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Abstract: Solving the neutron transport equations is a demanding computational challenge. This
paper combines reduced-order modelling with domain decomposition to develop an approach that
can tackle such problems. The idea is to decompose the domain of a reactor, form basis functions
locally in each sub-domain and construct a reduced-order model from this. Several different ways
of constructing the basis functions for local sub-domains are proposed, and a comparison is given
with a reduced-order model that is formed globally. A relatively simple one-dimensional slab reactor
provides a test case with which to investigate the capabilities of the proposed methods. The results
show that domain decomposition reduced-order model methods perform comparably with the global
reduced-order model when the total number of reduced variables in the system is the same with the
potential for the offline computational cost to be significantly less expensive.

Keywords: reduced-order modelling; domain decomposition; model reduction; neutron diffusion
equation; reactor physics

1. Introduction

Reduced-Order Modelling (ROM) or model reduction is a mathematical technique
that can reduce the computational cost of solving a system of equations [1]. To do this,
a low-dimensional model is found that can approximate the High-Fidelity Model (HFM) to
a high degree of accuracy, but at a fraction of the computational cost. Key to the reduction
in computational cost is the offline/online split common to most ROM methods. During the
offline phase, an HFM is solved for different parameters, where each set of parameters
produces a different solution or snapshot. Dimensionality reduction techniques are applied
to these snapshots to produce basis functions that span the reduced space. The governing
equations for the system can then be approximated in the reduced space. During the online
phase, the ROM is solved for unseen sets of parameters at a fraction of the time it would
take for an HFM solution.

Proper orthogonal decomposition is one of the most commonly used methods for
dimensionality reduction [2–4]. Referred to also as Principal Component Analysis (PCA),
Proper Orthogonal Decomposition (POD) was introduced by Lumley [5] to identify struc-
tures within turbulent flow. Sirovich [6] later introduced the method of snapshots, which
allowed POD to be applied to data sets with a large number of degrees of freedom. The POD
basis functions are determined taking a singular-value decomposition of the snapshots,
or they can be calculated more efficiently from an associated eigenvalue problem. These
basis functions can be used to determine the POD coefficients that lie in the reduced space
and, using a Galerkin projection, can be applied to the discretised governing equations
to produce a reduced system of equations. ROMs using the governing equations in this
manner are called projection-based ROMs [7].

Energies 2021, 14, 1369. https://doi.org/10.3390/en14051369 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-0347-7114
https://orcid.org/0000-0002-6555-1423
https://orcid.org/0000-0003-4194-2590
https://doi.org/10.3390/en14051369
https://doi.org/10.3390/en14051369
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14051369
https://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/14/5/1369?type=check_update&version=2


Energies 2021, 14, 1369 2 of 25

Modelling neutron transport in reactor cores can be computationally demanding due
to a large number of degrees of freedom required to be accurate. One example is the
Westinghouse PWR-900 core requiring over 1.7 trillion degrees of freedom to be modelled
accurately [8,9], which would benefit greatly from ROM as existing research shows. Buchan
et al. [10] transformed the eigenvalue problem into a time-dependent problem and applied
this to reactor models in 1D and 2D. Heaney et al. [11] applied a POD-based ROM to
a PWR fuel assembly in order to model control-rod movement and temperature. This
method was further extended to use basis functions that were local in the parameter
space [12]. In both [11] and [12], different sets of POD basis functions were produced for
each energy group, a method demonstrated by German and Ragusa [13] to be more robust
than a monolithic approach, which produced POD basis functions across all energy groups
simultaneously. Sartori et al. [14] developed a reduced basis approach to model control rod
movement for the TRIGA Mark II reactor core. As the sampling technique for the parameter
space, centroidal Voronoi tessellation was used instead of the classical greedy algorithm.
Chunyu and Gong [15] and Zhang and Chen [16] developed a reduced basis method
for the diffusion equation and the SP3equations, respectively, using the cross-sections as
parameters. This work was later built upon in [17] to model the movement of control
rods. Lorenzi [18] showed that POD can be combined using an adjoint flux, where basis
functions are produced from both the flux and adjoint flux snapshots, to produce solutions
that are more accurate than only using standard POD. All these ROMs show computational
gains of at least three orders of magnitude over the HFMs. Outside of criticality problems,
ROM has been applied to a coupled neutronics and heat transfer problem [19], fuel burnup
analysis [20] and to the angular discretisation of a radiation transport problem [21].

Domain decomposition is an iterative method developed by H. Schwarz to solve
problems with a complicated geometry [22]. This was achieved by splitting a global domain
into smaller sub-domains where the geometry in these sub-domains is less complicated
than the global domain and having an overlap between sub-domains. Iteration is then
performed to solve sub-domains until the solution converges within these sub-domains.
The development of modern computers gave this method traction once again, where it was
theorised that sub-domains could be solved in parallel and without overlapping [23].

The internal structures of nuclear reactors are amenable to decomposition. A reactor
core normally contains multiple fuel assemblies, so the domain of a reactor core can be split
up, naturally, into sub-domains, which represent a fuel assembly. These fuel assemblies
contain multiple fuel rods and control rods, and the sub-domain containing each fuel
assembly can be further decomposed into sub-domains containing fuel rods or control rods.
This forms a natural hierarchy of sub-domains within a reactor. Domain decomposition
has been used in this way to significantly improve the computational speed of generating
solutions for neutron transport by enabling parallel computing.

A fast non-overlapping Schwarz domain decomposition was used to solve the neutron
diffusion equation applied to a PWR test case by Jamelot and Ciarlet Jr. [24]. The domain
was split up into many sub-domains, and different numbers of cores were experimented
with, the results showing that utilising parallel processing allowed a significant improve-
ment in the computational time required to solve the problem with no loss in accuracy.

Domain decomposition methods do not change the governing equations of a system,
but instead turn a single domain problem with boundary conditions into multiple sub-
domain problems with different boundary conditions. This means that the internal solver
used within a sub-domain can be replaced with a ROM. Baiges et al. [25] applied POD in
conjunction with domain decomposition to solve the Navier–Stokes equation and reported
a computational cost that was two orders of magnitude less than that of the HFM.

An application to neutron transport was provided by Cherezov et al. [26]. Here,
a non-overlapping domain decomposition method was combined with POD and applied
to a full reactor core, which was decomposed into sub-domains containing fuel assemblies.
Three by three and 2× 2 clusters of these sub-domains were solved. These solutions were
then used as the snapshots from which to construct the basis functions for different types
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of fuel assemblies. They showed that combining these methods can produce an accurate
solution of the global system, with a significant speed up, by solving four different layouts
or arrangements of the reactor core, in each case using the same basis functions produced
from the clusters of sub-domains.

In this paper, we develop a number of reduced-order models that make use of domain
decomposition techniques. Although these methods are demonstrated on a relatively
simple reactor problem (a 1D version of the KAIST benchmark [27]), the aim is to further
develop them and apply them to a more challenging problem, such as 2D, 3D, problems
with large numbers of energy groups or control problems, e.g., Wiberg [28,29].

