Valorization of Indonesian Wood Wastes through Pyrolysis: A Review
Abstract
:1. Introduction
2. Potential Wood Wastes for Indonesia
2.1. Wood Waste of Forest Harvesting
2.2. Wood Waste from Wood Processing Industry
3. Wood Wastes Pyrolysis
4. Application of Pyrolysis Products
4.1. Biochar
4.1.1. Soil Amendment
4.1.2. Other Encouraging Applications
4.2. Bio-Oil
4.2.1. Fuels
4.2.2. Chemicals
4.3. Gas
5. Pyrolysis in Indonesia: State-of-the-Art
5.1. Box Furnace
5.2. Dome Furnace
5.3. Kiln Furnace
5.4. Drum Furnace
6. Market Potential for Charcoal
7. Prospect and Constraint for Charcoal Industries
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alviya, I. Efficiency and Productivity of Indonesian Wood Processing in the Period 2004–2007 with Non Parametric Approach Data Envelopment Analysis (In Bahasa Indonesia). J. Penelit. Sos. Dan Ekon. Kehutan. 2011, 8, 122–138. [Google Scholar] [CrossRef] [Green Version]
- Deputi Bidang Koordinasi Perniagaan dan Industri. Rapat Koordinasi Pembahasan Industri Hasil Kayu 2019. Available online: http://asmindo.or.id/wp-content/uploads/2019/02/190220-Industri-Kayu_Rev4-1.pdf (accessed on 31 December 2020).
- Roda, J.-M.; Cadène, P.; Guizol, P.; Santoso, L.; Fauzan, A.U. Atlas of Wooden Furniture Industry in Jepara, Indonesia; Center for International Forestry Research: Bogor, Indonesia, 2007; ISBN 978-979-1412-13-1. [Google Scholar]
- Badan Pusat Statistik. Statistical Yearbook of Indonesia 2020; Badan Pusat Statistik: Jakarta, Indonesia, 2020.
- Darusman, D. Aspek Ekonomi Industri Pemanfaatan Limbah Kayu; Fakultas Kehutanan; IPB Bogor: Bogor, Indonesia, 1988; pp. 11–29. [Google Scholar]
- Diaz, L.F.; Golueke, C.G. Biomass Conversion Processes for Energy and Fuels; Sofer, S.S., Zaborsky, O.R., Eds.; Springer: Boston, MA, USA, 1981; ISBN 978-1-4757-0303-0. [Google Scholar]
- De Wild, P.; Reith, H.; Heeres, E. Biomass Pyrolysis for Chemicals. Biofuels 2011, 2, 185–208. [Google Scholar] [CrossRef]
- Simarmata, S.R.; Dulsalam, D. Volume and Classifiaation of Logging Waste at Several Forest Companies in Sumatera and Kalimantan (in Bahasa Indonesia). J. Penelit. Has. Hutan 1985, 2, 17–19. [Google Scholar]
- Budiaman, A.; Mubarak, F.M.; Lismaya, W. Logging Residues of Low Harvest Intensity in Indonesian Forest Concession (in Bahasa Indonesia). JIPI 2020, 25, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Matangaran, J.R.; Partiani, T.; Purnamasari, D.R. Exploitation Factor and Quantification of Wood Waste in Order to Improve Efficiency of Natural Forest Harvesting (in Bahasa Indonesia). J. Bumi Lestari 2013, 13, 384–393. [Google Scholar]
- Soenarno, S.; Endom, W.; Suhartana, S. The Study on Utilization and Waste Factor of Timber Harvesting at Natural Forest, West Papua (in Bahasa Indonesia). J. Penelit. Has. Hutan 2018, 36, 67–84. [Google Scholar] [CrossRef]
- Muhdi, M.; Elias, E.; Murdiyarso, D.; Matangaran, J.R. Wood Waste Caused by Reduced Impact Logging in Indonesian Selective Cutting and Planting System, North Borneo, Indonesia. Int. J. Sci. Basic Appl. Res. 2016, 30, 86–92. [Google Scholar]
- Sianturi, A.; Soerianegara, I.; Suparto, R.S.; Manan, S. Exploitation Factor in the Pulau Laut Depterocarp Forest (in Bahasa Indonesia). Jumal Penelit. Has. Hutan 1984, 1, 1–10. [Google Scholar] [CrossRef]
- Simarmata, S.R.; Dulsalam, D. The Exploitation Factor for Shorea spp. in Jambi, Central Kalimantan and East Kalimantan (in Bahasa Indonesia). J. Penelit. Has. Hutan 1985, 2, 10–12. [Google Scholar] [CrossRef]
- Soenarno, S. Logging Efficiency and Quality of Logging Waste in a Tropical Mountainous Forest: Case Study in the Licency Natural Forest Concessionary of PT. Roda Mas Timber Kalimantan (in Bahasa Indonesia). J. Penelit. Has. Hutan 2014, 32, 45–61. [Google Scholar] [CrossRef] [Green Version]
- Soenarno, S.; Dulsalam, D.; Endom, W. Exploitation Factor in Limited Production Forest in Licenced Natural Forest PT Kemakmuran Berkah Timber (in Bahasa Indonesia). J. Penelit. Has. Hutan 2013, 31, 151–160. [Google Scholar] [CrossRef]
- Chen, W.-H.; Wang, C.-W.; Kumar, G.; Rousset, P.; Hsieh, T.-H. Effect of Torrefaction Pretreatment on the Pyrolysis of Rubber Wood Sawdust Analyzed by Py-GC/MS. Bioresour. Technol. 2018, 259, 469–473. [Google Scholar] [CrossRef] [PubMed]
- The Wood Database. Balau. Available online: https://www.wood-database.com/balau/ (accessed on 6 January 2021).
- Ahmad, Z.S.; Munaim, M.S.A.; Said, F.M. Characterization of Meranti Wood Sawdust and Removal of Lignin Content Using Pre-Treatment Process; Universiti Malaysia Pahang: Pahang, Malaysia, 2016; pp. 598–606. [Google Scholar]
- Mazlan, M.A.F.; Uemura, Y.; Osman, N.B.; Yusup, S. Fast Pyrolysis of Hardwood Residues Using a Fixed Bed Drop-Type Pyrolyzer. Energy Convers. Manag. 2015, 98, 208–214. [Google Scholar] [CrossRef]
- Azura, N.W.; Zularisam, A.W.; Norsita, S.; Nasrullah, M.; Kamaruzaman, N.W. Effect of Fast Pyrolysis Operating Conditions on Product Yield of Red Meranti Sawdust. Int. Res. J. Eng. Technol. (Irjet) 2017, 4, 607–611. [Google Scholar]
- Rani, A.; Singh, J.; Singh, T. An Experimental Characterization of Physical Properties of Timber Woods. Nanotechnology 2017, 1, 41–45. [Google Scholar] [CrossRef]
- The Wood Database. Teak. Available online: https://www.wood-database.com/teak/ (accessed on 6 January 2021).
