the THD
variation is rather noticeable, particularly in the fault duration section. Thus, in this study,
these features are simply generalized using Count_P and Count_M. Moreover, these two
factors are used as the major elements to distinguish a significant characteristic between
the transient and permanent faults.

Figure 8 depicts the Count_P of the THD for the voltage waveforms of the transient
and permanent faults in Figure 4. Count_P in the transient fault continues to increase
after the CB is tripped until the secondary arc is completely extinguished. On the other
hand, Count_P in the permanent fault has a maximum value of 1 after the CB is tripped,
and it maintains a value of approximately zero for most of the duration. Therefore, the
cases in which Count_P is greater and Count_P continues to increase over a certain time
can be discriminated as transient faults. In other words, Count_P, which has a relatively
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high variation in the transient fault situation, can be utilized as a criterion for detecting
transient faults. Accordingly, we present a threshold value, λP, which is a time limit to
decide whether the fault type is transient or not. If Count_P is greater than λP, the case is
considered a transient fault. To set the value of λP, we refer to the deionizing time defined
in IEEE Std C37.104-2002 [29], using which we derive λP, as in Equation (6):

λP = (10.5 + VL−L/34.5)×WP. (6)
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In Equation (6), VL-L and WP represent the nominal voltage of the power system
and weight factor applied to the deionizing time for identification of transient faults,
respectively. To select an appropriate WP, various simulations are performed, and it is
confirmed that the maximum value of Count_P within the secondary arc period is generally
between 35.6% and 60.1% of the total secondary arc duration. This means that WP should
be set at a value of 0.601 or less because the time for final extinction of the secondary arc
must also be considered to perform an opportune reclosing operation, although a transient
fault can be recognized effectively at approximately 60.1% of the secondary arc duration.
Based on diverse simulation cases for determining the value of WP, it is set to between 0.45
and 0.55 because this range has the highest rates of fault detection and reclosing success.

Figure 9 depicts the Count_M of the THD for the voltage waveforms of the transient
and permanent faults in Figure 4. As shown in this figure, Count_M in the transient fault
exhibits a short increase immediately after the CB is tripped and then does not have any
value for the secondary arc period. Meanwhile, Count_M in the permanent fault increases
continuously after the CB is tripped. Therefore, the event in which Count_M is greater and
lasts over a certain time can be determined as a permanent fault, and the Count_M index,
which shows a relatively high variation in permanent events, can be used as a criterion for
detecting permanent faults.
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Similar to the case of the transient fault, we define a threshold value, λM, for detecting
a permanent fault based on the deionizing time in Equation (7), where WM is the weight
factor applied to the deionizing time for identification of a permanent fault. In simulations
to select an appropriate WM value, the maximum value of Count_M within the secondary
arc period is generally between 28.2% and 44.4% of the total secondary arc duration.
Therefore, WM must be set at a value of 0.44 or greater. Based on diverse simulation cases
for determining the value of the WP index, WM is set to between 0.55 and 0.65:

λM = (10.5 + VL−L/34.5)×WM. (7)

Figure 10 illustrates a diagram of the proposed scheme for discriminating between
transient and permanent faults using the THD features of the faulted-phase voltage. The
proposed scheme only acquires voltage information from the transmission line. If a single-
pole to ground fault is detected, the CB of the faulted phase is tripped. Using the faulted-
phase voltage, the THDavg during the fault duration is calculated for every sample and
then compared with the sample in the previous cycle to derive the ∆THD, which indicates
the variation in the THD. Whenever ∆THD has a positive value, Count_P is increased by
1 for every sample. If Count_P exceeds a time threshold, λP, the fault type is classified as
transient, and the Sequence 2 process is performed to detect the secondary arc extinction
time for performing the reclosing. If ∆THD has a negative value, however, Count_M is
increased by 1 for every sample. If Count_M persists until a time threshold, λM, the fault
type is classified as permanent. In the case of a permanent fault, reclosing is not performed
because unnecessary reclosing operations can reduce the power system stability.
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4.2. Algorithm for Detection of the Secondary Arc Extinction—Sequence 2

