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Abstract: Formic acid is a liquid organic hydrogen carrier giving hydrogen on demand using catalysts.
Metal complexes are known to be used as efficient catalysts for the hydrogen production from formic
acid decomposition. Their performance could be better than those of supported catalysts with metal
nanoparticles. However, difficulties to separate metal complexes from the reaction mixture limit
their industrial applications. This problem can be resolved by supporting metal complexes on the
surface of different supports, which may additionally provide some surface sites for the formic acid
activation. The review analyzes the literature on the application of supported metal complexes in
the hydrogen production from formic acid. It shows that the catalytic activity of some stable Ru
and Ir supported metal complexes may exceed the activity of homogeneous metal complexes used
for deposition. Non-noble metal-based complexes containing Fe demonstrated sufficiently high
performance in the reaction; however, they can be poisoned by water present in formic acid. The
proposed review could be useful for development of novel catalysts for the hydrogen production.

Keywords: formic acid decomposition; hydrogen; biomass; metal complex; heterogeneous catalyst;
ruthenium; iridium; iron

1. Introduction

Hydrogen is mainly used for ammonia synthesis and the petrochemical industry. Its
traditional production involves non-renewable sources and processes giving a significant
emission of carbon dioxide leading to global warming. Among these processes are steam
reforming of natural gas and gasification of coal performed at very high temperatures
(>900 K). Recently, the International Energy Agency reported that the hydrogen production
reached 75 mln of tons and that it was accompanied by emission of 830 mln tons of CO2 [1].
Global demand for hydrogen increases from year to year accompanying by an increase of
the carbon dioxide emissions.

Despite hydrogen is a clean energy carrier its safe transportation and storage are rather
complicated. Liquid organic hydrogen carriers (LOHCs) are used for safe storage and
transportation of hydrogen [2,3]. They can be produced from biomass or CO2 thus avoiding
the effect of the evolved CO2 for global warming. Formic acid (HCOOH) is an example of
such a LOHC. It contains 53.4 g L−1 hydrogen (4.4 wt %), which is by a factor of 2 higher
than the content of compressed hydrogen at 350 bar at the same volume. This amount
corresponds to the energy density of 2.1 kWh L−1. In contrast to hydrogen, formic acid can
be easily transported and stored and its application is much safer. An important feature of
using formic acid is that it can be produced by catalytic hydrolysis/oxidation of biomass
with high yields at low temperatures (<423 K) [4–6]. Hydrogen can be released from formic
acid using catalysts at even lower temperatures (Figure 1). Thus, transformation of biomass
to hydrogen through formic acid could be considered as an efficient route, because direct
gasification of biomass also giving hydrogen demands very high temperatures (>900 K)
(Figure 1). Recently, Zhang et al. [7] and Park et al. [8] demonstrated the proof of concept
for such an approach.
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thesis of γ-valerolactone from C6 sugars and levulinic acid [11], 2,5-dimethylfuran from 
5-formyloxymethylfurfural [12], furfuryl alcohol [13] and methylfuran [14] from furfural, 
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Figure 1. Reaction scheme showing the production of electrical energy and fuels from biomass 
through the conversion to formic acid. 

Supported catalysts with nanoparticles are traditional catalysts for the hydrogen pro-
duction from formic acid in gas and liquid phase. Novel single atom metal catalysts sup-
ported on N-doped carbon may provide a higher activity in the formic acid decomposition 

Figure 1. Reaction scheme showing the production of electrical energy and fuels from biomass
through the conversion to formic acid.

The hydrogen obtained from formic acid could be further transformed to electrical
energy (Figure 1). The development of a compact integrated 25 kW system which converts
formic acid to power has been discussed [9]. Formic acid could be used also as a donor
of hydrogen instead of molecular hydrogen to hydrogenate different organic substances
for production of fuels and intermediates for fuels [4,10]. Thus, it could be applied for
synthesis of γ-valerolactone from C6 sugars and levulinic acid [11], 2,5-dimethylfuran from
5-formyloxymethylfurfural [12], furfuryl alcohol [13] and methylfuran [14] from furfural,
upgraded bio-oil from bio-oil [15], and diesel/gasoline mixtures from tar [16] (Figure 1).