- Hidayati, F.; Fajrin, I.T.; Ridho, M.R.; Nugroho, W.D.; Marsoem, S.N.; Na’iem, M. Sifat Fisika Dan Mekanika Kayu Jati Unggul “Mega” Dan Kayu Jati Konvensional Yang Di Tanam Di Hutan Pendidikan, Wanagama, Gunungkidul, Yogyakarta. J. Ilmu Kehutan. 2016, 10, 98. [Google Scholar] [CrossRef] [Green Version]
- Basri, E.; Wahyudi, I. Wood Basic Properties of Jati Plus Perhutani from Different Ages and Their Relationships to Drying Properties and Qualities (in Bahasa). J. Penelit. Has. Hutan 2013, 31, 93–102. [Google Scholar] [CrossRef]
- Balogun, A.O.; Lasode, O.A.; McDonald, A.G. Devolatilisation Kinetics and Pyrolytic Analyses of Tectona grandis (Teak). Bioresour. Technol. 2014, 156, 57–62. [Google Scholar] [CrossRef]
- Peng, H.; Li, Y.; Chen, G.; Li, Y. Co-Combustion Interactions between Teak Sawdust and Sewage Sludge with Additives. BioResources 2019, 14, 1466–1481. [Google Scholar]
- Kartikawati, A.; Wahyudi, I.; Pari, G.; Karlinasari, L. Color and Dimensional Stability of Fast Growing Teakwood by Mild Pyrolysis and Combination Process. IOP Conf. Ser. Mater. Sci. Eng. 2020, 935, 012014. [Google Scholar] [CrossRef]
- The Wood Database. Rubberwood. Available online: https://www.wood-database.com/rubberwood/ (accessed on 6 January 2021).
- Sultan, S.H.; Palamanit, A.; Techato, K.; Amin, M.; Ahmed, K.; Asadullah, A. Syngas Production from Rubberwood Biomass in Downdraft Gasifier Combined with Wet Scrubbing: Investigation of Tar and Solid Residue. JSM 2020, 49, 1729–1743. [Google Scholar] [CrossRef]
- Hartati, S.; Sudarmonowati, E.; Fatriasari, W.; Hermiati, E.; Dwianto, W.; Kaida, R.; Baba, K.; Hayashi, T. Wood Characteristic of Superior Sengon Collection and Prospect of Wood Properties Improvement through Genetic Engineering. Wood Res. J. 2010, 1, 103–105. [Google Scholar]
- Saputro, D.D.; Widayat, W. Karakterisasi Limbah Pengolahan Kayu Sengon Sebagai Bahan Bakar Altrnatif. Sainteknol J. Sain Dan Teknol. 2016, 14, 21–29. [Google Scholar]
- Listyanto, T. Wood Quality of Paraserianthes falcataria L. Nielsen Syn Wood from Three Year Rotation of Harvesting for Construction Application. Wood Res. 2018, 63, 497–504. [Google Scholar]
- The Wood Database. Batai. Available online: https://www.wood-database.com/batai/ (accessed on 6 January 2021).
- Dulsalam, D. Logging Recovery of Meranti in West Sumatera, West Kalimantan and South Kalimantan (in Bahasa Indonesia). J. Penelit. Has. Hutan 1988, 5, 47–49. [Google Scholar] [CrossRef]
- Wahyudi, I.; Sinaga, D.K.D.; Muhran, M.; Jasni, L.B. Spacing Effect on Tree Growth and Several Physical-Mechanical Properties of Faster-Grown Teak Wood (in Bahasa Indonesia). J. Ilmu Pertan. Indones. 2014, 19, 204–210. [Google Scholar]
- Pramono, A.A.; Fauzi, M.A.; Widyani, N.; Heriansyah, I.; Roshetko, J.M. Pengelolaan Hutan Jati Rakyat-Panduan Lapangan Untuk Petani; Center for International Forestry Research (CIFOR): Bogor, Indonesia, 2010; ISBN 978-602-8693-19-6. [Google Scholar]
- Matangaran, J.R.; Anggoro, R. Teak Harvesting Waste at Banyuwangi East Java. Perennial 2012, 8, 88–92. [Google Scholar] [CrossRef] [Green Version]
- Kurinobu, S.; Prehatin, D.; Mohanmad, N.; Matsune, K.; Chigira, O. A Provisional Growth Model with a Size–Density Relationship for a Plantation of Paraserianthes falcataria Derived from Measurements Taken over 2 Years in Pare, Indonesia. J. For. Res. 2007, 12, 230–236. [Google Scholar] [CrossRef]
- Krisnawati, H.; Varis, E.; Kallio, M.; Kanninen, M. Paraserianthes falcataria (L.) Nielsen: Ekologi, Silvikultur Dan Produktivitas; CIFOR: Bogor, Indonesia, 2011; ISBN 978-602-8693-52-3. [Google Scholar]
- Hytönen, J.; Nurmi, J.; Kaakkurivaara, N.; Kaakkurivaara, T. Rubber Tree (Hevea brasiliensis) Biomass, Nutrient Content, and Heating Values in Southern Thailand. Forests 2019, 10, 638. [Google Scholar] [CrossRef] [Green Version]
- Ratnasingam, J.; Ramasamy, G.; Tau Wai, L.; Senin, A.L.; Muttiah, N. The Prospects of Rubberwood Biomass Energy Production in Malaysia. BioResources 2015, 10, 2526–2548. [Google Scholar] [CrossRef] [Green Version]
- Agustina, D.S.; Syarifa, L.F.; Nancy, C. A Study on Institutions and Partnership in Rubberwood Marketing in South Sumatera Province (in Bahasa Indonesia). J. Penelit. Karet 2013, 31, 54–67. [Google Scholar] [CrossRef] [Green Version]
- Simanjuntak, J.P.; Lisyanto; Daryanto, E.; Tambunan, B.H. Producer Gas Production of Indonesian Biomass in Fixed-Bed Downdraft Gasifier as an Alternative Fuels for Internal Combustion Engines. J. Phys. Conf. Ser. 2018, 970, 012019. [Google Scholar] [CrossRef]
- Balsiger, J.; Bahdon, J.; Whiteman, A. The Utilization, Processing and Demand for Rubberwood as a Source of Wood Supply; Asia-Pacific Forestry Sector Outlook Study; FAO Forestry Policy and Planning Division: Rome, Italy, 2000. [Google Scholar]
- Wahyudi, W. Dasar-Dasar Penggergajian Kayu, 1st ed.; Pohon Cahaya: Yogyakarta, Indonesia, 2013. [Google Scholar]
- Purwanto, D. The Analysis of Variety of Wood Waste Material from Wood Industry in South Borneo. J. Ris. Ind. Has. Hutan 2009, 1, 14–20. [Google Scholar] [CrossRef]
- Malik, J.; Hopewell, G.P. Sawing Recovery of Several Sawmills in Jepara. J. Penelit. Kehutan 2011, 29, 331–342. [Google Scholar] [CrossRef] [Green Version]
- Kantarelis, E.; Yang, W.; Blasiak, W. Biomass pyrolysis for energy and fuel production. In Technologies for Converting Biomass to Useful Energy; Dahlquist, E., Ed.; CRC Press: Boca Raton, FL, USA, 2013; pp. 245–277. [Google Scholar]
- Koufopanosi, C.A.; Maschio, G.; Lucchesit, A. Kinetic Modelling of the Pyrolysis of Biomass and Biomass Components. Can. J. Chem. Eng. 1989, 67, 75–84. [Google Scholar] [CrossRef]