Combining ROM with domain decomposition methods would enable parallel comput-
ing to be used and decrease the computational cost more than either method individually.
This paper aims to investigate if there is a loss in accuracy when combining ROM with
domain decomposition. A number of POD-based ROMs combined with domain decompo-
sition are developed, and results from these are compared with a global POD-based ROM
that has no domain decomposition. As domain decomposition represents a compromise in
accuracy compared to global methods, it could be expected that the global method will
outperform the methods that include domain decomposition. However, results in this pa-
per demonstrate that using domain decomposition in combination with POD-based ROM
results in errors that are the same order of magnitude as the global system. Importantly,
using domain decomposition allows us to avoid the potentially costly step of solving the
high-fidelity model across the whole reactor. Instead, we form local solutions, obtain POD
basis functions based on these solutions, which are then used to form the ROM across
the whole reactor. The results also demonstrate that constructing basis functions from
clusters (i.e., groups of sub-domains), as done by Cherezov et al. [26], produces solutions
that are almost as good as using solutions from the entire domain. Section 2 describes the
methodology including the governing equations, discretisation, reduced-order modelling
methods, domain decomposition methods, the test case and how the different ROMs are
constructed. Section 3 contains the results for the above methods applied to a simple
1D test case. Section 4 contains a discussion of these results, and Section 5 contains the
concluding remarks.

2. Methodology

This section introduces the equations that govern neutron behaviour and their control-
volume discretisation, referred to as the high-fidelity model. A description is then given
of the power method, which is often used to solve eigenvalue problems. The proper
orthogonal decomposition method is then explained, followed by a description of how to
construct a projection-based ROM from the POD basis functions. Domain decomposition
methods and how they can be used within the context of this work are explained. Finally,
an overview of the test problem, the generation of the data sets and how basis functions
can be constructed for this problem is given.

2.1. Diffusion Equation

The multi-group steady-state diffusion equation for criticality can be written as:

−∇ · (Dg∇φg) + Σa
gφg +

Ng

∑
g
′
=1

g
′ 6=g

Σs
g→g′

φg = λ χg

Ng

∑
g′=1

νg′Σ
f
g′

φg′ +
Ng

∑
g
′
=1

g
′ 6=g

Σs
g′→g

φg′ ,

∀g ∈ {1, 2, . . . , Ng},

(1)

where φ is the scalar flux of the neutron population, Σa represents the absorption cross-
section, Σ f represents the fission cross-section, ν is the average number of neutrons pro-
duced per fission event, Σs represents the scatter cross-section, χg is the proportion of
neutrons produced for each energy group per fission event, Ng is the number of energy
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groups used and the subscript g denotes the energy group. The diffusion coefficient, Dg, is
given by:

Dg =
1

3(Σa
g + Σs

g)
. (2)

The eigenvalue, λ, is defined as the reciprocal of keff, that is λ = 1
keff

, where:

keff =
number of neutrons in one generation

number of neutrons in the preceding generation
. (3)

The boundary condition for reflection is:

D
∂φ

∂n
= 0 , (4)

and for a vacuum or bare surface is:

− D
∂φ

∂n
=

1
2

φ , (5)

in which n is the outward-pointing normal to the boundary.

2.2. Discretisation

A control-volume discretisation of the diffusion equation in 1D with a regular mesh of
Nx cells can be written as:

1
2

max
{

Di−1,g + Di,g, 0
}φi,g − φi−1,g

∆x2 +
1
2

max
{

Di,g + Di+1,g, 0
}φi+1,g − φi,g

∆x2

+Σa
i,gφi,g +

Ng

∑
g
′
=1

g
′ 6=g

Σs
i,g→i,g′

φi,g = χgλ

Ng

∑
g′=1

νg′Σ
f
i,g′

φi,g′ +
Ng

∑
g′=1

Σs
i,g′→i,g

φi,g′ , (6)

∀i ∈ {2, 3, .., Nx − 1},

in which ∆x is the uniform cell width in the x-direction, Nx is the number of cells, the sub-
script i refers to the cell index and φi represents the scalar flux in cell i. In this expression,
the first and last cells are omitted in order to apply the boundary conditions efficiently.
To apply a reflective boundary condition (see Equation (4)), the diffusion coefficients in the
outermost cells are set to a large negative number. To set a bare surface boundary condition
(see Equation (5)), the diffusion coefficients in the outermost cells are again set to a large
negative number, and the absorption term is modified as now described. To apply such a
boundary condition to the left or right edges (where the normal to the boundary is aligned
with the x-direction):

Σa
i,g ← Σa

i,g +
1

2∆x
, (7)

The discretised form of Equation (1) can be written as:

Aφ = λBφ. (8)

where matrix A contains the absorption, diffusion and scatter out of energy groups from the
left-hand side of Equation (6), matrix B represents the fission terms and scatter into energy
groups given in the right-hand side of Equation (6) and the vector φ contains the values of
the scalar flux for each cell in every energy group. The matrices are of size (Nx − 2)(Ng)
by (Nx − 2)(Ng). Although a 1D discretisation is given here, the methods could be applied
in 2D or 3D.
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2.3. The Power Method

The power method [30], outlined in Algorithm 1, is an iterative method to find the
dominant eigenvalue and eigenvector of an eigenvalue problem. An initial guess of φ and
λ is used in Equation (8), and the flux is updated using the forward backward Gauss–Seidel
method (Line 3). This flux value is passed to the outer iterations, detailed in Algorithm 2,
where the flux is first normalised. Here, b is a vector whose entries all equal one. Power
iteration is then performed, with φ and λ both being updated. These values are then passed
back into the inner iterations until either keff converges, with a tolerance of 10−8, or the
maximum number of iterations is reached, 200. These algorithms are given in [31] and
repeated here for completeness.

Algorithm 1 Power method: inner iterations.

function INNER_ITERATIONS(A, B, φguess, λguess)

s = λguessBφguess

solve Aφ = s

return φ

Algorithm 2 Power method: outer iterations.