Supported catalysts with nanoparticles are traditional catalysts for the hydrogen
production from formic acid in gas and liquid phase. Novel single atom metal catalysts
supported on N-doped carbon may provide a higher activity in the formic acid decom-
position than the activity of the catalysts with nanoparticles, but the difference is not so
significant [17]. The activity of homogeneous metal complexes is often higher [18–24].
Hence, they could be used at lower temperatures. Metal complexes also represent more
uniform active sites as compared to metal nanoparticles. Hence, basing on this knowledge
the design of the catalyst could be facilitated. However, there are serious problems of



Energies 2021, 14, 1334 3 of 14

application of homogeneous metal complexes as catalysts for different reactions limiting
their industrial applications. They include difficulties in separation of a catalyst from the
reaction medium and catalyst’s recovery, instability of homogeneous catalytic systems, as
well as possible corrosive effects of catalyst solutions on the equipment [25].

Separation of the catalysts with noble metals could be important for production of
hydrogen from reaction mixtures containing formic acid and obtained from biomass. To
solve this problem, metal complexes could be supported on different supports. Serious ef-
forts have been directed toward the immobilization of homogeneous catalysts on supports.
Evidently, their catalytic properties could change due to a change of ligand environment,
since after supporting the support surface sites become important ligands for metal atoms.
These sites may have no direct analogs in solutions [25]. Their nature affects strongly
the energy of interaction of metal complexes and resistance of the catalyst to leaching.
Additionally, the support may provide surface sites for formic acid activation leading to its
faster conversion.

Carbon dioxide is also produced as a by-product during the decomposition of formic
acid; however, it can be further hydrogenated into formate salts at low temperatures [26,27].
Earlier, we have analyzed this reaction taking place on different catalysts, particularly on
supported metal complexes [27]. In the present review, we will consider in details the
catalytic properties of supported Ru, Ir and Fe complexes in the hydrogen production
from formic acid. There are only a few studies performed with supported complexes of
other metals (Pd, Rh) in this reaction. We have not found a specialized review related
to application of supported metal complexes in the hydrogen production from formic
acid. However, this subject is worth to discuss since this type of the catalysts shows
excellent activity, selectivity and stability in the reaction and can be easily separated from
the reaction mixture.

2. Supported Ruthenium Complexes

Ru complexes are among the most active complexes for the hydrogen production
from liquid phase formic acid. The group of Laurenczy contributed significantly to the
development of these catalysts [20]. In 2009, they reported the results of immobiliza-
tion of ruthenium(II)–TPPTS (trisulfonated triphenylphosphine) complex on different
supports [28]. Among them, they used an ion exchange resin containing basic trimethy-
lammonium groups. The reaction mixture except of formic acid contained sodium formate
(9:1). It is known that addition of sodium formate to formic acid should give a higher
activity [19,29,30]. The results showed that this resin ionically interacted strongly with the
Ru complex and no Ru leaching took place during the reaction. However, recycling of the
catalyst led to a decrease in the reaction rate, but the same conversion was achieved in 3 h.

In another case, covalent interaction of the Ru species to the phosphine groups of
PPh3- or PPh3-O-cross-linked polystyrene led to strong coordination of the metal. Unfor-
tunately, the obtained catalyst was not sufficiently active in the reaction as compared to
the homogeneous catalyst. The authors supposed that the reasons are related to a high
hydrophobicity of the material and mass transfer limitations.

Additionally, they used five different types of zeolites as supports. The activity was
sufficiently good, but the adsorbed Ru–TPPTS could be removed in water from zeolites
thus indicating that it was attached weakly through physical adsorption. This complicates
the catalyst recycling which is necessary for a sustainable process.

The same group has noticed later that their earlier attempts to create heterogenized
metal complex catalysts were only partially successful and developed another system [29].
In this case, they used a mesoporous silica support (MCM-41) with attached phosphine
groups. The optimized catalytic system corresponded to MCM41-Si-(CH2)nPPh2/Ru-
mTPPTS with n = 2 and demonstrated the activity and stability comparable to those of
the homogeneous catalyst (Figure 2). Thus, the turnover frequency (TOF) of 2780 h−1 was
obtained at 383 K (Table 1). TOF value corresponds to the number of hydrogen molecules
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obtained per one metal site per time unit. It is a major value characterizing the specific
activity of the catalysts.
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Figure 2. Effect of the number of CH2 groups attaching phosphine groups to the MCM-41 support on
formic acid (HCOOH) decomposition catalyzed by the immobilized Ru catalysts at 363 K. Reprinted
with permission from [29].