- Demirbaş, A.; Arin, G. An Overview of Biomass Pyrolysis. Energy Sources 2002, 24, 471–482. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Biomass Fast Pyrolysis. Therm. Sci. 2004, 8, 21–49. [Google Scholar] [CrossRef]
- Diebold, J.P.; Bridgwater, A.V. Overview of fast pyrolysis of biomass for the production of liquid fuels. In Developments in Thermochemical Biomass Conversion; Bridgwater, A.V., Boocock, D.G.B., Eds.; Springer Science + Business Media: Dordrecht, The Netherlands, 1997; Volume 1, pp. 5–25. ISBN 978-94-010-7196-3. [Google Scholar]
- Venderbosch, R.H.; Prins, W. Fast pyrolysis. In Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power; Brown, R.C., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2011; pp. 124–156. ISBN 978-0-470-72111-7. [Google Scholar]
- Basu, P. Biomass Gasification and Pyrolysis: Practical Design and Theory; Academic Press: Burlington, MA, USA, 2010; ISBN 978-0-12-374988-8. [Google Scholar]
- Mohan, D.; Pittman, C.U.; Steele, P.H. Pyrolysis of Wood/Biomass for Bio-Oil: A Critical Review. Energy Fuels 2006, 20, 848–889. [Google Scholar] [CrossRef]
- Shafizadeh, F.; Chin, P.P.S. Thermal Deterioration of Wood. In Wood Technology: Chemical Aspects; Goldstein, I.S., Ed.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 1977; Volume 43, pp. 57–81. ISBN 978-0-8412-0373-0. [Google Scholar]
- Balonek, C.M. Autothermal Oxidative Pyrolysis of Biomass Feedstocks over Noble Metal Catalysts to Liquid Products. Ph.D. Thesis, University of Minnesota, Minnesota, MN, USA, 2011. [Google Scholar]
- Jahirul, M.; Rasul, M.; Chowdhury, A.; Ashwath, N. Biofuels Production through Biomass Pyrolysis—A Technological Review. Energies 2012, 5, 4952–5001. [Google Scholar] [CrossRef]
- Xu, L.; Jiang, L.; Zhang, H.; Fang, Z.; Smith, R.L. Introduction to Pyrolysis as a Thermo-Chemical Conversion Technology. In Production of Biofuels and Chemicals with Pyrolysis; Fang, Z., Smith, R.L., Jr., Xu, L., Eds.; Biofuels and Biorefineries; Springer: Singapore, 2020; Volume 10, pp. 3–30. ISBN 9789811527319. [Google Scholar]
- Kumarathilaka, P.; Mayakaduwa, S.; Herath, I.; Vithanage, M. Biochar. In Biochar: Production, Characterization, and Applications; Uchimiya, S.M., Chang, S.X., Bolan, N., Eds.; CRC Press: Boca Raton, FL, USA, 2016; pp. 18–42. ISBN 978-1-4822-4230-0. [Google Scholar]
- Bridgwater, A.V.; Meier, D.; Radlein, D. An Overview of Fast Pyrolysis of Biomass. Org. Geochem. 1999, 30, 1479–1493. [Google Scholar] [CrossRef]
- Mazlan, M.A.F.; Uemura, Y.; Osman, N.B.; Yusup, S. Characterizations of Bio-Char from Fast Pyrolysis of Meranti Wood Sawdust. J. Phys. Conf. Ser. 2015, 622, 012054. [Google Scholar] [CrossRef] [Green Version]
- Komarayati, S.; Gusmailina, G.; Hendra, D. Manufacturing Activated Charcoal from Teakwood Sawdust (in Bahasa Indonesia). Bul. Penelit. Has. Hutan 1997, 15, 94–100. [Google Scholar]
- Ratnani, R.D.; Purbacaraka, F.H.; Hartati, I.; Syafaat, I. Actived Carbon from Teak Wood, Jackfruit Wood, and Mango Wood Pyrolysis Process. J. Phys. Conf. Ser. 2019, 1217, 012055. [Google Scholar] [CrossRef]
- Bardalai, M.; Mahanta, D.K. Characterisation of Pyrolysis Oil Derived from Teak Tree Saw Dust and Rice Husk. J. Eng. Sci. Technol. 2018, 13, 242–253. [Google Scholar]
- Rahmat, B.; Pangesti, D.; Natawijaya, D.; Sufyadi, D. Generation of Wood-Waste Vinegar and Its Effectiveness as Plant Growth Regulator and Pest Insect Repellant. BioResources 2014, 9, 6350–6360. [Google Scholar] [CrossRef] [Green Version]
- Lim, K.G.; Egashira, R. Pyrolysis and Characterization of the Products for Recycle of Rubberwood Residues. Master’s Thesis, Tokyo Institute of Technology, Tokyo, Japan, 2004. [Google Scholar]
- Ratanapisit, J.; Apiraksakul, S.; Rerngnarong, A.; Chungsiriporn, J.; Bunyakarn, C. Preliminary Evaluation of Production and Characterization of Wood Vinegar from Rubberwood. Songklanakarin J. Sci. Technol. 2009, 31, 343–349. [Google Scholar]
- Nurhayati, T. Charcoal Production of Rubber Wood (Hevea brasilliensis) in Dome Kiln of S-93 Model (in Bahasa Indonesia). J. Penelit. Has. Hutan 1995, 13, 37–44. [Google Scholar] [CrossRef]
- Wibowo, S. Characteristics of Bio-Oil from Sengon (Paraserianthes falcataria L. Nielsen) Sawdust by Slow Pyrolysis Process (in Bahasa Indonesia). J. Penelit. Has. Hutan 2013, 31, 258–270. [Google Scholar] [CrossRef] [Green Version]
- Hendrawan, Y.; Sajidah, N.; Umam, C.; Fauzy, M.R.; Wibisono, Y.; Hawa, L.C. Effect of Carbonization Temperature Variations and Activator Agent Types on Activated Carbon Characteristics of Sengon Wood Waste (Paraserianthes falcataria (L.) Nielsen). IOP Conf. Ser. Earth Envrion. Sci. 2019, 239, 012006. [Google Scholar] [CrossRef]
- Nugrahaningtyas, K.D.; Prasetyorini, E. Local Wood’s Bio-Oil Upgrading Using Non-Sulfided (Co, Mo)/USY Catalyst. IOP Conf. Ser. Mater. Sci. Eng. 2019, 578, 012012. [Google Scholar] [CrossRef]
- Mazlan, M.A.F.; Uemura, Y.; Yusup, S. Fast Pyrolysis of Rubber Wood Sawdust via a Fluidized Bed Pyrolyzer: The Effect of Fluidization Gas Velocity. Sindh Univ. Res. J. (Sci. Ser.) 2016, 48, 9–16. [Google Scholar]
- Gupta, G.K.; Gupta, P.K.; Mondal, M.K. Experimental Process Parameters Optimization and In-Depth Product Characterizations for Teak Sawdust Pyrolysis. Waste Manag. 2019, 87, 499–511. [Google Scholar] [CrossRef]
- Putra, H.; Damanhuri, E.; Dewi, K.; Pasek, A.D. Production of Coal-Like Solid Fuel from Albizia chinensis Sawdust Via Wet Torrefaction Process. J. Ecol. Eng. 2020, 21, 183–190. [Google Scholar] [CrossRef]
- Fryda, L.; Visser, R. Biochar for Soil Improvement: Evaluation of Biochar from Gasification and Slow Pyrolysis. Agriculture 2015, 5, 1076–1115. [Google Scholar] [CrossRef] [Green Version]