1: function OUTER_ITERATIONS(A, B, φguess, λguess)

2: φ(0) = φguess, λ(0) = λguess

3: i_max = 200

4: k_tol = 10−8

5: i = 0

6: not_converged = True

7: while not_converged do

8: φ(i+1) = INNER_ITERATIONS(A, B, φ(i), λ(i))

! to solve Equation (8)

9: φ(i+1) ← φ(i+1)

bT Bφ(i+1)
! normalising the flux

10: λ(i+1) =
bT Aφ(i+1)

bT Bφ(i+1)

11: if (i = i_max or |k(i+1)
eff − k(i)eff| < k_tol) then

12: not_converged = False

13: φ← φ(i+1)

14: λ← λ(i+1)

15: else

16: i← i + 1

17: return φ, λ

2.4. Proper Orthogonal Decomposition

Lumley [5] developed proper orthogonal decomposition in 1967 to find the most
energetic structures within turbulent flow, and Sirovich [6] developed the method of
snapshots, significantly reducing the computational cost of POD and resulting in it being
widely used for analysing the results [32,33]. If the snapshot matrix S is a real N × M
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matrix that contains M snapshots each with N degrees of freedom, then singular-value
decomposition can be performed as follows:

S = UΣV T , (9)

where U is an N × N matrix consisting of orthonormalised eigenvectors associated with
the M largest eigenvalues of SST and V is an M×M matrix consisting of orthonormalised
eigenvectors associated with STS. The POD basis functions are the columns of U. The ma-
trix Σ contains the singular values on its diagonal, and these are ordered as follows:

σ1 > σ2 > · · · > σM > 0. (10)

The amount of information given by each basis function is proportional to these
singular values. Therefore, if γ is the fraction of information to be captured, where
0 6 γ 6 1, then the lowest integer value of P is sought that satisfies:

∑P
i=1 σ2

i

∑M
i=1 σ2

i
> γ . (11)

Matrix R ∈ RN×P contains the P basis functions required for this information, which
are the first P columns of U.

The POD coefficients α associated with a snapshot φ can be determined by:

α = RT φ, (12)

and the flux can be recovered from the POD coefficients by:

φ = Rα . (13)

2.5. Constructing the Reduced-Order Model

The discretised governing equations can be projected onto the reduced space by
using the basis functions R. Equation (13) is inserted into Equation (8), and both sides are
pre-multiplied by RT , giving:

RT ARα = λRT BRα , (14)

where the matrices A and B both depend on the material parameters. This reduced-order
model replaces the inner Algorithm 1 and is outlined in Algorithm 3.

Algorithm 3 POD-based reduced-order model: inner iterations.

1: function POD_INNER_ITERATIONS(A, B, φ, λ, R)

2: s = λ
(

RT B
)
φ ! set a source with values from the outer iterations

3: solve the reduced-order model for α:

4:
(

RT AR
)
α = s

5: φ = Rα ! find the updated scalar flux from the reduced variables

6: return φ

2.6. Domain Decomposition

Domain decomposition is an iterative method developed by H.Schwarz in 1870 [22]
to solve a problem by splitting it into smaller problems, and iteration is performed until
the solution converges. Although Schwarz initially developed this as an overlapping
method, it was later theorised that the sub-domains could be solved in parallel and without
overlapping [34] using advancements in modern computing. A non-overlapping approach
is used here to see if parallel computing could be used. Domain decomposition adds
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a middle iteration, performed inside the outer iteration and outside the inner iteration,
outlined in Algorithm 4.

A 1D problem with a global domain Ω is split into K sub-domains where:

Ω = Ω1 ∪Ω2 . . . ∪ΩK, (15)

where each domain Ωk is neighboured by domains Ωk−1 and Ωk+1. Each domain Ωk
has associated matrices, Ak and Bk, basis functions Rk and flux φk associated with it.
If solving just domain Ωk, then the boundary conditions must be carefully considered.
An alternative to this is to construct larger domains Ωp using one domain Ωk and its
neighbouring domains Ωk−1 and Ωk+1:

Ωp = Ωk−1 ∪Ωk ∪Ωk+1. (16)

This larger domain can then be solved with only the information in the central domain
Ωk being updated upon finding a solution. The matrix Ap for domain Ωp can be constructed
from the matrices for individual domains by:

Ap =

Ak−1,k−1 Ak−1,k 0
Ak,k−1 Ak,k Ak,k+1

0 Ak+1,k Ak+1,k+1

, (17)

where the off-diagonal matrices represent the transport terms that cause interactions across
domain interfaces. Matrix Bp and the basis functions Rp can be constructed by:

Bp =

Bk−1 0 0
0 Bk 0
0 0 Bk+1

, Rp =

Rk−1 0 0
0 Rk 0
0 0 Rk+1

 (18)

The flux in domain φp and αp can be determined by concatenating the flux and POD
coefficients respectively:

φp =

φk−1
φk

φk+1

, αp =

αk−1
αk

αk+1

. (19)

If a boundary of domain Ωp aligns with a boundary of the global domain Ω, then
the conditions for this boundary are known and used within the problem. If it does not,
then thought has to be given to what the conditions should be. However, because only the
information in the central domain is updated, the solution close to this boundary will never
be updated, and the global solution is affected less by improper boundary conditions.

The flux in each domain φp is determined by using the inner iteration algorithms,
either normally or using POD, with only the information required from those domains.
After φp is determined, only the flux in φk is updated, to move the boundary conditions
further away from the area of interest. As solutions to these domains are independent,
they can be solved in parallel, in which case all K domains could be solved simultaneously.
In this case, after all K domains have been solved, the process is repeated with updated
fluxes until the absolute mean error in the flux is less than the tolerance, 10−8, or the
maximum number of iterations has been reached, 100. If done sequentially, then the flux
within a domain k can be updated as solutions are generated.

After the global flux φ has converged, then this can then be used within the outer
iteration of the power method.
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Algorithm 4 Domain decomposition method: middle iterations.

function MIDDLE_ITERATIONS(A, B, φguess, λ, Pk)

φ(0) = φguess

3: i_max = 100

k_tol = 10−8

i = 0

6: not_converged = True

while not_converged do

for k in Ω do

9: if k = 0 then ! solve each sub-domain along with the neighbouring domains.

Ωp = Ωk ∪Ωk+1

else if k = K then

12: Ωp = Ωk−1 ∪Ωk

else

Ωp = Ωk−1 ∪Ωk ∪Ωk+1

15: φ
(i+1)
p = INNER_ITERATIONS(Ap, Bp, φ

(i)
p , λ)

! to solve Equation (8)

φk ← φ
(i+1)
k ! update flux in central domain.

φdi f f = |φ(i+1) −φ(i)|
18: if (i = i_max or φdi f f < k_tol) then

not_converged = False

else

21: i← i + 1

return φ

2.7. Test Problem and Construction of Snapshot Matrices

To test the method, a simple 1D problem is solved. Here, the problem is split into five
domains, as seen in Figure 1. Each domain can either be a fuel assembly or the reflector
with the same geometry and material properties of the KAISTbenchmark [27]. The 1D
geometry of a fuel assembly can be seen in Figure 2 and represents a slice through the
centre of the 2D geometry given by the KAIST benchmark. The length of each domain is
21.42 cm, the same as the length of a fuel assembly in the KAIST benchmark. Each domain
is discretised into 85 cells with each cell being 0.252 cm.

x axis

Reflective
Boundary

Domain 1 Domain 2 Domain 3 Domain 4 Domain 5 Bare
Boundary

Figure 1. Geometry of how a 1D slab reactor may be split into five domains with a reflective boundary condition on the
left-hand side and a bare boundary condition on the right-hand side.

x axis0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A B C D E

Figure 2. Geometry of a 1D slice taken through a fuel assembly. Regions A, B, C, D and E contain guide-tubes that can have
control rods inserted. All other regions contain fuel rods with fissionable material.
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An example mesh of the a domain containing a fuel assembly can be seen in Figure 2.
Each of the 17 regions contains five cells. Regions A, B, C, D and E represent guide-
tubes/control rod regions. All unlabelled regions are fuel rods whose material depends on
what fuel assembly it is. Mixed Oxide (MOX) fuel assemblies contain three different kinds
of fuel rods that contain either 4.3%, 7.0% or 8.7% of plutonium. Uranium Oxide (UOX)
fuel assemblies only contain one kind of fuel rod.

