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Abstract: This paper presents an empirical study on the impact of maintenance function on more
sustainable manufacturing processes. The work methodology comprises four stages. At first, ten
factors of maintenance activities from a sustainable manufacturing point of view were identified.
Then, in the second stage, the matrix of crossed impact multiplications applied to a classification
(MICMAC) was carried out to categorize these factors based on their influence and dependence
values. In the third stage, the criteria for evaluation of maintenance factors were defined, then the
fuzzy analytic hierarchy process (F-AHP) was applied to determine their relative weights. In the last
stage, the results of MICMAC and F-AHP analyses were used as inputs for the fuzzy technique for
order preference by similarity to ideal solution (F-TOPIS) to generate aggregate scores and selection of
the most important maintenance factors that have an impact on sustainable manufacturing processes.
A numerical example is provided to demonstrate the applicability of the approach. It was observed
that factors “Implementation of preventive and prognostic service strategies”, “The usage of M&O
data collection and processing systems”, and “Modernization of machines and devices” are the major
factors that support the realization of sustainable manufacturing process challenges.

Keywords: sustainable maintenance; maintenance factors; maintenance hybrid analysis; MICMAC
analysis; fuzzy AHP; fuzzy TOPSIS

1. Introduction

In the area of manufacturing management, researchers and practitioners are facing new
challenges, namely, the Sustainable Development Goals. Sustainable Development Goals
are an agenda created by the United Nations [1] that tackle the sustainable environment
issues for the future world.

In the manufacturing industry, the concept of sustainability has been adopted and is
known as sustainable manufacturing or sustainable production. Sustainable manufacturing
is defined in many ways, i.e., as a paradigm set of technologies or systems. According
to the literature review conducted by [2], the definition provided by the US Department
of Commerce in 2008: “the creation of products through processes that minimize both
negative environmental impacts and consumption of energy and natural resources, being
also safe for employees, communities, consumers and economically viable” is mostly used.
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The goal of sustainable manufacturing is to obtain a balance between environmental,
social, and economic dimensions to meet stakeholder requirements [3] and achieve a
competitive advantage [4]. In [5], the authors believe that apart from triple bottom line
(TBL) factors, technology, education, ethics, and responsibility are the key factors enabling
sustainable manufacturing. According to [6], six main aspects of sustainable production
are energy and material use (resources), natural environment, social justice and community
development, economic performance, workers, and products.

Improvement in sustainable manufacturing performance requires searching for oppor-
tunities in order to reduce waste and add value from the perspective of all sustainability
dimensions [3,4,6].

According to [7–10], the success of sustainable manufacturing processes in improving
economic, social and environmental performance can be achieved through their integration
with maintenance activities. Reference [7] pointed out that “maintenance as part of the
circular economy can be considered, first, as an enabling system to sustain the artefact
throughout its life cycle, then as a key tool to keep the regeneration potential of this artefact,
and finally, as a target system that must be sustainable”. According to [8] “The maintenance
activity is by nature an important lever for action on the sustainability of production
systems”. Recently, [9] has pointed out that “organisations must become more aware
of the importance of addressing maintenance as a set of processes that (1) must sustain
equipment/assets during their operation in order to guarantee compliant production
processes for manufactured products and reduce industrial impacts on the economy, society
and the surrounding environment and (2) must be a sustainable business function in order
to limit the impacts generated during maintenance activities”.

The review of the literature from the recent years shows that the issue of the relation-
ship between maintenance management and the overall efficiency of production systems
in terms of sustainable development is increasingly addressed. Generally, this research is
conducted primarily in two areas.

The first area of the research focuses on the development of measures and indicators
for the assessment of sustainable maintenance as well as the design of assessment mod-
els [11–13]. From the scientific point of view, the search for new measures and indicators
expands the scope of our knowledge about the maintenance impact on the implementa-
tion of sustainable manufacturing challenges. From the practical point of view, it shows
not only a maintenance impact on sustainability, but it also creates a new framework for
maintenance goals and the method for their evaluation. The works in the first area analyze
impacts and dependencies between measures and indicators and what may constitute
the basis for building action scenarios and determining priorities [13]. However, factors
influencing these actions are not analyzed.