- Rajapaksha, A.U.; Mohan, D.; Igalavithana, A.D.; Lee, S.S.; Ok, Y.S. Definitions and Fundamentals of Biochar. In Biochar: Production, Characterization, and Applications; Ok, Y.S., Uchimiya, S.M., Chang, S.X., Bolan, N., Eds.; Urbanization, Industrialization, and the Environment; CRC Press: Boca Raton, FL, USA, 2016; pp. 4–16. ISBN 978-1-4822-4230-0. [Google Scholar]
- Lehmann, J.; Joseph, S. (Eds.) Biochar for Environmental Management: Science and Technology; Earthscan: London, UK; Sterling, VA, USA, 2009; ISBN 978-1-84407-658-1. [Google Scholar]
- Suthar, R.; Wang, C.; Nunes, M.; Chen, J.; Sargent, S.; Bucklin, R.; Gao, B. Bamboo Biochar Pyrolyzed at Low Temperature Improves Tomato Plant Growth and Fruit Quality. Agriculture 2018, 8, 153. [Google Scholar] [CrossRef] [Green Version]
- Biederman, L.A.; Harpole, W.S. Biochar and Its Effects on Plant Productivity and Nutrient Cycling: A Meta-Analysis. GCB Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Sheng, Y.; Zhu, L. Biochar Alters Microbial Community and Carbon Sequestration Potential across Different Soil PH. Sci. Total Environ. 2018, 622–623, 1391–1399. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Monedero, M.A.; Cayuela, M.L.; Sánchez-García, M.; Vandecasteele, B.; D’Hose, T.; López, G.; Martínez-Gaitán, C.; Kuikman, P.J.; Sinicco, T.; Mondini, C. Agronomic Evaluation of Biochar, Compost and Biochar-Blended Compost across Different Cropping Systems: Perspective from the European Project FERTIPLUS. Agronomy 2019, 9, 225. [Google Scholar] [CrossRef] [Green Version]
- Alotaibi, K.; Schoenau, J. Application of Two Bioenergy Byproducts with Contrasting Carbon Availability to a Prairie Soil: Three-Year Crop Response and Changes in Soil Biological and Chemical Properties. Agronomy 2016, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.Y.; Van Zwieten, L.; Meszaros, I.; Downie, A.; Joseph, S. Agronomic Values of Greenwaste Biochar as a Soil Amendment. Soil Res. 2007, 45, 629. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to Improve Soil Fertility. A Review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.; Jayaraman, S.; Ulaganathan, M.; Balasubramanian, R.; Aravindan, V.; Srinivasan, M.P.; Madhavi, S. Highly Mesoporous Carbon from Teak Wood Sawdust as Prospective Electrode for the Construction of High Energy Li-Ion Capacitors. Electrochim. Acta 2017, 228, 131–138. [Google Scholar] [CrossRef]
- Antolini, E. Graphene as a New Carbon Support for Low-Temperature Fuel Cell Catalysts. Appl. Catal. B Environ. 2012, 123–124, 52–68. [Google Scholar] [CrossRef]
- Sudarsono, W.; Wong, W.Y.; Loh, K.S.; Majlan, E.H.; Syarif, N.; Kok, K.Y.; Yunus, R.M.; Lim, K.L. High Performance Iron-Based Oxygen Reduction Catalyst Supported on Sengon Wood-Derived Reduced Graphene Oxide in Acidic Medium. IOP Conf. Ser. Earth Environ. Sci. 2020, 463, 012060. [Google Scholar] [CrossRef]
- Sudarsono, W.; Wong, W.Y.; Loh, K.S.; Majlan, E.H.; Syarif, N.; Kok, K.; Yunus, R.M.; Lim, K.L. Noble-free Oxygen Reduction Reaction Catalyst Supported on Sengon Wood (Paraserianthes falcataria L.) Derived Reduced Graphene Oxide for Fuel Cell Application. Int. J. Energy Res. 2020, 44, 1761–1774. [Google Scholar] [CrossRef]
- Sudarsono, W.; Wong, W.Y.; Loh, K.S.; Majlan, E.H.; Syarif, N.; Kok, K.-Y.; Yunus, R.M.; Lim, K.L.; Hamada, I. Sengon Wood-Derived RGO Supported Fe-Based Electrocatalyst with Stabilized Graphitic N-Bond for Oxygen Reduction Reaction in Acidic Medium. Int. J. Hydrogen Energy 2020, 45, 23237–23253. [Google Scholar] [CrossRef]
- Oasmaa, A.; Czernik, S. Fuel Oil Quality of Biomass Pyrolysis Oils: State of the Art for the End Users. Energy Fuels 1999, 13, 914–921. [Google Scholar] [CrossRef]
- Oasmaa, A.; Solantausta, Y.; Arpiainen, V.; Kuoppala, E.; Sipilä, K. Fast Pyrolysis Bio-Oils from Wood and Agricultural Residues. Energy Fuels 2010, 24, 1380–1388. [Google Scholar] [CrossRef]
- Parray, R.A.; Bhattacharya, T.K. Fuel Properties of Ethanol-Diesel Blends for Use as Engine Fuel. Int. J. Sci. Res. 2015, 4, 2443–2446. [Google Scholar]
- Zhang, Q.; Chang, J.; Wang, T.; Xu, Y. Review of Biomass Pyrolysis Oil Properties and Upgrading Research. Energy Convers. Manag. 2007, 48, 87–92. [Google Scholar] [CrossRef]
- Chiaramonti, D.; Oasmaa, A.; Solantausta, Y. Power Generation Using Fast Pyrolysis Liquids from Biomass. Renew. Sustain. Energy Rev. 2007, 11, 1056–1086. [Google Scholar] [CrossRef]
- Oasmaa, A.; Kytö, M.; Sipilä, K. Pyrolysis Oil Combustion Tests in an Industrial Boiler. In Progress in Thermochemical Biomass Conversion; Blackwell Science: Oxford, UK, 2001; Volume 2, pp. 1468–1481. [Google Scholar]
- Bertoli, C.; Calabria, R.; D’Alessio, J.; Giacomo, N.D.; Lazzaro, M.; Massoli, P.; Moccia, V. Diesel Engines Fueled by Wood Pyrolysis Oil: Feasibility and Perspectives. In Proceedings of the 5th International Conference Internal Combustion Engines, Naples, Italy, 23–27 September 2001; p. 41. [Google Scholar]
- Bridgwater, A.V. Review of Fast Pyrolysis of Biomass and Product Upgrading. Biomass Bioenergy 2012, 38, 68–94. [Google Scholar] [CrossRef]
- Lehto, J.; Oasmaa, A.; Solantausta, Y.; Kytö, M.; Chiaramonti, D. Fuel Oil Quality and Combustion of Fast Pyrolysis Bio-Oils; VTT: Espoo, Finland, 2013; ISBN 978-951-38-7930-3. [Google Scholar]
- Solantausta, Y.; Nylund, N.-O.; Westerholm, M.; Koljonen, T.; Oasmaa, A. Wood-Pyrolysis Oil as Fuel in a Diesel-Power Plant. Bioresour. Technol. 1993, 46, 177–188. [Google Scholar] [CrossRef]
- Shihadeh, A.; Hochgreb, S. Diesel Engine Combustion of Biomass Pyrolysis Oils. Energy Fuels 2000, 14, 260–274. [Google Scholar] [CrossRef]
- Haryanto, A.; Fernando, S.; Murali, N.; Adhikari, S. Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol: A Review. Energy Fuels 2005, 19, 2098–2106. [Google Scholar] [CrossRef]