Each domain has 85 spatial degrees of freedom, and energy is discretised into 22
groups. Therefore, the full system has 9350 degrees of freedom, with each domain contain-
ing 1870 of these. The material cross-sections are homogenised across each pin-cell and are
generated by WIMS11 [35] using the following:

1. KAIST 1a data specification [27]
2. JEF-2.2nuclear data evaluation
3. Equivalence theory for resonance shielding
4. Multicell collision probability flux spectrum to condense from 172 to 22 groups
5. Method of solving heterogeneous flux characteristics

Four-hundred HFM snapshots are generated for the above problem. Each snapshot
has five parameters, D1, D2, D3, D4 and D5 representing domains 1, 2, 3, 4 and 5 respectively.
Each of these parameters can either be 0 representing UOX without control rods, 1 repre-
senting UOX with control rods, 2 representing MOX without control rods, 3 representing
MOX with control rods and 4 representing the reflector. D1, D2 and D3 are randomly as-
signed a value between zero and three. D4 and D5 are randomly assigned a value between
zero and four with the condition that if D4 = 4, then D5 = 4 as well. This is because
reflectors are positioned on the outside of reactors and would not be placed in-between
fuel assemblies.

These 400 HFM snapshots can be considered to be the snapshot matrix UGlobal , which
is a 9350× 400 matrix. All 400 snapshots are decomposed into their five domains forming
a matrix Udecomp that is 1870× 2000. Each of these 2000 snapshots has both a location and
material type outlined in Table 1. Snapshot matrices to form the basis functions can be
constructed through a few different methods. One method is to base it on the location
within the global system. U1, U2,U3, U4 and U5 are all 1870× 400 matrices and contain the
snapshots associated with the column in Table 1 that corresponds to their subscript.

Table 1. Table showing possible domains within a system. The rows represent the material type of
domain, and the columns represent the location within the system. UOX, Uranium Oxide; MOX,
Mixed Oxide.

1 2 3 4 5

UOX Yes Yes Yes Yes Yes unless 4 = Reflector
MOX Yes Yes Yes Yes Yes unless 4 = Reflector

Reflector No No No Yes Yes

A different way is to base it on the material type of domain within the system. UUOX
contains the data from any domain and snapshot where the parameter is zero or one and for
these snapshots results in a 1870× 913 matrix. UMOX contains the data from any domain
and snapshot where the parameter is two or three and for these snapshots results in a
1870× 873 matrix. URe f lector contains the data from any domain and snapshot where the
parameter is four and for these snapshots results in a 1870× 214 matrix. UUOX, UMOX
and URe f lector contain the snapshots associated with the rows in Table 1 corresponding to
their subscript.

Another way is to base it on both the material type of domain and the location of the
domain in the system. This results in 12 matrices: UTyp,Loc where Typ is either UOX, MOX
or reflector for the material type and Loc is between one and five for the location within
the system. UTyp,Loc are 1870× Y matrices where Y is dependent on the number for that
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matrix. These matrices contain any snapshots associated with both the row and column in
Table 1 that matches their subscript.

An additional set of HFM snapshots is generated that range between one and three
domains. U1dom represents the one domain set and is a 1870× 8 matrix; U2dom represents
the two domain set and is a 3740× 40 matrix; and U3dom represents the three domain set and
is a 5610× 168 matrix. Table 2 shows the parameter possibilities for these smaller domains.
Three snapshots’ matrices are constructed from these based on the material type of domain
within each snapshot. UUOX,dom contains the data from any domain and snapshot where the
parameter is zero or one and for these snapshots results in a 1870× 268 matrix. UMOX,dom
contains the data from any domain and snapshot where the parameter is two or three and
for these snapshots results in a 1870× 268 matrix. URe f lector,dom contains the data from any
domain and snapshot where the parameter is four and for these snapshots results in a
1870× 56 matrix. UUOX,dom, UMOX,dom and URe f lector,dom contain the snapshots associated
with the rows in Table 2.

Table 2. Table showing possible systems within the smaller data set. The rows represent the
material type of domain, and the columns represent the location and how many domains are used in
the solution.

U3dom U2dom U1dom

1 2 3 1 2 1

UOX Yes Yes Yes unless 2 = Reflector Yes Yes Yes
MOX Yes Yes Yes unless 2 = Reflector Yes Yes Yes

Reflector No Yes Yes Yes No No

2.8. Construction of Basis Functions

A total of six methods were tested that used POD Galerkin as the form of ROM.
The first of these did not use domain decomposition and is labelled G-POD. An SVD was
applied to UGlobal , and 250 basis functions were retained. An additional method labelled
G2-POD was done using the same method as G-POD, but only 50 basis functions were
retained instead of 250.

The remaining four methods all used the same domain decomposition methods, but
involved the basis functions being generated from different sets of snapshot matrices
explained in the previous section. The first method is labelled DDT-POD, and three sets of
basis functions are constructed. These basis functions are constructed from the snapshot
matrices UUOX, UMOX and URe f lector to form basis functions RUOX, RMOX and RRe f lector,
respectively, with 50 basis functions retained in each matrix. For an example, parameter
sets D1 = 2, D2 = 2, D3 = 1, D4 = 1 and D5 = 4 and the set of global basis functions R
could be constructed from the three sets of basis functions as follows:

R =


RMOX 0 0 0 0

0 RMOX 0 0 0
0 0 RUOX 0 0
0 0 0 RUOX 0
0 0 0 0 RRe f lector

 (20)

The second method is labelled DDL-POD, and five sets of basis functions are con-
structed based on the domains’ location within the system. These basis functions are
constructed from the snapshot matrices U1, U2, U3, U4 and U5 to form basis functions R1,
R2, R3, R4 and R5, respectively, with 50 basis functions retained in each matrix. Irrespective
of the parameters, the set of global basis functions R could be constructed from the three
sets of basis functions as follows:
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R =


R1 0 0 0 0
0 R2 0 0 0
0 0 R3 0 0
0 0 0 R4 0
0 0 0 0 R5

 (21)