The purpose of the Sequence 2 algorithm is to detect the final extinction time of the
secondary arc arising from a transient fault. This algorithm utilizes the voltage variation
patterns for each harmonic order of the secondary arc voltage wave analyzed in Section 3.2.
To utilize the aforementioned features, new factors, OOHD and EOHD, are defined, which
indicate the sum of the odd-order harmonic distortion and the sum of the even-order
harmonic distortion, respectively. In power transmission lines in a stable condition, in
general, the THD tends to have a low value, and a nearly equal proportion of odd- and
even-order components are present in the harmonics. In the transient fault condition,
however, the THD of the faulted-phase has a high value, and the secondary arc voltage
waveform exhibits a significantly distorted shape. This is because components of the
even-order harmonics are over-represented compared to those of the odd-order harmonics.
These features can be identified through the analysis in Section 3.2. For the development of
the Sequence 2 algorithm, OOHD and EOHD are used to compare the difference between
the odd- and even-order harmonics by expressing them as normalized indicators. OOHD
and EOHD can be expressed as follows:

OOHD =

√
V2

3 + V2
5 + V2

7

V1
, (8)
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EOHD =

√
V2

2 + V2
4 + V2

6

V1
. (9)

The calculation results for the OOHD and EOHD of the voltage waveform in Figure 4a
are presented in Figure 11. As shown in Figure 11, OOHD maintains a certain value after
the CB is tripped. It increases slightly near the secondary arc extinction point and then
decreases rapidly. Meanwhile, EOHD remains at a low value after the CB is tripped; it
shows a rapid increase near the secondary arc extinction point and then decreases again.
By comparing OOHD and EOHD patterns in the fault situation, two features are identified.
First, the two factors exhibit different characteristics during the secondary arc period, and
a large deviation exists between them. Second, the deviation gradually decreases after
extinction of the secondary arc. Thereafter, OOHD and EOHD have approximately equal
values starting from when the recovery voltage arises. Using these features, particularly
the second feature, the point where the OOHD and EOHD ratios in the secondary arc
voltage become nearly identical can be defined as the extinction time of the secondary arc.
Accordingly, a new variable defined as a harmonic ratio (HR_THD) is utilized, as shown in
Equation (10):

HR_THD =
OOHD
EOHD

. (10)

Figure 12a demonstrates the results for the HR_THD derived from Figure 4a. To
express the waveform of HR_THD more clearly, HR_THD(f), which applies a filter to HR_THD,
is presented in Figure 12b. The value of HR_THD(f) is considerably low only during the
normal condition period prior to the fault inception and after the arc extinction, at which
points the value of HR_THD(f) is less than 1. In conclusion, based on HR_THD(f), it is possible
to determine whether the secondary arc has been extinguished by detecting a section in
which the value of HR_THD(f) enters a stable range.
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The procedure to detect the final extinction time of the secondary arc in the faulted
phase is demonstrated in Figure 13. First, the THD data acquired in the Sequence 1
algorithm are separated into OOHD and EOHD. In general, the proportions of odd- and
even-order harmonics present in the voltage are similar in the steady state. In the event
of disturbances, such as faults, however, the harmonic components in the fault voltage
increase sharply, causing a severe imbalance between the odd- and even-order harmonics
present in the fault voltage. In the case of a transient fault, the ratio of the two harmonic
components during the secondary arc period is also unbalanced. Once the secondary arc is
extinguished and the system voltage stabilizes, the proportions of odd- and even-order
harmonics become similar again, and this point can be determined as the time of the
secondary arc extinction. To utilize these features, HR_THD is calculated by comparing the
proportions of odd- and even-order harmonic components. To determine the instant of the
secondary arc extinction accurately, an additional filtering process is conducted to remove
the uncertain noise components and outliers. The HR_THD(f) derived by these processes
determines the secondary arc extinction time based on the threshold value, λf, and the
reclosing can then be conducted through a trip signal.
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5. Simulations and Results
5.1. Simulations in a 345 kV Power Transmission System

To verify the proposed ASPAR scheme, the 345 kV study system illustrated in Figure 3
is used for simulations. To evaluate the performance of the algorithms for the length of
the transmission line and fault location, various simulation cases are considered. The total
length of the transmission line is classified into cases of 100 and 200 km, and each fault
location case is simulated at varying distances from a transmission point. For all cases, the
detailed simulation conditions are presented in Table 2.

Table 2. Simulation conditions.