- Iliopoulou, E.F.; Triantafyllidis, K.S.; Lappas, A.A. Overview of Catalytic Upgrading of Biomass Pyrolysis Vapors toward the Production of Fuels and High-Value Chemicals. Wires Energy Environ. 2019, 8, e322. [Google Scholar] [CrossRef] [Green Version]
- Leng, L.; Li, H.; Yuan, X.; Zhou, W.; Huang, H. Bio-Oil Upgrading by Emulsification/Microemulsification: A Review. Energy 2018, 161, 214–232. [Google Scholar] [CrossRef]
- Chong, Y.Y.; Thangalazhy-Gopakumar, S.; Ng, H.K.; Ganesan, P.B.; Gan, S.; Lee, L.Y.; Manickavel, V.S.A.R.; Ong, C.M.; Al Hinai, H.S. Emulsification of Bio-Oil and Diesel. Chem. Eng. Trans. 2017, 56, 1801–1806. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, X.; Zhang, H.; Chu, C.; Zheng, K.; Ju, M.; Liu, L. Liquefaction of Biomass and Upgrading of Bio-Oil: A Review. Molecules 2019, 24, 2250. [Google Scholar] [CrossRef] [Green Version]
- Paenpong, C.; Inthidech, S.; Pattiya, A. Effect of Filter Media Size, Mass Flow Rate and Filtration Stage Number in a Moving-Bed Granular Filter on the Yield and Properties of Bio-Oil from Fast Pyrolysis of Biomass. Bioresour. Technol. 2013, 139, 34–42. [Google Scholar] [CrossRef]
- Krutof, A.; Hawboldt, K.A. Upgrading of Biomass Sourced Pyrolysis Oil Review: Focus on Co-Pyrolysis and Vapour Upgrading during Pyrolysis. Biomass Convers. Biorefin. 2018, 8, 775–787. [Google Scholar] [CrossRef]
- Pidtasang, B.; Udomsap, P.; Sukkasi, S.; Chollacoop, N.; Pattiya, A. Influence of Alcohol Addition on Properties of Bio-Oil Produced from Fast Pyrolysis of Eucalyptus Bark in a Free-Fall Reactor. J. Ind. Eng. Chem. 2013, 19, 1851–1857. [Google Scholar] [CrossRef]
- Mei, Y.; Chai, M.; Shen, C.; Liu, B.; Liu, R. Effect of Methanol Addition on Properties and Aging Reaction Mechanism of Bio-Oil during Storage. Fuel 2019, 244, 499–507. [Google Scholar] [CrossRef]
- McVey, M.; Elkasabi, Y.; Ciolkosz, D. Separation of BTX Chemicals from Biomass Pyrolysis Oils via Continuous Flash Distillation. Biomass Convers. Biorefin. 2020, 10, 15–23. [Google Scholar] [CrossRef]
- Vispute, T.P.; Huber, G.W. Production of Hydrogen, Alkanes and Polyols by Aqueous Phase Processing of Wood-Derived Pyrolysis Oils. Green Chem. 2009, 11, 1433. [Google Scholar] [CrossRef] [Green Version]
- Liao, H.T.; Ye, X.N.; Lu, Q.; Dong, C.Q. Overview of Bio-Oil Upgrading via Catalytic Cracking. AMR 2013, 827, 25–29. [Google Scholar] [CrossRef]
- Nokkosmäki, M.I.; Kuoppala, E.T.; Leppämäki, E.A.; Krause, A.O.I. Catalytic Conversion of Biomass Pyrolysis Vapours with Zinc Oxide. J. Anal. Appl. Pyrolysis 2000, 55, 119–131. [Google Scholar] [CrossRef]
- Venderbosch, R.H.; Heeres, H.J. Pyrolysis Oil Stabilisation by Catalytic Hydrotreatment. In Biofuel’s Engineering Process Technology; Dos Santos Bernardes, M.A., Ed.; InTech: London, UK, 2011; ISBN 978-953-307-480-1. [Google Scholar]
- Zhang, X.; Wang, T.; Ma, L.; Zhang, Q.; Jiang, T. Hydrotreatment of Bio-Oil over Ni-Based Catalyst. Bioresour. Technol. 2013, 127, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Tang, J.; Lie, J.; He, Y.; Xiao, Z. Study on the Preparation of Biohydrocarbon Fuel by Catalytic Hydrogenation of Swida wilsoniana Pyrolysis Products. Adv. Mater. Sci. Eng. 2020, 2020, 3569125. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Liu, C.; Ma, W.; Yan, B.; Zhang, J. Hydrodeoxygenation of Lignin-Derived Bio-Oil Using Molecular Sieves Supported Metal Catalysts: A Critical Review. Renew. Sustain. Energy Rev. 2017, 71, 296–308. [Google Scholar] [CrossRef]
- Sanna, A.; Vispute, T.P.; Huber, G.W. Hydrodeoxygenation of the Aqueous Fraction of Bio-Oil with Ru/C and Pt/C Catalysts. Appl. Catal. B Environ. 2015, 165, 446–456. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, C.C.; Raffelt, K.; Zimina, A.; Krause, B.; Otto, T.; Rapp, M.; Grunwaldt, J.-D.; Dahmen, N. Hydrotreatment of Fast Pyrolysis Bio-Oil Fractions Over Nickel-Based Catalyst. Top. Catal. 2018, 61, 1769–1782. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Huang, Q.; Sui, M.; Yan, Y.; Wang, F. Hydrogen Production via Catalytic Steam Reforming of Fast Pyrolysis Bio-Oil in a Two-Stage Fixed Bed Reactor System. Fuel Process. Technol. 2008, 89, 1306–1316. [Google Scholar] [CrossRef]
- Lan, P.; Xu, Q.; Zhou, M.; Lan, L.; Zhang, S.; Yan, Y. Catalytic Steam Reforming of Fast Pyrolysis Bio-Oil in Fixed Bed and Fluidized Bed Reactors. Chem. Eng. Technol. 2010, 33, 2021–2028. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, Z.; Kan, T.; Zhu, X.; Li, Q. Hydrogen Production by Catalytic Steam Reforming of Bio-Oil, Naphtha and CH4 over C12A7-Mg Catalyst. Chin. J. Chem. Phys. 2006, 19, 190–192. [Google Scholar] [CrossRef]
- Pawar, A.; Panwar, N.L.; Salvi, B.L. Comprehensive Review on Pyrolytic Oil Production, Upgrading and Its Utilization. J. Mater. Cycles Waste Manag. 2020, 22, 1712–1722. [Google Scholar] [CrossRef]
- Yang, H.; Yao, J.; Chen, G.; Ma, W.; Yan, B.; Qi, Y. Overview of Upgrading of Pyrolysis Oil of Biomass. Energy Procedia 2014, 61, 1306–1309. [Google Scholar] [CrossRef] [Green Version]
- Siedlecki, M.; De Jong, W.; Verkooijen, A.H.M. Fluidized Bed Gasification as a Mature And Reliable Technology for the Production of Bio-Syngas and Applied in the Production of Liquid Transportation Fuels—A Review. Energies 2011, 4, 389–434. [Google Scholar] [CrossRef] [Green Version]
- Baratieri, M.; Baggio, P.; Bosio, B.; Grigiante, M.; Longo, G.A. The Use of Biomass Syngas in IC Engines and CCGT Plants: A Comparative Analysis. Appl. Therm. Eng. 2009, 29, 3309–3318. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Zhu, M.; Zhang, Z.; Wu, J. Combined Heat and Power (CHP) Generation Using Gas Engines Fueled with Pyrolysis Gases. In Handbook of Clean Energy Systems; Yan, J., Ed.; John Wiley & Sons, Ltd: Chichester, UK, 2015; pp. 1–17. ISBN 978-1-118-99197-8. [Google Scholar]