The next area of the research is focused on the impact and contributions of mainte-
nance functions to more sustainable operations in manufacturing companies. These studies
are based on interviews in which respondents (managers and employees of maintenance;
production; human resources (HR); and safety, health, and environment (SHE) depart-
ments) explain their companies’ achievements in reducing the use of resources (especially
hazardous or harmful materials, water, and energy), the emitted pollution, and the gener-
ated waste in minimizing environmental risks, etc. [9,10]. These studies present the impacts
and contributions of maintenance functions on more sustainable manufacturing operations,
challenges faced by maintenance managers as well as the factors that should be taken into
account in order to strengthen maintenance activities, and thus meet the requirements set
by company managers. Nevertheless, none of the analyzed studies in this area have been
conducted in-depth considering the factors influencing the maintenance capability/ability
to meet the challenges of sustainable production. However, the need for such research
is emphasized.

A certain research gap between the two areas of research is observed. The research gap
concerns the identification of maintenance factors significantly influencing the implementa-
tion of sustainable manufacturing challenges, determining the relationships between them
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and recommending the priorities of actions aimed at increasing the sustainability results.
The research in this area was carried out by [14,15]. In the first study, maintenance factors
from a tactical perspective were identified, and on the basis of the research conducted
in 58 companies, their importance was assessed. Then, using the interpretive structural
modelling (ISM) and matrix of crossed impact multiplications applied to a classification
(MICMAC) methods, the research in a company was performed, and the relationships
between the factors were determined. In the second paper, based on the literature research,
14 factors out of maintenance factors from a strategic perspective were identified. Then, ISM
and fuzzy MICMAC were applied in order to develop structural relationships among the
factors and categorize these factors based on their driving and dependence values. Finally,
with the technique for ordering preferences by similarity to an ideal solution (TOPSIS)
approach, the factors were ranked based on their importance from the strategy perspective
of maintenance management. Despite its significant cognitive value, the study does not
specify any elements significant for the approach, including the criteria for ranking factors,
which makes it difficult to formulate an interpretation and a significant conclusion.

The maintenance contribution in the realization of sustainability challenges is de-
pendent on the operational and business context of a company; thus, companies need
to identify factors affecting sustainability performance based on their specific processes,
business needs, and goals. Therefore, in order to support maintenance decision-makers in
attaining sustainability and to point out the way of maintenance function contribution to
sustainable manufacturing, main maintenance factors affecting sustainable manufacturing
should be identified and analyzed. The factors that are appropriate to their operational
context should be selected.

In this context, the research challenges in the area under consideration concern mul-
ticriteria decision-making problems. One means of dealing with these problems are the
MCDM (multi-criteria decision-making) models. These methods have been extensively
used in various studies in maintenance management [16,17]. Decision making in the se-
lection of maintenance factors influencing sustainable production is very complex due
to many factors related to the industry, company-specific processes, needs, and business
goals. In order to choose the most appropriate maintenance factors, the MICMAC analysis
in this research was proposed. MICMAC allows one to determine interactions between
factors and by grouping factors into clusters it helps to reduce the size of some complex
problems, making them more manageable and revealing hidden relationships between
various considered factors. After the most important maintenance factors were identified,
the fuzzy AHP (analytical hierarchy process) method and fuzzy TOPSIS (technique for
order preference by similarity to ideal solution) were used to determine the right judgment
of maintenance factors affecting sustainable manufacturing based on the company specific
requirements. In this respect, F-AHP can be very useful in involving several decision-
makers with multiple conflicting criteria to reach a consensus in the decision-making
process. On the other side, the F-TOPSIS technique is used to calculate alternatives ratings.
The choice of the TOPSIS is due to its capability of ranking a wide number of alternatives.
This approach can be considered as a driver in implementing the alternative that represents
the best trade-off according to the various considered criteria.