The third method is labelled DDTL-POD, and twelve sets of basis functions are
constructed based on the material type of domain and location within the system. These
basis functions are constructed from the snapshot matrices UTyp,Loc to form basis functions
RTyp,Loc, respective to their subscript, with 50 basis functions retained in each matrix. For an
example, parameter sets D1 = 2, D2 = 2, D3 = 1, D4 = 1 and D5 = 4 and the set of global
basis functions R could be constructed from the three sets of basis functions as follows:

R =


RMOX,1 0 0 0 0

0 RMOX,2 0 0 0
0 0 RUOX,3 0 0
0 0 0 RUOX,4 0
0 0 0 0 RRe f lector,5

 (22)

The fourth method is labelled DDT2-POD and is the same as DDT-POD with three sets
of basis functions constructed, one for each material type of domain. These basis functions
are constructed from the snapshot matrices UUOX,dom, UMOX,dom and URe f lector,dom to form
basis functions RUOX,dom, RMOX,dom and RRe f lector,dom, respectively, with 50 basis functions
retained in each matrix. For an example, parameter sets D1 = 2, D2 = 2, D3 = 1, D4 = 1
and D5 = 4 and the set of global basis functions R could be constructed from the three sets
of basis functions as follows:

R =


RMOX,dom 0 0 0 0

0 RMOX,dom 0 0 0
0 0 RUOX,dom 0 0
0 0 0 RUOX,dom 0
0 0 0 0 RRe f lector,dom

 (23)

Table 3 shows the number of sets of basis functions and from where the data used to
construct those basis functions comes. G-POD uses the same data set as G2-POD, but with
fewer basis functions retained. DDT-POD and DDT2-POD both have their basis functions
constructed determined from the material type of domain, but differing data sets.

Table 3. Table showing the six methods, how many sets of basis functions are retained and the data from which they
are constructed. POD, Proper Orthogonal Decomposition.

Name Sets of Basis Functions Data Used to Construct Basis Functions

G-POD 1 Global data: UGlobal , 250 basis functions retained
G2-POD 1 Global data: UGlobal , 50 basis functions retained
DDT-POD 3 Type of domain: UUOX , UMOX , URe f lector
DDL-POD 5 Location of domain: U1, U2, U3, U4, U5
DDTL-POD 12 Location and type of domain: UTyp,Loc
DDT2-POD 3 Type of domain from alternate data set: UUOX,dom, UMOX,dom, URe f lector,dom
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2.9. Limiting the Number of Snapshots

Three out of the six methods described in Section 2.8, G-POD, DDT-POD and DDL-
POD, were tested by limiting the number of snapshots available to each methods. Methods
with this limitation are referred to as G-POD-lim, DDT-POD-lim and DDL-POD-lim. This
limitation was imposed by randomly selecting 50 snapshots from UGlobal to form the
snapshot matrix ULim. Each method can only use basis functions made from ULim. G-POD-
lim is therefore limited to 50 basis functions, as the number of basis functions cannot exceed
the number of snapshots. Dividing ULim into domains based on the material type results
in 112, 114 and 24 snapshots available for UOX, MOX and reflector, respectively. The sets
of basis functions for DDT-POD-lim are constructed from these, and the number of basis
functions retained are 50, 50 and 24 for RUOX, RMOX and RRe f lector, respectively. DDL-
POD-Lim has 50 snapshots available for each location within the system, allowing 50 basis
functions to be retained for each location. G-POD-lim, DDT-POD-lim and DDL-POD-lim
are then used to produce solutions for the 400 sets of parameters used in Section 2.7 to
produce UGlobal .

2.10. Smart Selection of the Number of Basis Functions

G-POD, DDT-POD and DDL-POD are again tested by smart selection of the number
of basis functions. Methods with this smart selection are referred to as G-POD-basis,
DDT-POD-basis and DDL-POD-basis. The smart selection is formed by finding the P basis
functions required to satisfy Equation (11) when γ = 0.99999. These basis functions were
constructed from the snapshot matrix UGlobal . It was found that G-POD-basis required
98 basis functions to capture 99.999% of the energy based on Equation (11). For DDT-
POD-basis: RUOX , RMOX and RRe f lector required 30, 30 and 13 basis functions, respectively,
to capture 99.999% of the energy based on Equation (11). This means that DDT-POD-basis
has between 116 and 150 basis functions depending on what types of domains are contained
within the global system, based on the set of parameters being solved. For DDL-POD-basis:
R1, R2, R3, R4 and R5 required 22, 37, 45, 45 and 28 basis functions, respectively, to capture
99.999% of the energy based on Equation (11), for a total of 177 basis functions.

3. Results

In this section, a brief description of the error measures used is given, followed by a
look at the results generated from all methods and the results from limiting the number of
snapshots and smart selection of the number of basis functions.

3.1. Error Measures

Multiple error measures are used to assess the accuracy of the results. The first is the
largest normalised maximum error in the flux profile and is determined by:

emax(φ
POD) =

φHFM
j − φPOD

j

‖φHFM‖∞
where j = argmax

i∈ cells
| φHFM

i − φPOD
i | , (24)

in which the superscript “POD” indicates the solution was generated by POD and i and j
represent cell indices.

The second is the error in keff, which is just the difference between the HFM and
POD solutions:

e(kPOD
eff ) = kHFM

eff − kPOD
eff . (25)

An average maximum error is also used, which for the error in the flux profile is given
by:

ēmax(φ
POD) =

1
N

N

∑
l=1

∣∣∣ emax(φ
POD
l )

∣∣∣, (26)

where N is the total number of snapshots.
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3.2. POD-Based Results

A look at how each method performs for a single set of parameters (R1 = 2, R2 = 2,
R3 = 1, R4 = 1, R5 = 4) is shown here. First, keff convergence is shown and, following this,
a look at the flux profiles and pointwise error for a few energy groups.

G-POD uses one set of basis functions to reduce the dimensionality of the full system
from 9350 variables to 250. G2-POD uses one set of basis functions to reduce the dimen-
sionality of the full system from 9350 variables to 50. DDT-POD, DDL-POD, DDTL-POD
and DD2-POD all use five sets of basis functions that each reduce the dimensionality in a
single domain from 1870 variables to 50, with the sets’ basis functions used determined by
the parameters of the solution being solved.

Figure 3 shows the keff convergence for all methods along with the HFM. All methods
converge to a keff value close to the HFM in under 15 iterations.

Figure 3. keff vs. iteration number for all methods and the High-Fidelity Model (HFM).

The scalar fluxes and the absolute pointwise error in the profiles are now compared
for each ROM. Figures 4–9 show the flux profile for different energy groups for all meth-
ods. Figure 4 shows Energy Group 1. Figure 5 shows Energy Group 5. Figure 6 shows
Energy Group 9. Figure 7 shows Energy Group 13. Figure 8 shows Energy Group 17.
Figure 9 shows Energy Group 21. All methods show good approximation to the HFM.
The absolute pointwise error is similar for all methods except G2-POD, which is an order
of magnitude worse.
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(a) Scalar flux (neutrons cm−2 s−1) vs. x (cm), HFM solu-
tion in blue, POD-based Reduced-Order Models (ROMs) in
crosses.