- Hagos, F.Y.; Aziz, A.R.A.; Sulaiman, S.A. Trends of Syngas as a Fuel in Internal Combustion Engines. Adv. Mech. Eng. 2014, 6, 401587. [Google Scholar] [CrossRef]
- Hossain, A.K.; Davies, P.A. Pyrolysis Liquids and Gases as Alternative Fuels in Internal Combustion Engines—A Review. Renew. Sustain. Energy Rev. 2013, 21, 165–189. [Google Scholar] [CrossRef]
- Abidin, Z.; Jauhari, A.; Afriza, M.H. Potential Assessment and Development Concession Charcoal Wood in the Ranggang Luar Village, Takisung Sub District, Tanah Laut, South Kalimantan (in Bahasa Indonesia). J. Hutan Trop. 2018, 6, 108–115. [Google Scholar] [CrossRef]
- Sulistyo, J.; Marsoem, S.N.; Kholik, A.; Wibowo, M.N. Proses Pengarangan Dari Tungku/Dapur Pengarang Konvensional Dan Permanen Di Wonosari, Gunungkidul. In Proceedings of the Proseding Seminar Nasional Masyarakat Peneliti Kayu Indonesia XX; MAPEKI (Masyarakat Peneliti Kayu Indonesia): Bali, Indonesia, 2017; pp. 206–216. [Google Scholar]
- Tirono, M.; Sabit, A. Efek Suhu Pada Proses Pengarangan Terhadap Nilai Kalor Arang Tempurung Kelapa (Coconut Shell Carchoal). J. Neutrino 2011, 3, 143–152. [Google Scholar]
- Salim, R. The Quality and Characteristics of Teak (Tectona grandis) Charcoal Made by Mixed Carbonisation in Drum Kiln (in Bahasa Indonesia). J. Ris. Ind. Has. Hutan 2016, 8, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Iskandar, H.; Santosa, K.D. Panduan Singkat Cara Pembuatan Arang Kayu Alternatif Pemanfaatan Limbah Kayu Oleh Masyarakat; CIFOR (Center for International Forestry Research): Bogor, Indonesia, 2005; ISBN 979-3361-85-9. [Google Scholar]
- Rochmayanto, Y. The Potency of Stump of Acacia crassicarpa and Economic Utilization as the Raw Materials Charcoal Resources. J. Penelit. Hutan Tanam. 2012, 9, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Yandri, P. Consumer Preferences for Coconut Shell Charcoal in Suburban Indonesia. Int. Res. J. Bus. Stud. 2013, VI, 121–132. [Google Scholar] [CrossRef] [Green Version]
- World Integrated Trade Solution, (WITS). Indonesia Wood; Charcoal (Including Shell or Nut Charcoal), Whether or Not Agglomerated Exports by Country in 2019. Available online: https://wits.worldbank.org/trade/comtrade/en/country/IDN/year/2019/tradeflow/Exports/partner/ALL/product/440200 (accessed on 11 February 2021).
- Zion Market Research. Global Biochar Market Size Expected to Reach $585.0 Million by 2020. Available online: http://www.globenewswire.com/news-release/2017/06/06/1008630/0/en/Global-Biochar-Market-Size-Expected-to-Reach-585-0-Million-by-2020.html (accessed on 24 February 2021).
- Acumen Research and Consulting. USD 15 Mn Biochar Market Size Expected to Reach between 2014–2023 Says Acumen Research and Consulting Experts. Available online: http://www.globenewswire.com/news-release/2017/11/29/1210264/0/en/USD-15-Mn-Biochar-Market-Size-Expected-to-Reach-between-2014-2023-Says-Acumen-Research-and-Consulting-Experts.html (accessed on 24 February 2021).
- IMARC Group. Biochar Market Size, Share, Price Trends and Forecast 2020–2025. Available online: https://www.imarcgroup.com/biochar-market (accessed on 24 February 2021).
- Grand View Research Biochar Market Size Worth $3.1 Billion By 2025, CAGR: 13.2%. Available online: https://www.grandviewresearch.com/press-release/global-biochar-market (accessed on 24 February 2021).
- Chen, W.; Meng, J.; Han, X.; Lan, Y.; Zhang, W. Past, Present, and Future of Biochar. Biochar 2019, 1, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Scholz, S.B.; Sembres, T.; Roberts, K.; Whitman, T.; Wilson, K.; Lehmann, J. Biochar Systems for Smallholders in Developing Countries: Leveraging Current Knowledge and Exploring Future Potential for Climate-Smart Agriculture; The World Bank: Washington, DC, USA, 2014; ISBN 978-0-8213-9525-7. [Google Scholar]
- Wu, S.; Zhang, Y.; Tan, Q.; Sun, X.; Wei, W.; Hu, C. Biochar Is Superior to Lime in Improving Acidic Soil Properties and Fruit Quality of Satsuma Mandarin. Sci. Total Environ. 2020, 714, 136722. [Google Scholar] [CrossRef] [PubMed]
- Ippolito, J.A.; Cui, L.; Novak, J.M.; Johnson, M.G. Biochar for Mine-Land Reclamation. In Biochar from Biomass and Waste; Elsevier: Amsterdam, The Netherlands, 2019; pp. 75–90. ISBN 978-0-12-811729-3. [Google Scholar]
- Liu, J. The Application of Biochar as a Soil Amendment in Land Reclamation. Master’s Thesis, University of Alberta, Alberta, AB, Canada, 2015. [Google Scholar]
- Maftu’ah, E.; Nursyamsi, D. Effect of Biochar on Peat Soil Fertility and NPK Uptake by Corn. Agrivita J. Agric. Sci. 2019, 41, 64–73. [Google Scholar] [CrossRef]
- Norwegian Geotechnical Institute. Biochar on Acidic Agricultural Lands in Indonesia and Malaysia; Norwegian Research Council: Oslo, Norway, 2014.
- Berek, A.K. The Potential of Biochar as an Acid Soil Amendment to Support Indonesian Food and Energy Security—A Review. Pertanika J. Trop. Agric. Sci. 2019, 42, 745–759. [Google Scholar]
- Juhrian, J.; Yusran, F.H.; Wahdah, R.; Priatmadi, B.J. The Effect of Biochar, Lime, and Compost on The Properties of Acid Sulphate Soil. J. Wetl. Environ. Manag. 2020, 8, 129–140. [Google Scholar] [CrossRef]
- Sukarman, S.; Gani, R.A.; Asmarhansyah, A. Tin Mining Process and Its Effects on Soils in Bangka Belitung Islands Province, Indonesia. Sains Tanah J. Soil Sci. Agroclimatol. 2020, 17, 180. [Google Scholar] [CrossRef]
- President of The Republic of Indonesia. Regulation of The Government of Indonesia No.12/2014 on the Types and Rates of Non-Tax State Revenues Applicable at the Indonesia Ministry of Forestry; Minister of Justice and Human Rights, The Republic of Indonesia: Jakarta, Indonesia, 2014.