Considering the above, the aim of this paper is to analyze the maintenance factors
influencing the implementation of sustainable manufacturing challenges from a tactical
perspective, to determine the relationships between them, and to rank them taking into ac-
count the specificity of an operational context of an enterprise. This paper is a continuation
of the previously undertaken work presented in [14].

Given the purpose above, the paper is organized as follows (Figure 1): Section 2
presents an overview of the maintenance in the sustainable manufacturing environment;
Section 3 describes the proposed research methodology, Section 4 describes the main-
tenance factors affecting sustainable manufacturing and presents the discussion of the
results obtained from applying the proposed methodology in the company, and Section 5
concludes the paper.
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2. Maintenance in Sustainable Manufacturing Environment

By definition, maintenance is the “combination of all technical, administrative and
managerial actions during the life cycle of an item intended to retain it, or restore it to a state
in which it can perform the required function” [18]. From this definition, it follows that
maintenance is a complex set of activities that cover the entire structure and organization
of a manufacturing company [19].

In recent years, the importance of sustainability issues in maintenance management
has been recognized [9,10,13,20]. Yan [20] stressed that “sustainability-based maintenance
management would be one of the most important strategies for sustainable development”.
Today, maintenance is more than just repairing machines and devices. It helps the man-
ufacturing companies to achieve their sustainability objectives and helps in increasing
their competitiveness through improved availability, quality, and overall ability to meet
demand. According to Takata [21], the aim of maintenance is to “maximise value generated
by operations rather than minimising the maintenance cost”.

According to [18], maintenance activities must be considered in all stages of the life
cycle of the machine. The role of maintenance in the phases of the product lifecycle leads
to the availability and reliability of equipment, improves environmental efficiency, and
achieves safety [22]. From a practical point of view, each stage of machines and devices life
cycle should be supported by maintenance from machine design to end-of-life [10,22–25].
According to [26], adopting a life cycle perspective is important for cascading business
sustainability policies to production assets.

On the other hand, the contribution of maintenance to a more sustainable manu-
facturing system can be seen from the perspective of the TBL approach, i.e., economic,
environmental, and social issues.

Regarding the economic dimension of TBL, many studies indicate improvement re-
garding efficiency and effectiveness through a new way of maintenance process realization
and resource utilization. Research conducted by [27] pointed out that in the life cycle cost
breakdown structure of a plant, operating and maintenance costs account for more than
60%. By providing information regarding historical reliability, expected useful life, failure
rates, and training maintenance personnel, maintenance activities could bring reductions in
operating costs, productivity improvements, higher reliability, and contributions to product
competitiveness [9,10]. This would indirectly increase the company’s overall profits and
enable investments in new equipment or new technologies.

Regarding the environmental dimension, the main aspect is the resource (water, air,
energy, materials) efficiency, air emission reductions, and land conservation; depending
on a specific operational context these would require the involvement of a maintenance
function. Energy consumption and efficiency aspects have been more often addressed in
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maintenance literature [10,28–31]. A maintenance department has no formal responsibilities
over energy management. Collaboration with an energy management department and the
use of an energy consumption analysis as a technique for the condition-based maintenance,
can support the company in better energy management. Ill-defined maintenance practices
for manufacturing machinery lead to hazardous emissions [32], production waste due
to system malfunctions [9,10], ineffective resource consumption, and waste of the stored
materials [9,10,32]. According to [33], “In mitigating negative effects in the environment,
current maintenance practice must be considered, not just for the reduction of its own
direct impact but also for its potential contribution to a more sustainable lifecycle for
the manufacturing operation, its products and related services”. A continuous focus on
reducing waste in maintenance activities; minimizing material, water, and energy usage;
and avoiding hazardous substance usage results in lowering costs, improving maintenance
processes, and increasing the maintenance quality.