Parameter Conditions

Fault Type Single-pole-to-ground fault
(transient/permanent)

Fault Inception Time 0.2 s
Fault Clearing Time Four cycles after fault inception

CB Operation Single-pole operation
Total Length of T/L 100, 200 km

Fault
Location

100 km T/L 10, 20, 30, 40, 50, 60, 70, 80, 90 km
200 km T/L 20, 40, 60, 80, 100, 120, 140, 160, 180 km

Figure 14a shows the simulation results for the faulted-phase voltage measured at a
relay point on a transmitting terminal of the transmission line when a transient fault occurs
10 km from the transmission point. In addition, Figure 14b presents the calculated values
of THD and HR_THD(f).
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In Figure 14a, a fault occurs at t = 0.2 s, and then a CB on the transmission line is
tripped after approximately four cycles. In Figure 14b, the THD is calculated for the voltage
waveform of the faulted phase to identify the fault type using the Sequence 1 algorithm.
When a fault occurs, the proposed scheme detects the fault through a change in voltage and
utilizes the characteristics that the THD of the voltage waveform shows repeated increases
and decreases. Even if the magnitude of the voltage THD in Figure 14b is within the normal
range, from a range of background harmonic distortion perspective [30], it is possible to
detect the fault type by catching the repeated and continuous variation of THD caused
by the fault even in normal situations. In Sequence 1 algorithm, if the fault is identified
as a transient type through the classification process for transient and permanent faults, a
calculation of HR_THD(f) using the Sequence 2 algorithm is begun to detect the extinction
time of the secondary arc and prepare the subsequent reclosing operation. When the final
extinction time of the secondary arc is derived from the HR_THD(f) calculation results, the
reclosing of the CB is conducted through an operation command for a reclosing relay. A
series of processes in which the operation sequence from fault detection to termination of
the reclosing is successfully obtained using the proposed reclosing scheme are presented in
Figure 14a. In other words, the proposed method is operated over the following five steps,
after which the system voltage of the power transmission line is successfully recovered to a
steady state.

1. Discrimination of a transient fault (Sequence 1 algorithm);
2. Detection of the final extinction of the secondary arc (Sequence 2 algorithm);
3. Reclosing of the leader-end CB;
4. Voltage check;
5. Reclosing of the follower-end CB.

Further simulation results are presented in Tables 3 and 4, which indicate that the
proposed ASPAR algorithm accurately distinguishes the fault type in all of the simulation
cases. For transient faults, reclosing is normally performed after detection of the secondary
arc extinction time. In Korea, the traditional auto-reclosing method, which uses a constant
predetermined time called a “fixed dead time” for the arc extinction, has been applied in
the transmission system. The criterion for the conventional SPAR in the 345 kV power
transmission system is based on a fixed dead time of 48 cycles, i.e., 0.8 s. With the imple-
mentation of the proposed ASPAR scheme, the simulation results for the transient faults
indicate that a series of operations from the detection of the fault type and secondary arc
extinction time to the reclosing operation can be completely terminated within the fixed
dead time of the current SPAR method. Because the fault type and final extinction of the
secondary arc can be identified within about 0.5 s after fault occurrence in all the simulation
cases, there is a sufficient time margin to perform the reclosing operation before the fixed
dead time, although the CBs are reclosed immediately within a few cycles after detection
of the secondary arc extinction. However, the proposed ASPAR process is not performed if
the fault discrimination step identifies a permanent fault. Through these simulation results,
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we can verify that the proposed ASPAR scheme identifies the fault type and determines
whether reclosing should be performed based on the fault type accurately. This means that
application of the proposed ASPAR method can reduce unnecessary dead time and restore
a power system to the steady state more quickly than the traditional auto-reclosing based
on a fixed dead time. In addition, it can contribute to enabling efficient system operation
and increased system stability.

Table 3. Simulation results for verification of the ASPAR scheme in a 345 kV transmission line (100 km).

Fault
Location

[km]

Fault
Inception

[s]

Transient Fault Permanent Fault
Detection of

Transient
Fault [s]

Detection of
Secondary Arc
Extinction [s]

Reclosing
Success or

Failure

Detection of
Permanent

Fault [s]

Reclosing
Success or

Failure

10

0.2

0.41989 0.53143 success 0.48657 not operated
20 0.38656 0.54852 success 0.48657 not operated
30 0.41989 0.54810 success 0.55324 not operated
40 0.36989 0.55616 success 0.46990 not operated
50 0.40323 0.56421 success 0.46990 not operated
60 0.36989 0.58907 success 0.46990 not operated
70 0.41989 0.57282 success 0.48657 not operated
80 0.38656 0.57268 success 0.48657 not operated
90 0.40323 0.58074 success 0.48657 not operated

Table 4. Simulation results for verification of the ASPAR scheme in a 345 kV transmission line (200 km).