(b) Absolute pointwise error (neutrons cm−2 s−1) vs. x (cm)
for all methods.

Figure 4. Scalar flux for Energy Group 1 for the HFM (blue) and POD methods and the pointwise error between them with
parameters R1 = 2, R2 = 2, R3 = 1, R4 = 1, R5 = 4.

(a) Scalar flux (neutrons cm−2 s−1) vs. x (cm), HFM solution
in blue, POD-based ROMs in crosses.

(b) Absolute pointwise error (neutrons cm−2 s−1) vs. x (cm)
for all methods.

Figure 5. Scalar flux for Energy Group 5 for the HFM (blue) and POD methods and the pointwise error between them with
parameters R1 = 2, R2 = 2, R3 = 1, R4 = 1, R5 = 4.
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(a) Scalar flux (neutrons cm−2 s−1) vs. x (cm), HFM solution
in blue, POD-based ROMs in crosses.

(b) Absolute pointwise error (neutrons cm−2 s−1) vs. x (cm)
for all methods.

Figure 6. Scalar flux for Energy Group 9 for the HFM (blue) and POD methods and the pointwise error between them with
parameters R1 = 2, R2 = 2, R3 = 1, R4 = 1, R5 = 4.

(a) Scalar flux (neutrons cm−2 s−1) vs. x (cm), HFM solution
in blue, POD-based ROMs in crosses.

(b) Absolute pointwise error (neutrons cm−2 s−1) vs. x (cm)
for all methods.

Figure 7. Scalar flux for Energy Group 13 for the HFM (blue) and POD methods and the pointwise error between them with
parameters R1 = 2, R2 = 2, R3 = 1, R4 = 1, R5 = 4.



Energies 2021, 14, 1369 16 of 25

(a) Scalar flux (neutrons cm−2 s−1) vs. x (cm), HFM solution
in blue, POD-based ROMs in crosses.

(b) Absolute pointwise error (neutrons cm−2 s−1) vs. x (cm)
for all methods.

Figure 8. Scalar flux for Energy Group 17 for the HFM (blue) and POD methods and the pointwise error between them with
parameters R1 = 2, R2 = 2, R3 = 1, R4 = 1, R5 = 4.

(a) Scalar flux (neutrons cm−2 s−1) vs. x (cm), HFM solution
in blue, POD-based ROMs in crosses.

(b) Absolute pointwise error (neutrons cm−2 s−1) vs. x (cm)
for all methods.

Figure 9. Scalar flux for Energy Group 21 for the HFM (blue) and POD methods and the pointwise error between them with
parameters R1 = 2, R2 = 2, R3 = 1, R4 = 1, R5 = 4.

Figure 10 shows the errors for all six methods in boxplot format. G-POD, DDT-POD,
DDL-POD, DDTL-POD and DDT2-POD all show errors in the same order of magnitude.
Out of these methods, DDT2-POD and DDL-POD show the largest range and the largest
values. G2-POD shows the worst errors being two orders of magnitude worse than the
other four.

Table 4 shows the mean absolute maximum error in the flux profile and the mean
keff for the 400 sets of parameters. It can be seen that G-POD, DDT-POD, DDL-POD and
DDT2-POD all have mean errors in the same magnitude. Out of these four DDL-POD has
the worst mean flux error, and DDT2-POD has the worst mean keff error. G-POD has the
best mean flux and keff errors. G2-POD has a mean flux error that is an order of magnitude
worse than the other four and has a mean keff error that is two orders of magnitude worse.
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(a) Boxplot of the error in the flux profile vs. the method. (b) Boxplot of the error in keff vs. the method.

Figure 10. Boxplots showing the errors for all six methods. The median is given by the orange line, the interquartile ranges
by the box and the minimum and maximum values by whiskers.

Table 4. Mean absolute maximum errors in the flux profile and keff for solutions using POD-based reduced-order models.

G-POD G2-POD DDT-POD DDL-POD DDTL-POD DDT2-POD

Flux Error 1.2286× 10−3 2.7860× 10−2 1.2391× 10−3 1.7601× 10−3 1.6563× 10−3 1.6593× 10−3

keff Error 2.2952× 10−5 4.3557× 10−3 2.3154× 10−5 2.3901× 10−5 2.6866× 10−5 5.6589× 10−5

3.3. Results for Limiting the Number of Snapshots and Smart Selection of the Number of
Basis Functions

This section contains the results from limiting the number of snapshots and smart
selection of the number of basis functions. The same set of parameters used in Section 3.2
(R1 = 2, R2 = 2, R3 = 1, R4 = 1, R5 = 4) is used here to investigate how the methods
perform with these two tests. First, keff convergence is shown and, following this, a look at
the flux profiles and the pointwise error for differing energy groups.

G-POD-lim uses one set of basis functions to reduce the dimensionality of the full
system from 9350 variables to 50. DDT-POD-lim reduces the dimensionality of the full
system from 9350 variables to between 198 and 250, depending on the types of domains
contained within the problem being solved, using five sets of basis functions. The set of
parameters being examined here has the dimensionality reduced to 224. DDL-POD-lim
reduces the dimensionality of the system from 9350 variables to 250 using five sets of basis
functions. G-POD-basis uses one set of basis functions to reduce the dimensionality of the
system from 9350 variables to 98. DDT-POD-basis uses five sets of basis functions to reduce
the system from 9350 variables to between 116 and 150 depending on the types of domains
contained within the problem being solved. For the set of parameters being examined here,
the dimensionality is reduced to 133. DDL-POD-basis uses five sets of basis functions to
reduce the system from 9350 variables to 177.

Figure 11 shows the keff convergence for the three methods with a limited number of
snapshots and smart selection of the number of basis functions along with the HFM. All
tested methods converge to a keff value close to the HFM in under 15 power iterations.
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Figure 11. keff vs. iteration number for the HFM and the three methods with limited (lim) number of
snapshots or smart selection of number of basis functions.

The scalar fluxes and the absolute pointwise error in the profiles are now compared
for each ROM. Figures 12–17 show the flux profile for different energy groups for the
HFM and the three methods with a limited number of snapshots and smart selection of
number of basis functions. Figure 12 shows Energy Group 1. Figure 13 shows Energy
Group 5. Figure 14 shows Energy Group 9. Figure 15 shows Energy Group 13. Figure 16
shows Energy Group 17. Figure 17 shows Energy Group 21. All methods show good
approximation to the HFM, although G-POD-lim has higher pointwise errors than the
other methods shown. G-POD-basis, DDT-POD-basis and DDL-POD-basis show pointwise
errors in the same order of magnitude.