Lastly, according to the impact on the social dimension, literature links to plant safety
and human safety as well as communication and collaboration with other company func-
tions as a main means to avoid undesired failures and minimize the consequences of
failures [9,10,14,34]. Maintenance work is usually critical to operator’s health; therefore,
the maintenance department should work toward the creation of a safe working envi-
ronment [34]. According to [10,14], good communication and cooperation between the
maintenance department and the Research and Development (R&D) departments as well
as the quality and production departments lead to a better understanding of the role
of maintenance in a company. Maintenance personnel are able to propose suggestions
of a product design, specific modifications to the equipment, and contributions to the
preparation of specifications for the equipment acquisition. A good relationship with HR
can be developed with adequate training for the maintenance staff. The next issue of
the social dimension of sustainability is related to relationships and the fulfilment of the
expectations of external stakeholders. Important external maintenance stakeholders are:
the equipment and spare parts suppliers, service providers, certification bodies as well as
the local community. According to [35] in maintenance management, “social implications”
should be made “mandatory” instead of “if applicable”.

The transition to sustainable maintenance requires changes in the way decisions are
made, from a traditional approach based primarily on financial aspects to a more holistic
approach that includes social and environmental aspects [13]. At the same time, as with any
activity, this change should be made as efficiently as possible, with efforts and resources
directed to where they will have the greatest impact. Therefore, an important step for
any company to support a sustainable manufacturing strategy for the successful improve-
ment of a maintenance system is to identify the critical success factors of maintenance
management which significantly affect the sustainability of this activity

3. Research Methodology

The research methodology consists of four stages. The first stage describes the main-
tenance factors affecting sustainable manufacturing from a tactical point of view based
on [14]. Then, in the second stage, the MICMAC method was used to analyze these factors.
The MICMAC method developed by Duperrin and Godet [36] allowed the determination
of direct and indirect interactions between factors based on a defined direct impact matrix
developed by experts. Moreover, the method, using the property of matrix multiplication,
allowed the identification of indirect influences that are difficult to identify by experts.
Additionally, potential influences that may arise between the variables in the future were
taken into account. After that, the maintenance factors based on their influence and depen-
dence power were grouped into four clusters. By grouping the factors into clusters, it was
possible to decrease the size of a complex problem, to reduce the number of factors, and
thus to identify the key maintenance factors affecting sustainable manufacturing, which
were the input for the F-TOPSIS method. Even if widely used, the MICMAC method has
some drawbacks [14,15,37,38]. Firstly, although the decisions were made by agreement,
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the information that was used in the analysis came from different experts with different
knowledge and experience, so the information was subjective and imprecise. Secondly, the
MICMAC method based on impact and relationship values identified the key maintenance
factors but did not rank them based on their relative importance from the sustainability
point of view.

One means of dealing with the problem of ranking the maintenance factors based
on their relative importance from the sustainability point of view is the MCDM models.
These methods are extensively used in various studies in the maintenance management
area [16,17]. Our proposed methodology integrates two methods. Firstly (the third stage of
our methodology), the fuzzy analytic hierarchy process (F-AHP) is used to determine the
relative weights of the evaluation criteria of the maintenance factors. Secondly (the fourth
stage of our methodology), the fuzzy TOPSIS method (F-TOPSIS) is applied to rank the
maintenance factors.

When assessing the maintenance factors relevant to sustainability, various criteria and
their weights play an important role in the decision-making process. Thus, the criteria
for assessing maintenance factors should be defined at first, and then their weight should
be determined. There is a variety of criteria that deserve consideration when evaluating
maintenance factors from the point of view of sustainable manufacturing. Each company,
based on its own long-term strategy, business needs and goals, and their specific pro-
cesses, should define the criteria by which maintenance factors will be ranked. In order
to choose these criteria, a company may use the criteria developed by [11–13]. After the
assessment, the maintenance factors criteria were defined, and the fuzzy AHP for obtaining
the criteria’s relative weights was used. The F-AHP is an extension of the classic AHP
method, developed by Saaty [39]. According to the literature survey conducted by the
authors, this method is commonly used for calculating criteria weights and it has been
successfully implemented in various areas [40–42]. The additional advantages of F-AHP
are the ability to analyze multiple criteria, qualitative and quantitative data, and that it is
easy to understand and use.