- Jirka, S.; Tomlinson, T. State of the Biochar Industry 2014: A Survey of Commercial Activity in the Biochar Sector; International Biochar Initiative (IBI): New York, NY, USA, 2015; p. 77. [Google Scholar]
Location | Efficiency | Total Waste | Remarks |
---|---|---|---|
West Papua (improved method) | 86.2% | 13.8% | Defect wood (65.1%), broken wood (23.3%), and timber waste (11.6%) |
Central Kalimantan, East Kalimantan, and Jambi (improved method) | 77.8% | 22.2% | Meranti wood. Waste is an average value and no significant difference in the three areas. The waste consists of 9% defected wood and 12.2% trimming and stumps. |
Java | 79.6 | 20.4 | Teakwood. Residues consist of the broken stem, short dimension, branch and twig, stump, and irregular wood shape |
Kalimantan | 91.4% | 8.6 | Logging residue 1.4 m3/tree with 0.4 m3/tree (25.6%) is of good quality |
Wood Properties | Unit | Meranti | Teakwood | Rubberwood | Sengon |
---|---|---|---|---|---|
Physical properties: | |||||
Air-dry density | g/cm3 | 0.85 | 0.66 | 0.60 | 0.46 |
Specific grafity | 0.48 | 0.66 | 0.59 | 0.38 | |
Chemical properties: | |||||
Hemicellulose | % | 26.0 | 17.0 | 18.3 | 25.9 |
Cellulose | % | 40.3 | 34.0 | 34.6 | 51.9 |
Lignin | % | 38.2 | 30.0 | 25.5 | 22.2 |
Heating value (HHV) | MJ/kg | 19.6 | 20.2 | 19.4 | 17.8 |
Ash | %TS | 1.2 | 2.10 | 2.4 | 1.59 |
Fixed carbon | %TS | 22.7 | 12.69 | 16.8 | n.a |
Volatile solid | %TS | 78.61 | 80.29 | 74.4 | 90.01 |
C | % | 42.10 | 51.6 | 45.5 | 52.5 |
H | % | 7.88 | 6.0 | 5.8 | 6.0 |
O | % | 49.75 | 42.2 | 39.68 | 42.3 |
N | % | 0.24 | 0.26 | 0.20 | 0.2 |
S | % | 0.03 | 0.01 | 0.02 | n.a |
Industry | Efficiency | Waste | Remarks |
---|---|---|---|
Sawn timber | 50.0% | 50.0% | 15% sawdust, 25% cut, 10% cut edge |
Sawmill, Jayapura | 57.8% | 42.2% | Sawdust 16.0%, shaving 13.5%, slabs 11.6%, and cross cuts 1.1%. |
Sawmill, Java | 49.9–50.7% | 49.3–50.1% | Slabs 23.5–24.1%, sawdust 13.5–14.2%, and cutting edge 12.0–14.2%. |
Sawmill, South Kalimantan | 49.9–50.7% | 40.8% | Slabs (22.3%), wood chips (9.4%), and sawdust (8.8%). |
Plywood, South Kalimantan | 54.8% | 45.2% | Log pieces (3.7%), log peel (18.3%), wet veneers (12.2%), dry veneers (11.5%), plywood cut edges (3.9%), sawdust (2.2%), and plywood dust (3.1%). |
Sawmill, PT Inhutani II Manokwari (Papua) | 52.4% | 47.6% | Matoa wood (Pometia spp.). The waste consists of sawdust 5.5%, slabs 35.6%, and large pieces 6.5%. |
Sawmill, IPKH PT Prabu Alaska, Fakfak (Papua) | 66.2% | 33.8% | Besi wood (Instia sp.). The waste consists of sawdust 4.1%, big slabs 29.0%, and cut edge 0.4%. |
Sawmill, Jepara (Central Java) | 70–80% | 20–30% | Teakwood, mahogany (Swietenia sp.), trembesi (Samanea saman), and mango (Mangifera sp.). |
Parameter | Slow | Intermediate | Fast |
---|---|---|---|
Temperature | 400–500 °C | ~500 °C | 300–1000 °C |
Heating rate | 1 °C/s | 1–1000 °C/s | >1000 °C/s |
Residence time | 10–2000 min | 5–30 s | 1–2 s |
Pressure | 1 atm | 1 atm | 1 atm |
Particle size | 5–50 mm | - | <1 |
Biochar yield | 35% | 25% | 12–25% |
Bio-oil | 25–30% | 40–50% | 60–75% |
Gas | 25–35% | 25% | 13–20% |
Carbon in biochar | 50–95% | 66–74% | 64–90% |
Parameter | Meranti | Teak | Rubber | Sengon | ||||
---|---|---|---|---|---|---|---|---|
B.oil | B.char | B.oil | B.char | B.oil | B.char | B.oil | B.char | |
Proximate | ||||||||
Moisture (wt.%) | n.a | 2.9 | 13.8 | 2.12 | n.a | 2.9 | n.a | n.a |
Ash (%DS) | n.a | 3.0 | n.a | 10.89 | n.a | 4.9 | n.a | n.a |
Volatile matter (%) | n.a | 42.5 | n.a | 17.88 | n.a | 50.6 | n.a | n.a |
Fixed carbon (%) | n.a | 51.6 | n.a | 69.11 | n.a | 41.6 | n.a | n.a |
Elemental analysis | ||||||||
C | 15.7 | 84.9 | 65.08 | 75.51 | 15.7 | 77.2 | n.a | 72.4 |
H | 8.2 | 2.3 | 7.19 | 3.17 | 8.2 | 2.6 | n.a | 5.1 |
O | 76.0 | 12.4 | 26.84 | 20.09 | 69.2 | 15.2 | n.a | 21.9 |
N | 0.1 | 0.4 | 0.89 | 1.23 | 0.1 | 0.4 | n.a | 0.1 |
Calorific value (MJ/kg) | 6.7 | 28.5 | 23.41 | 27.51 | 7.4 | 29.1 | n.a | 24.55 |
Property | Unit | Pine [92,93] | #2 Diesel [59,94] | HFO [92,95] | LFO [92,96] |
---|---|---|---|---|---|
Density | kg/L | 1.21 | 0.83 | 0.9–1.02 | 0.89 |
HHV | MJ/kg | 16.9 | 50.02 | 40 | 43.02 |
Viscosity | cSt | 17 | 2.39 | 140–380 | 6 |
Pour point | °C | −36 | −6 | >15 | −15 |
Coke residue | wt.% | 16 | 0.19 | 12.2 | 9 |
Flash point | °C | 53 | 60 | >65 | 60 |
Water | wt.% | 23.9 | - | <7 | 0.025 |
C | dwt.% | 40.6 | 86 | 85 | 86.0 |
H | dwt.% | 7.6 | 11.1 | 11 | 13.6 |
O | dwt.% | 51.7 | 0 | 1.0 | 0 |
N | dwt.% | <0.1 | 1 | 0.3 | 0.2 |
S | dwt.% | 0.01 | 0.80 | 1 | <0.18 |
Cl | dwt.% | 0.006 | - | - | - |
Ash | wt.% | 0.03 | - | 0.1 | 0.01 |
K and Na | ppm | 34 | - | - | <0.02 |
Chemicals | Description |
---|---|
Physical methods: | |
Emulsion | Produce homogenous emulsions by using the proper emulsifier. Diesel fuel and biodiesel or their mixtures can significantly improve fuel properties of bio-oil and the resulted emulsion work in diesel engines with lower emissions [105]. An optimal emulsion of oil palm biomass-based bio-oil and diesel fuel is achieved with a pH of 3.29, mass density of 0.86 g/cm3, and calorific value of 42.19 MJ/kg [106]. High energy consumption is one of the disadvantages of this method [107]. |
Filtration | Improve bio-oil quality (viscosity, solids content, ash content, alkali content, and acidity) by using granular filters. The bio-oil yield decreases with increasing granular size, mass flow rate, and number of filtration runs. The bio-oil quality (solids content, ash content, initial viscosity, viscosity change, and aging rate) is enhanced by the hot vapor granular filtration [108]. During filtration, 10–30% of bio-oil yield is lost due to filter plugging [109]. |