(a) Scalar flux (neutrons cm−2 s−1) vs. x (cm), HFM solution
in blue, POD-based ROMs, with the limited number of snap-
shots or smart selection of the number of basis functions,
in crosses.

(b) Absolute pointwise error (neutrons cm−2 s−1) vs. x (cm)
for all POD-based ROMs, with the limited number of snap-
shots or smart selection of the number of basis functions,
in crosses.

Figure 12. Scalar flux for Energy Group 1 for the HFM (blue) and POD-based ROMs, with limited number of snapshots
or smart selection of number of basis functions, in crosses, and the pointwise error between them with parameters
R1 = 2, R2 = 2, R3 = 1, R4 = 1, R5 = 4.
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(a) Scalar flux (neutrons cm−2 s−1) vs. x (cm), HFM solution
in blue, POD-based ROMs, with the limited number of snap-
shots or smart selection of the number of basis functions,
in crosses.

(b) Absolute pointwise error (neutrons cm−2 s−1) vs. x (cm)
for all POD-based ROMs, with the limited number of snap-
shots or smart selection of the number of basis functions,
in crosses.

Figure 13. Scalar flux for Energy Group 1 for the HFM (blue) and POD-based ROMs, with the limited number of snapshots
or smart selection of the number of basis functions, in crosses, and the pointwise error between them with parameters
R1 = 2, R2 = 2, R3 = 1, R4 = 1, R5 = 4.

(a) Scalar flux (neutrons cm−2 s−1) vs. x (cm), HFM solution
in blue, POD-based ROMs, with the limited number of snap-
shots or smart selection of the number of basis functions,
in crosses.

(b) Absolute pointwise error (neutrons cm−2 s−1) vs. x (cm)
for all POD-based ROMs, with the limited number of snap-
shots or smart the selection of number of basis functions,
in crosses.

Figure 14. Scalar flux for Energy Group 1 for the HFM (blue) and POD-based ROMs, with the limited number of snapshots
or smart selection of the number of basis functions, in crosses, and the pointwise error between them with parameters
R1 = 2, R2 = 2, R3 = 1, R4 = 1, R5 = 4.
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(a) Scalar flux (neutrons cm−2 s−1) vs. x (cm), HFM solution
in blue, POD-based ROMs, with the limited number of snap-
shots or smart selection of the number of basis functions,
in crosses.

(b) Absolute pointwise error (neutrons cm−2 s−1) vs. x (cm)
for all POD-based ROMs, with the limited number of snap-
shots or smart selection of the number of basis functions,
in crosses.

Figure 15. Scalar flux for Energy Group 1 for the HFM (blue) and POD-based ROMs, with the limited number of snapshots
or smart selection of the number of basis functions, in crosses, and the pointwise error between them with parameters
R1 = 2, R2 = 2, R3 = 1, R4 = 1, R5 = 4.

(a) Scalar flux (neutrons cm−2 s−1) vs. x (cm), HFM solution
in blue, POD-based ROMs, with the limited number of snap-
shots or smart selection of the number of basis functions,
in crosses.

(b) Absolute pointwise error (neutrons cm−2 s−1) vs. x (cm)
for all POD-based ROMs, with the limited number of snap-
shots or smart selection of the number of basis functions,
in crosses.

Figure 16. Scalar flux for Energy Group 1 for the HFM (blue) and POD-based ROMs, with the limited number of snapshots
or smart selection of the number of basis functions, in crosses, and the pointwise error between them with parameters
R1 = 2, R2 = 2, R3 = 1, R4 = 1, R5 = 4.
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(a) Scalar flux (neutrons cm−2 s−1) vs. x (cm), HFM solution
in blue, POD-based ROMs, with the limited number of snap-
shots or smart selection of the number of basis functions,
in crosses.

(b) Absolute pointwise error (neutrons cm−2 s−1) vs. x (cm)
for all POD-based ROMs, with the limited number of snap-
shots or smart selection of the number of basis functions,
in crosses.

Figure 17. Scalar flux for Energy Group 1 for the HFM (blue) and POD-based ROMs, with the limited number of snapshots
or smart selection of the number of basis functions, in crosses, and the pointwise error between them with parameters
R1 = 2, R2 = 2, R3 = 1, R4 = 1, R5 = 4.

Figure 18 shows the errors for all methods with a limited number of snapshots or
smart selection of the number of basis functions in boxplot format. When the number of
snapshots is limited, it can be observed that G-POD-lim has medians and interquartile
ranges that are an order of magnitude worse than either domain decomposition method.
DDL-POD-lim has lower medians and interquartile ranges than DDT-POD-lim. When
smart selection of a number of basis functions is done, it can be observed that G-POD-basis,
DDT-POD-basis and DDL-POD-basis all show very similar medians and interquartile
ranges despite having different numbers of basis functions.

(a) Boxplot of the error in the flux profile vs. the methods
with the limited number of snapshots and smart selection of
the number of basis functions.

(b) Boxplot of the error in keff vs. the methods with the lim-
ited number of snapshots and smart selection of the number
of basis functions.

Figure 18. Boxplots showing the errors for methods with the limited number of snapshots and smart selection of the
number of basis functions. The median is given by the orange line, the interquartile ranges by the box and the minimum
and maximum values by whiskers.

Table 5 shows the mean absolute maximum error in the flux profile and the mean keff
for the 400 sets of parameters. It can be observed that G-POD-lim has errors that are at
least an order of magnitude worse than DDT-POD-lim and DDL-POD-lim. Of the three
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methods tested by limiting the number of snapshots, DDL-POD-lim has the lowest mean
errors. G-POD-basis, DDT-POD-basis and DDL-POD-basis all show mean errors of the
same magnitude, with DDL-POD-basis being slightly worse than the other two.

Table 5. Mean absolute maximum errors in the flux profile and keff for solutions using POD-based reduced-order models
with the limited number of snapshots and smart selection of the number of basis functions.

G-POD-Lim DDT-POD-Lim DDL-POD-Lim G-POD-Basis DDT-POD-Basis DDL-POD-Basis

Flux Error 2.4846× 10−1 7.5716× 10−3 2.1496× 10−3 1.2416× 10−3 1.2375× 10−3 3.1000× 10−3

keff Error 2.3198× 10−2 1.3405× 10−3 7.5412× 10−5 2.5474× 10−5 2.4721× 10−5 6.1249× 10−5

4. Discussion

For the above problem, it can be seen that the accuracy of the solution was in the same
order of magnitude when a total of 250 basis functions were used, irrespective if domain
decomposition methods were used. This means that domain decomposition methods,
and thus locally formed solutions, can be used with POD without a great loss in accuracy.
This is important, as it avoids using high-fidelity models for large whole reactor simulations
in order to form the snapshots. These high-fidelity simulations may be computationally
expensive or even intractable.