In the fourth stage of the methodology, the results of the F-AHP (criteria relative
weights) and MICMAC (key maintenance factors) analyses are used as the input for the
F-TOPIS method in order to rank the maintenance factors. The F-TOPSIS is an extension of
the classical TOPSIS method developed by [43], regarding the principle that the chosen
alternative should have the shortest distance from the ideal solution and the longest
distance from the negative ideal solution. The ideal solution is a solution that maximizes
the benefit criteria and minimizes the cost criteria. In the F-TOPSIS decision matrix, each
alternative (factor) was assessed within the considered evaluation criteria, and, finally,
the rank of the maintenance factors affecting sustainable manufacturing was determined.
After that, a sensitivity analysis was performed. Such analysis tests the suitability of the
model. Similar to the classic method, F-TOPSIS has been successfully applied in many
areas [44,45].

The brief descriptions of the MICMAC, F-AHP, and F-TOPSIS methods used in this
research are presented in Sections 3.1–3.3, respectively.

Because the maintenance system is an open system and its results depend on the con-
stant impact of changing environmental conditions, the weighting of the assessment criteria
(F-AHP) and ranking maintenance factors (F-TOPIS) cannot be carried out in isolation from
its stakeholders. Maintenance stakeholders in an enterprise are different organizational
units, e.g., a production department, quality, occupational health and safety, environment,
company manager, etc. Each maintenance stakeholder is likely to have different viewpoints
representing the perception of dependence between maintenance factors and assessment
criteria and their importance, as well as the rank of maintenance factors.

In order to ensure that the rank of maintenance factors being developed meets the
needs and expectations of all stakeholders, it is critical to understand different view-
points. Therefore, in order to determine the dependence between the maintenance factors
(MICMAC analysis) and to determine the importance of the assessment criteria (F-AHP),
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maintenance stakeholders (representatives from various departments of a company) should
work together. Working in one group and conducting discussions will enable experts from
the company to understand the conditions of the functioning of a maintenance system from
various perspectives, and it will prepare them to the second stage of research. In the second
stage (F-TOPSIS), in order to rank maintenance factors, experts from a company should
work in teams which represent different company departments (e.g., production, mainte-
nance, SHE). This allows to identify differences on the perception of maintenance factors
from the defined criteria. These recommendations were used in the research conducted in
the case study company (Sections 4.2–4.4).

Because experts have different levels of cognitive vagueness (different experience and
knowledge), linguistic variables should be used to determine the degree of the importance
of assessment criteria and maintenance sustainability. Each expert assesses the criteria/rank
of the factors by selecting appropriate “words” from a linguistic scale according to their
expertise and experience. The obtained linguistic assessments of the criteria are converted
into fuzzy values [46–48]. For this purpose, an appropriate membership function should
be built, representing the adopted scale of linguistic assessments. The membership degree
of the fuzzy set can be described with triangular, trapezoidal, Gaussian, and sigmoidal
functions, or can be formed with different functions. Both triangular and trapezoidal fuzzy
numbers could be used in this research. In the current research, triangular fuzzy numbers
were used to transform linguistic terms into fuzzy values. Triangular fuzzy numbers are
useful in promoting representation and information processing in a fuzzy environment and
their computational simplicity [49,50]. According to the literature review [51], triangular
fuzzy numbers (TFN) are the most popular means of judgement representation used in
the research.

3.1. MICMAC Analysis

Basically, the MICMAC method is composed of the following steps [52]:
Step 1: Identify the variables. The variables can be identified by literature review,

expert opinion, or brainstorming.
Step 2: Construct the structural analysis matrix. The group of experts provide an

integer matrix M. Every cell aij of matrix M represents how variable i influences variable j.
For each pair of variables i and j, the following question should be answered: Does factor i
have a direct influence on factor j? If yes, is the influence small, medium, high, or potential?
The answer is [52]:

• 0 if there is no influence between i and j.
• 1 if there is a weak influence between i and j.
• 2 if there is a strong influence between i and j.
• 3 if there is a very strong influence between i and j.
• P if there is a potential influence between i and j.