The effect of the number of CH2 groups attaching the phosphine groups (n) is demon-
strated in Figure 2. It is seen that short CH2 chains lead to the activity higher than those
for the catalysts with longer chains. The content of CO obtained as a by-product was
negligible (3 ppm). It is very important to have a very low level of CO in the reaction to
prevent poisoning of the catalyst in a fuel cell. In addition, the supported Ru catalysts were
recyclable since they allowed performing the reaction for more than 20 cycles without loss
in activity.

Later, the same group created a reactor system for continuous production of hydrogen
from formic acid [31]. A Ru-mTPPTS catalyst supported on phosphinated polystyrene
beads was used in this case. This catalyst provided the TOF of 270 h−1 at 378 K and the
apparent activation energy of 93.6 kJ mol−1. The low CO concentration level (<5 ppm) was
reached due to a PROX reaction using a Pt/CeO2 catalyst. Alternatively, a methanation of
CO could be used to decrease the CO content [9].

Zhao [32] modified the surface of SiO2 support (450 m2 g−1) with 3-mercaptopropyltri-
methoxysilane to obtain SiO2-SH groups, which then interacted with Ru or Pd chlorides
(about 2 wt %). The obtained Ru-S-SiO2 and Pd-S-SiO2 catalysts showed TOFs of 344 h−1

and 719 h−1 with a 4 M HCOOH/HCOONa (9:1) mixture at 358 K, respectively. X-Ray Pho-
toelectron Spectroscopy (XPS) studies before and after experiments showed the presence
of mainly Pd2+ ions in the catalyst indicating that they are the active sites of the reaction.
The authors also showed that sulfates accelerate the reaction by up to 70%. This could be
useful for practical applications.

Wang et al. [33] used a ruthenium pincer complex knitted in a porous organic polymer
(810 m2 g−1). Thermal gravimetric analysis revealed that the supported complex was
thermally stable up to 533 K. However, the TOF of 266 h−1 obtained at 363 K was not very
high. The authors proposed a mechanism for the formic acid decomposition and production
based on participation of Ru hydride in the reaction (Figure 3). For the decomposition, the
mechanism involves the dissociative formic acid adsorption and CO2 release followed by
H2 release. It is interesting that N sites of the complex provide deprotonation of the formic
acid through dissociation of the O–H bond.
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Solakidou et al. [34] showed that amino functionalized silica (H2N@SiO2) significantly
increases the TOFs of the hydrogen production from formic acid by a (Ru/P(CH2CH2PPh2)3)
homogeneous catalyst. The maximal TOF reached 983 h−1 at 363 K. They observed a sig-
nificant decrease of the apparent activation energy from 41 kJ mol−1 to 28 kJ mol−1 and
supposed that the H2N@SiO2 particles play a dual role: they act as a co-catalyst for deproto-
nating formic acid by amine groups, and they serve as a template, which stabilizes the metal
complex on its surface, thus promoting formate decomposition via (RuII-hydride) species.

Bavykina et al. [35] used a Ru complex supported on covalent triazine framework
(RuII(η6-C6H6)/CTF) and obtained high TOF values at 353 K in base free conditions
(without Na formate) (4020 h−1, Table 1).

Hausoul et al. [36] studied the effect of the nature of polymeric support on the
properties of a Ru complex in the hydrogen production from formic acid. Polymeric
analogs of PPh3 (pTPP), 1,2-bis(diphenylphosphino)ethane (pDPPE) (Figure 4), and 1,2-
(diphenylphosphino)benzene (pDPPBe) have been tested. The highest TOF of 22,900 h−1

was obtained with a RuCl2(p-cymene)/pDPPE catalyst at 433 K (Table 1). The catalyst
performed efficiently in solutions with up to 30 wt % formic acid. It is seen in Figure 5a that
the activity of the unsupported (RuCl2(p-cymene)(PPh3)) complex is significantly lower
than those of the supported complexes. The kinetics of the reaction was featured by an
induction period and a pseudo-zero-order dynamics of the pressure increase. Recycling
experiments revealed only low leaching and a small decrease in the activity over 7 runs. A
Ru/C catalyst with nanoparticles gave a significantly lower activity, lower selectivity and
leaching of Ru to the reaction solution.
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Figure 5. (a) Reactor pressure in the Ru-catalyzed decomposition of aqueous formic acid at 433 K.
(b) Effect of admixtures on decomposition of formic acid on the Ru@pDPPE catalyst. Reprinted with
permission from [36].