It was found that when the basis functions were constructed from the same snapshots
as the global system, the accuracy was similar whether they were constructed based on the
type, being UOX, MOX or reflector sub-domains, or location of the data, being the position
of the sub-domain within the system. This has implications when considering large-scale
problems where sub-domains with the same material properties and geometry repeat
themselves. When the basis functions are constructed from the locations of sub-domains,
the number of sets of basis functions required increases if the number of sub-domains
increases. However, when basis functions are constructed based on the material type
of sub-domains, then, assuming that new sub-domains have the same material types as
existing ones, the required number of sets of basis functions does not increase. This can
be beneficial if domains have a large number of degrees of freedom and singular-value
decomposition becomes computationally expensive to perform, and similar sub-domains
are repeated within the system.

It was also found that a much smaller data set, constructed using a set of snapshots
that were significantly less expensive to generate, could be used to generate basis functions
where the solutions were only slightly less accurate than using the snapshots generated
over the full solution. This means that the offline computational cost could be significantly
decreased by being able to generate basis functions from smaller snapshots. This also means
that the problem could be scaled up, with changes to the geometry, without requiring any
more offline computational work to be done.

It was also found that when the number of basis functions retained in the global
method was 50, it performed significantly worse than when domain decomposition meth-
ods were used. Although the number of POD coefficients used globally is less than the
domain decomposition methods, the information retained by the global method is the
same as the five sets of basis functions because the basis functions for the global method
are a matrix of 9350× 50, and for the domain decomposition methods, it is five matrices
of size 1870× 50. The total information in these matrices is the same. For the domain
decomposition method, the global basis functions is a matrix of size 9350× 250, but a
significant portion of this matrix is zeros and as such can be ignored in computational costs.

Three of the methods presented were selected for additional testing. These three
methods were G-POD, DDL-POD and DDT-POD. The first of these tests was to limit the
number of snapshots available to the methods. All three methods had lower accuracy
compared to when the full range of snapshots was utilised. The global method was
greatly affected by the number of basis functions it could retain and had significantly
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worse accuracy. The domain decomposition methods were less limited by this and could
use more basis functions than the global method, but still had a slight loss in accuracy
compared to when all snapshots were used. It was found that the methods utilising domain
decomposition performed better than the global method for a limited number of snapshots.
This is beneficial if it is either difficult or time consuming to produce a large number
of snapshots.

The second test performed on the three methods, G-POD, DDL-POD and DDT-POD,
was the smart selection of the number of basis functions. This was done by determining the
number of basis functions based on the energy retained rather than a fixed number. It was
found that all methods performed similarly, but had different numbers of basis functions
to reach the same fraction of energy retained. The global method required the smallest total
number of basis functions, followed by the method based on the type of domain, and finally,
the method based on location required the most basis functions. POD methods combined
with domain decomposition produced more accurate solutions with fewer basis functions
when the sets of basis functions were constructed based on the material type of domain
rather than the location. Although the global method required the smallest total number
of basis functions, each of these basis functions spans the whole computational domain.
The domain decomposition basis functions only span a single sub-domain, thereby being
one fifth the size of the ones used in the global method.

For modelling nuclear reactors, combining both ROM methods with domain decompo-
sition methods can have considerable benefits. The potential to enable parallel computing
while retaining the same level of accuracy means that the time taken to produce solutions
could be significantly reduced, which can help real-time analysis be performed. A draw-
back to ROM is the offline computational cost of producing snapshots, and this could
be offset by producing smaller snapshots (with fewer degrees of freedom within each
snapshot) during the offline phase to be used in the online phase. It is seen here that there is
a slight loss in accuracy from using smaller snapshots, but the snapshots generated during
the offline phase are significantly smaller than using the global system.

Optimising the design of reactors can also benefit from ROM combined with domain
decomposition. By constructing basis functions for each material type of sub-domain,
where similar sub-domains repeat within the global system, then an optimum geometry for
the arrangement of those sub-domains can be determined quickly and with no increase in
the offline computational cost. Typical ROM methods require a fixed geometry that cannot
be varied or incur further offline costs, but using domain decomposition means this can
be avoided.

One other form of dimensionality reduction that could benefit from domain decom-
position is using autoencoders. This is because they can be trained on smaller data sets,
as training them on the full system can result in a huge number of trainable parameters. It
can be seen, for this problem, that utilising domain decomposition methods with reduced-
order modelling methods is a way to reduce the computational cost of modelling further,
by enabling parallel computing, without a significant loss in accuracy.

5. Conclusions and Future Work

This paper assesses the value of combining domain decomposition with Reduced-
Order Models (ROMs) to produce an approach suited for solving reactor physics problems.
The method chosen to find the low-dimensional basis was Proper Orthogonal Decompo-
sition (POD). Different subsets of the snapshots were used to produce different sets of
basis functions, which were then used to produce several ROMs. Both global and local
bases were constructed: global methods used all available snapshots; local methods used
snapshots associated with one material type, one sub-domain or both one material type
and one sub-domain. Three methods were used in for two tests. The first of these tests
was limiting the number of snapshots available to the methods. The second test was a
smart selection of the number of basis functions based on the fraction of energy retained.
Future work will explore the use of autoencoders to form the low-dimensional space. This



Energies 2021, 14, 1369 24 of 25

could improve the accuracy of the ROMs, as the nonlinearity of the autoencoder can be
advantageous [31].

The accuracy of these methods was largely independent of whether sets of basis func-
tions were constructed based on the material type, location or both of the sub-domains. This
means that sets of basis functions could be repeated in the global system for sub-domains
that had similar material properties. For a reactor, where sub-domains with the same
material parameters appear several times, this could significantly improve optimisation
by enabling rapid solutions to changes in the geometry, such as the layout or amount of
fuel assemblies, without an increase in the offline computational cost. It was found that
basis functions could be generated from a set of snapshots that were not generated from
the full HFM without a great loss in accuracy. This can significantly reduce the offline
computational cost to create the basis functions, one of the current limitations of ROM.

Additional testing of the methods found that when the number of snapshots used to
construct the ROMs was limited, all three methods suffered a loss in accuracy, but the global
method had a greater reduction in accuracy than either domain decomposition method
used. This means that if the number of initial snapshots is limited, it would be beneficial to
use domain decomposition methods instead. An additional test was performed by smart
selection of a number of basis functions where this was chosen based on the fraction of
energy retained. It was found that all three methods performed with similar levels of
accuracy, despite the different number of basis functions used with each method. For the
domain decomposition methods, constructing the sets of basis functions from the material
type of domain produced slightly more accurate results with fewer basis functions than
when they were constructed from the location of the domain.

Future work will involve applying the ROMs based on the domain decomposition
proposed here to progressively more realistic and challenging problems. This includes
increasing the spatial dimension to 2D and 3D, the use of transport theory instead of diffu-
sion theory and the use of many more energy groups than the 22 used here. The behaviour
seen in these problems will be closer to that of real reactors, and their modelling will benefit
more from the reduction of computational cost that the domain decomposition ROMs
can provide.
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