Fault
Location

[km]

Fault
Inception

[s]

Transient Fault Permanent Fault
Detection of

Transient
Fault [s]

Detection of
Secondary Arc
Extinction [s]

Reclosing
Success or

Failure

Detection of
Permanent

Fault [s]

Reclosing
Success or

Failure

20

0.2

0.40323 0.50740 success 0.48657 not operated
40 0.43656 0.50712 success 0.48657 not operated
60 0.41989 0.54060 success 0.48657 not operated
80 0.41989 0.54810 success 0.48657 not operated

100 0.41989 0.56463 success 0.48657 not operated
120 0.41989 0.57268 success 0.48657 not operated
140 0.40323 0.58977 success 0.48657 not operated
160 0.40323 0.59866 success 0.48657 not operated
180 0.40323 0.60699 success 0.48657 not operated

5.2. Simulations in a 765 kV Power Transmission System

To expand the verification of the proposed reclosing scheme, additional simulations
are performed for an actual 765 kV transmission system in Korea illustrated in Figure 15.
Two parallel 765 kV transmission lines are located between the Sin-Gapyung and Sin-
Taebaek substations with a total line length of 160 km. Each fault case is simulated by
moving the fault location at intervals of 10 km from a transmission point. The other
simulation conditions are the same as those in Table 2.

Table 5 summarizes the simulation results for the 765 kV transmission system. Similar
to the simulations with the 345 kV system, the proposed scheme can distinguish the fault
type accurately for all the considered cases. For transient faults, reclosing operations are
performed successfully, as indicated in Table 5. Currently, the criterion for conventional
SPAR in the Korean 765 kV transmission system applies a fixed dead time of 60 cycles, i.e.,
1.0 s. From the above results, in the case of a transient fault, the proposed ASPAR scheme
can conduct the reclosing faster than the current dead time of 1.0 s even though the CBs
are reclosed within a few cycles after identification of the secondary arc extinction. These
results demonstrate that the ASPAR scheme proposed in this study can ensure superior
performance even at various transmission system voltage levels, and the proposed scheme
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demonstrates significant effectiveness for protecting power systems from both transient
and permanent single-pole to ground faults.

1 
 

 
Figure 15. Actual 765 kV transmission system in Korea.

Table 5. Simulation results for verification of the ASPAR scheme in a 765 kV transmission line (160 km).

Fault
Location

[km]

Fault
Inception

[s]

Transient Fault Permanent Fault
Detection of

Transient
Fault [s]

Detection of
Secondary Arc
Extinction [s]

Reclosing
Success or

Failure

Detection of
Permanent

Fault [s]

Reclosing
Success or

Failure

10

0.2

0.51990 0.80493 success 0.58657 not operated
20 0.45323 0.79687 success 0.58657 not operated
30 0.48657 0.80506 success 0.58657 not operated
40 0.43656 0.81340 success 0.58657 not operated
50 0.45323 0.79729 success 0.56991 not operated
60 0.45323 0.81298 success 0.56991 not operated
70 0.55324 0.81354 success 0.56991 not operated
80 0.48657 0.82159 success 0.56991 not operated
90 0.46990 0.82951 success 0.56991 not operated

100 0.43656 0.81354 success 0.56991 not operated
110 0.46990 0.82145 success 0.61991 not operated
120 0.45323 0.82965 success 0.56991 not operated
130 0.45323 0.83798 success 0.56991 not operated
140 0.43656 0.82951 success 0.58657 not operated
150 0.50323 0.83798 success 0.56991 not operated

6. Conclusions

In this study, an advanced ASPAR scheme is proposed to protect transmission power
systems from single-pole to ground faults. With application of the STFT signal processing
tool, the proposed scheme utilizes the THD factor and odd/even-order harmonic com-
ponents of the faulted-phase voltage to discern the fault type and detect the secondary
arc extinction, respectively. Based on these factors, an ASPAR scheme comprising two
coordinated algorithms is proposed, and various fault simulations are conducted to verify
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its performance. From the simulation results for actual 345 and 765 kV Korean transmission
study systems, we verify that the proposed scheme can accurately identify the fault type
and accurately determine whether reclosing must be performed based on the fault type. In
addition, implementation of the developed ASPAR method can reduce unnecessary dead
time and restore the power system to the steady state more rapidly than the conventional
auto-reclosing method based on a fixed dead time. Therefore, implementing the proposed
ASPAR scheme in power transmission line protection relays can contribute to enhancing
the power system stability and enabling efficient system operation.
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