The same authors studied the decomposition of formic acid in solutions with other
substances (Figure 5b). It is seen that levulinic acid (LA) and sulfuric acid retard the
reaction, but they do not poison the catalyst completely. This is important to know for
development of future biorefineries involving the process of conversion of biomass to
hydrogen through the formic acid production [7,8] (Figure 1).

Beloqui Redondo et al. [37] used a 0.4 wt % Ru phosphine complex supported on a
metal organic framework (MOF) for the gas phase decomposition of formic acid at 418 K.
They obtained 99% selectivity and TOF of 2300 h−1 (Table 1). This TOF is sufficiently
high for the gas phase decomposition. The authors indicated that phosphine species
interact with Ru species providing the formation of Ru single-sites on the MOF support.
Amine linkers present in the support could activate formic acid for the reaction through
deprotonation. The authors observed an induction period, which was assigned to removal
of chloride ligands from the metal complex followed by coordination of formates. However,
the Brunauer–Emmett–Teller (BET) surface area of their catalyst decreased significantly
after the reaction. It is not clear whether this will take place further and affect negatively
the catalytic reaction.

3. Supported Iridium Complexes

As we showed above, several Ru complexes, which are very active in the formic
acid decomposition, involve phosphine ligands. Broicher et al. [38] indicated that P-based
ligands are sensitive to oxidation, while N-based ligands show a great advantage allowing
handling and storage of the catalyst in air. In this section, we will consider Ir complexes,
which are mainly attached to N-containing ligands of the support.

Bavykina et al. [35] have used an [IrCp*(OH)](OTf)2 complex (OTf-triflate) to deposit
over a covalent triazine framework (CTF) prepared at 773 K with a high surface area
(Figure 6a,b). OTf was washed out during the recycling of the catalyst, pointing that
formate replaces triflate. The TOFs of the catalysts with a low concentration of the metal
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complex (0.2 wt %) were higher than those of the catalysts with a high concentration and
corresponded to 27,000 h−1 (Table 1).
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The authors tested the catalyst’s durability in continuous mode. Thus, a highly
concentrated formic acid solution (88 wt %) was fed to a reactor at 353 K. At termination
of this experiment, a turnover number (TON = the number of H2 molecules related to the
number of metal sites) of 1,060,000 was obtained, which demonstrates that the catalyst is
highly durable and can be used in devices producing hydrogen.

Figure 6c displays possible molecular pathways for the system [35], which consist
of the three main steps: (1) formic acid deprotonation, (2) β-hydride elimination and (3)
hydrogen release. The deprotonation is important and takes place on free pyridinic sites
that provide basicity of the CTF support. The hydrogen release step has been proposed to
be rate-determining.

Gunasekar et al. [39] studied an [IrCp*Cl2]2 complex supported on CTFs prepared at
different temperatures 673 and 773 K. The activity of the supported complex was higher
than that of the homogeneous complex. The TOFs were, however, lower than those
obtained by Bavykina et al. [35] and corresponded to 7930 h−1 at 363 K. This could be
related to a much higher concentration of metal in the samples. The TOF for the similar
supported RhCp* complex was lower than that of the IrCp* complex.

Shen et al. [30] studied an IrCp*Cl2 complex supported on porous polypyrrole particles
(500 nm) with a BET surface area of 51 m2 g−1 (Table 1). The TOF was very high in the
presence of sodium formate and equal to 46,000 h−1 at 363 K. The apparent activation
energy in the formic acid decomposition in the absence of sodium formate corresponded
to 63 kJ mol−1 and in the presence of sodium formate it was approximately the same
(66 kJ mol−1). When 1.0 M formic acid solution flowed into a tubular reactor (55 × 9 mm)
with a catalyst containing 250 mg of the IrCp*Cl2(polypyrolle) complex at 313 K, the initial
hydrogen evolving rate was 5.6 mL min−1, which could generate about 1.1 W electric
power through a proton-exchange membrane fuel cell. The authors noted that this value
was sufficient to drive, for example, a personal mobile phone.
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Recently, Broicher et al. [38] also used an [IrCp*Cl2]2 complex as a precatalyst and
a conjugated microporous polymer (CMP) with bipyridine groups as a support. The
combination of those gave an Ir@CMP catalyst (Figure 7). This catalyst showed a record
value of TOF of 123,894 h−1 at 433 K (Table 1), relatively high apparent activation barrier
of 90 kJ mol−1 and low leaching. The CO content was stable in the range around 68 ppm.
Complete conversion of formic acid could be reached.
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In the same conditions a commercial Ir/C catalyst with nanoparticles demonstrated a
strong leaching and gave a low conversion of formic acid confirming that Ir nanoparticles
are not active in the reaction. Application of the [IrCp*Cl2]2 complex without bipyridine
ligands as a catalyst gave also only a low conversion. At the same time, the [IrCp*Cl2/2,2-
bipy] complex showed a high activity of 43,051 h−1 at 433 K demonstrating the need for
bipyridine ligands. The activity of the supported 1 wt % Ir@CMP catalyst (Figure 8) was
close (35,246 h−1) indicating that the heterogenization affected only weakly. After the
reaction, a significant amount of nanoparticles (up to 5 nm) was found in the sample,
demonstrating that the measured activity is really caused by a low number of active sites
with a very high activity. This point is also supported by a study of the effect of variation
of metal loading showing that the TOFs are higher for the catalysts with a low content of
metal complex (Figure 8) in accordance with the data of Bavykina et al. [35].
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4. Supported Iron Complexes