Solvent addition | Reduce bio-oil viscosity and improve its stability using a solvent. Methanol is found to be an effective additive to improve bio-oil viscosity, stability, and heating value [110], as well as its storability [111]. |
Distillation | Distillation is a common method of physical refining of bio-oil. The process separates different products. McVey et al. (2020) reported a continuous flash distillation to fractionate BTX (Benzene, Toluene, xylene) from partially deoxygenated bio-oil. For a flow rate of 2 mL/min, the extraction efficiency varies from 16.21% at a temperature of 120 °C to 50.81% at a temperature of 140 °C [112]. |
Chemical methods: | |
Aqueous phase reforming | Due to the high water content in the bio-oil, aqueous phase reforming (APR) is an optimistic choice to produce H2 and alkane from biomass. Vispute and Huber (2010) reported APR with a 1 wt.% Pt/Al2O3 catalyst at 265 °C of the hydrogenated bio-oil to produce hydrogen with a selectivity of 60% [113]. |
Mild cracking | To avoid severe catalyst deactivation as occurred with deep cracking of bio-oil, mild cracking is proposed with the objective to reduce coke and gas formation by partially removing oxygen from the bio-oil [114]. Bio-oil macromolecules are cracked into smaller molecules with the presence of catalysts. The common catalyst is zeolite, but ZnO is found to be a promising catalyst resulting more stable liquid better than the non-catalytic bio-oil [115]. |
Esterification | The process removes acids and produces esters by reacting bio-oil and alcohols with the presence of catalysts. Methanol is commonly used for esterification due to its high reactivity and less expensive. HZSM-5 and aluminum silicate are among the preferred catalysts for bio-oil esterification [107]. |
Catalytic methods: | |
Hydrogenation | The aim of hydrogenation is to improve bio-oil quality and stability by reducing reactive compounds, such as organic acids and aldehydes [116]. Hydrogenation is performed with a hydrogen atmosphere at high pressure and temperature. During hydrogenation, O in the bio-oil is removed in the form of H2O or CO2, producing high-quality oil products [95]. After upgrading, bio-oil has a higher pH value, water content, and H element, while the viscosity decreases [117]. Catalyst deactivation is a problem due to coke formation [118]. |
Hydrodeoxygenation | Hydrodeoxygenation (HDO) is a promising method to upgrade bio-oil into high-quality fuels comparable to conventional fossil fuels [119]. During the HDO process, the O element in oxygenated chemical groups is removed under high hydrogen pressure (507–4200 psi) and temperature between 300 and 400 °C [120]. The common catalysts for this process are Ni-Mo or Co-Mo catalysts. |
Catalytic cracking | Bio-oil macromolecules are cracked into smaller molecules with the presence of catalysts. Schmitt et al. (2018) reported the effectivity of Ni-based catalyst working at 325 °C and 80 bar with 42% of the oxygen removal [121]. Traditional catalytic cracking is performed by thermally treating bio-oil in a tubular fixed bed reactor under hydrogen flow at a higher temperature with high pressure. Recent development combines catalytic pyrolysis and catalytic cracking as a superior technology to improve the yield and the quality of bio-oil. The common catalyst in this reaction is zeolite, while the bottleneck for sustainable application of catalysts is the coke deposition of this catalyst [107]. |
Steam reforming | The process reacts bio-oil with high-temperature steam with the purposes of steam reforming process is to produce syngas (H2 and CO) [122,123]. Pan et al. (2006) reported that catalytic steam reforming of the bio-oil over a metal-doped catalyst of C12A7-Mg in the fixed-bed continuous flow reactor obtain hydrogen yield of 80% at 750 °C and the maximum carbon conversion close to 95% under the optimal condition [124]. Catalyst deactivation by coke deposition is a serious problem for the sustainable application of this process [107]. |
No. | Negara Tujuan | Volume (ton) | Value (Million USD) | Value (USD/kg) |
---|---|---|---|---|
1. | Saudi Arabia | 86,718 | 47.3 | 0.55 |
2. | Korea, Republic | 46,376 | 24.6 | 0.53 |
3. | Iraq | 22,628 | 20.2 | 0.89 |
4. | China | 56,482 | 17.5 | 0.31 |
5. | Japan | 27,835 | 17.2 | 0.62 |
6. | Lebanon | 12,326 | 10.7 | 0.87 |
7. | Malaysia | 44,550 | 10.6 | 0.24 |
8. | Netherlands | 10,389 | 10.5 | 1.01 |
9. | Turkey | 18,170 | 10.4 | 0.57 |
10. | Brazil | 8757 | 9.1 | 1.04 |
11. | Others | 192,900 | 102.0 | 0.53 |
TOTAL | 527,131 | 280.1 | 0.66 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haryanto, A.; Hidayat, W.; Hasanudin, U.; Iryani, D.A.; Kim, S.; Lee, S.; Yoo, J. Valorization of Indonesian Wood Wastes through Pyrolysis: A Review. Energies 2021, 14, 1407. https://doi.org/10.3390/en14051407
Haryanto A, Hidayat W, Hasanudin U, Iryani DA, Kim S, Lee S, Yoo J. Valorization of Indonesian Wood Wastes through Pyrolysis: A Review. Energies. 2021; 14(5):1407. https://doi.org/10.3390/en14051407
Chicago/Turabian StyleHaryanto, Agus, Wahyu Hidayat, Udin Hasanudin, Dewi Agustina Iryani, Sangdo Kim, Sihyun Lee, and Jiho Yoo. 2021. "Valorization of Indonesian Wood Wastes through Pyrolysis: A Review" Energies 14, no. 5: 1407. https://doi.org/10.3390/en14051407
APA StyleHaryanto, A., Hidayat, W., Hasanudin, U., Iryani, D. A., Kim, S., Lee, S., & Yoo, J. (2021). Valorization of Indonesian Wood Wastes through Pyrolysis: A Review. Energies, 14(5), 1407. https://doi.org/10.3390/en14051407