The use of efficient non-noble metal catalysts would be a good choice for the hydro-
gen production from formic acid decomposition. Boddien et al. [40] proposed different
homogeneous Fe containing complexes for this reaction. Using a mixture of 0.005 mol%
Fe(BF4)2·6H2O and tris[(2-diphenylphosphino)ethyl]phosphine [P(CH2CH2PPh2)3] to a
solution of formic acid in propylene carbonate, without other additives or bases, obtained a
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TOF value up to 9425 h−1 and a TON value of more than 92,000 at 353 K [40]. The apparent
activation energy corresponded to 77 kJ mol−1 and the CO content did not exceed 20 ppm.
However, the catalyst was completely poisoned and became inactive after 16 h of the
continuous reaction. This was assigned to chloride and/or water admixtures accumulation
on the catalyst.

Later, Stathi et al. [41] successfully heterogenized Fe phosphine complexes on the
surface of two types of silica modified with phosphines (Figure 9a). Heterogenization of
the Fe(II)/P(CH2CH2PPh2)3 system increased its TOF by 1.7 times as compared to the
homogeneous catalyst and was in the range of 6000–8000 h−1 (Table 1). The reaction
was performed in propylene carbonate solvent. The apparent activation energies were
significantly lower than that of the homogeneous complex and corresponded to 51 kJ mol−1

and 43 kJ mol−1 for FeII/RPPh2@SiO2 and FeII/polyRPhphos@SiO2, respectively. The
authors indicated that the possible rate determining steps could be hydride elimination or
direct hydride transfer from formate to Fe. No leaching of iron in the reaction solution was
found. The FeII/RPPh2@SiO2 catalyst showed a TON of higher than 176,000.
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The authors observed an inhibitory water effect (Figure 9b), but it was reversible, since
the catalyst could be reactivated by a simple washing. This result is important to know,
since formic acid always contains a small amount of water, which can be formed together
with carbon monoxide due to self-decomposition of formic acid taking place during its
storage [42]. This effect is more significant at high concentrations of formic acid.
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Table 1. Properties of the most active supported Ru, Ir and Fe complexes used for the hydrogen production from formic acid.

Initial or
Attached Complex Catalyst Support BET Surface Area of the

Support, m2 g−1
Active Metal

Concentration, wt % T, K Concentration of Formic Acid
and Sodium Formate

TOF, h−1

(Ea, kJ mol−1) Reference

Ru-mTPPTS MCM41-Si(CH2)2PPh2 - 0.3 383 10 M (HCOOH+HCOONa, 9:1) 2780 [28]
RuII(η6-C6H6) CTF500 1800 2.7 353 3 M 4020 [35]

RuCl2(p-cymene) pDPPE 33 1 433 2.2 M 22,900 [36]
RuCl2(p-cymene) PPh2-MOF 1075 to 161 (after reaction) 0.7 418 5 vol% (gas phase reaction) 2300 [37]

IrIIICp* CTF500 1800 0.2 353 3 M 27,000 [35]
[Cp*IrCl2]2 bpy-CTF400 684 1.4 353 1 M 2820 [39]
[Cp*IrCl2]2 bpy-CTF500 1566 11.3 363 1 M 7930 [39]

Cp*IrCl2 polypyrrole 51 4.3 333 1 M 4060 [30]
Cp*IrCl2 polypyrrole 51 4.3 363 2 M (HCOOH+HCOONa,1:1) 46,000 (66) [30]

[Cp*IrCl2]2 CMP 706 0.1 433 2.2 M 123,894 (90) [38]
Fe(BF4)2 polyRPhphos@SiO2 502 0.8 363 7.6 M 7600 (51) [41]
Fe(BF4)2 RPPh2@SiO2 531 0.9 363 7.6 M 6396 (43) [41]

Ea—apparent activation energy, mTPPTS—meta-trisulfonated triphenylphosphine, PPh—phenylphosphine, CTF—covalent triazine framework, MOF—metal organic framework, Cp*—pentamethylcyclopentadienyl,
CMP—bipyridine-based conjugated microporous polymer.
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5. Discussion

The summarized data for the key catalysts with supported Ru, Ir and Fe complexes
for the hydrogen production from formic acid are shown in Table 1. Other metal complexes
are almost not studied. The table can help to choose the optimal catalysts corresponding to
certain conditions of the reaction. However, it is not easy to compare the activity of the
catalysts (TOFs) presented in Table 1, since the conditions of the reaction and concentrations
of the active component in the catalysts were different. Moreover, some experiments have
been performed in the presence of sodium formate. Basic additives to the reaction mixture
or basic sites of the catalysts/supports are known to promote significantly the reaction.
They deprotonate formic acid to formate species. Deprotonation of formic acid can be
provided also by traditional oxide supports having basic sites [43] and by introduction of
alkali metals promoters to supported metal catalysts [44–46]. Deprotonation provided by
pyridinic N sites of N-doped carbon support was also reported for the catalysts with single
metal atoms [47,48]. In this case, it reminds the effect of basic amine additives.

As for catalysts with nanoparticles, the steady-state TOF values obtained for the gas-
phase reaction over a Pd/C catalyst doped with K ions with 3–4 nm Pd nanoparticles did
not exceed 3600 h−1 at 353 K [44,45]. For the liquid-phase reaction and Pd nanoparticles
(~1.4 nm) supported on N-doped carbon, the initial values were higher and reached
8414 h−1 at 333 K in the presence of sodium formate [22]. Some supported catalysts with
nanoparticles (Ir/C [38] and Ru/C [36]) were used for comparison of the activity with
supported metal complexes (Table 1). It was shown that their activity is negligible as
compared with the activity of supported metal complexes. The disadvantage of these
comparisons was that the mean sizes of nanoparticles in the catalysts with nanoparticles
were not reported.

In contrast, some homogeneous complexes showed much higher TOFs than those
of the supported metal complexes (Table 1). The values in the range 250,000–322,000 h−1

for temperatures 363 and 373 K have been reported by a few groups of authors [21,23,24].
These complexes are also based on Ir [23,24] and Ru [21]. It would be useful to immobilize
them on some supports in order to have an opportunity to separate easily the obtained
catalyst from the reaction mixture.

As it is shown above (Figure 8), concentration of a metal complex is an important
factor determining TOFs. Interesting that at a lower concentration of a metal complex
higher TOFs were observed. In this case, the active sites could be stabilized by specific
support sites. The nature of these active sites should be studied using advanced methods
like extended X-ray absorption fine structure (EXAFS) combined with X-ray absorption
near edge structure (XANES) preferably in situ. Using density functional theory (DFT)
calculations may assist in understanding the structure of these active sites. There is an
evident lack of such studies. The progress in understanding may lead to development of a
targeted synthesis of the catalysts with these very active sites.

6. Conclusions

Therefore, the analysis of the literature showed that immobilization of Ru, Ir and Fe
complexes on some polymers, covalent triazine frameworks, metal organic frameworks or
silica modified with phosphines is promising for the hydrogen production from formic acid
in terms of activity of the catalysts and possibility to separate the catalysts from the reaction
mixture. Supported Ir complexes were normally more efficient than the supported Ru
complexes. Thus, the maximal TOF value was reached for the IrCp* complex supported on
the bipyridine-based conjugated microporous polymer and corresponded to 123,894 h−1 at
433 K. In part, the high activity of Ir complexes could be provided by the presence of basic
N sites of the supports which deprotonate formic acid for further easier decomposition of
the formed formate species with participation of the Ir atoms. Yet, the activities of some
homogeneous metal complexes were higher and reached 322,000 h−1.

A strong concentration effect of metal complexes was observed demonstrating that at
a small concentration of supported metal complex higher TOFs are obtained than those at a
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high concentration. This effect is not related to nanoparticles formation. Finally, non-noble
metal supported Fe complexes were efficient in the reaction provided the contents of water
and chlorine ions in the solution were negligible.
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