All diagonal cells aij are equal to 0.
Step 3: Analyze the direct influence. The direct analysis evaluates the overall direct

influence DIi and direct dependence DPi of a variable in the system directly from the direct
matrix. The influence (driving power), DIi, and dependence power, DPi, are determined by
the following formula:

DIi =
n

∑
j=1

aij(i = 1, 2, 3 . . . , n) (1)

DPi =
n

∑
j=1

aji(i = 1, 2, 3 . . . , n) (2)

Step 4: Analyze the indirect influence. Indirect analysis evaluates the overall influence
and dependence of a variable through other variables. Indirect classification is obtained
after increasing the matrix power M (matrix multiplication M2 = M × M, M3 = M × M
× M, etc.) [52]. Algorithms used in MICMAC analyze the spread of interactions in the
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system through the connections and feedback loops linking individual factors. This allows
prioritizing them based on the number of lap settings and a loop length of 1, 2, . . . , n,
coming in and out of each factor. As a result, the hidden influences, which are difficult
for experts to define directly, are revealed. Usually, the classification is stable after 3, 4, or
5 degrees of multiplication [52].

Step 5: Assign the variables to the clusters. The MICMAC analysis classifies variables
into four clusters based on their driving power DIi and dependence power DPi [38]. Cluster
I consists of “Autonomous factors”, which have a weak driving power DIi and a weak
dependence power DPi. This means that the factor is relatively disconnected from the
system. Cluster II consists of “Dependence factors”, which have a strong DIi and a weak
DPi. This means the factor is primarily dependent on other factors. Cluster III consists of
“Linkage factors”, which have a strong DIi as well as a strong DPi. The connecting factors
are unstable and most influence for other. Cluster IV consists of “Independent/Driving
factors” that have a strong DIi but a weak DPi. These factors are the most important.

3.2. Fuzzy AHP

The procedure of building an F-AHP model follows establishing the comparison
matrix, aggregating multiple judgements, measuring the consistency, and defuzzfying the
fuzzy weights as follows [47,51]:

Step 1: Identify the relevant criteria. The assessment criteria can be identified with
the opinion of experts, brainstorming, or literature review.

Step 2: Establish the fuzzy pairwise comparison matrix. It is a fundamental step of
building an F-AHP model to establish the pairwise comparison matrix with the expert’s
judgement. Linguistic terms describe the relative importance of one criterion over another.
The mapping between the linguistic term and the fuzzy set must conform to a scale so that
the same judgement is produced. A triangular fuzzy number is the most popular means of
judgement representation. TFN is usually represented by three letters: l, m, and u. These
parameters, respectively, represent the minimum possible value, the median value, and the
maximum possible value (i.e., l < m < u) [50]. A fuzzy scale defined by a series of fuzzy
sets depicts the levels of linguistic terms, which links the verbal and numerical expressions.
According to [49], the commonly used fuzzy scales are the 5- and 9-level.

Step 3: Defuzzify each triangular fuzzy number in the pairwise comparison matrix
and calculate the consistency index. Using M Crisp (l + 4m + u)/6, each triangular fuzzy
number, M = (l, m, u) is converted to a crisp number. After that, the consistency of the
matrix is checked by the method in crisp AHP [45,46]. The consistency index for a matrix
is calculated according to equation:

CI =
(λmax − n)
(n− 1)

(3)

where (λmax) is the principal eigenvalue of the judgement matrix, and n is the order of the
judgement matrix. If the λmax is closer to n, the more consistent the judgments are. The
difference λmax − n is a measure of inconsistency (i.e., the perfect consistency refers to the
zero difference) [39]. To derive an appreciated interpretation of the CI index, different sizes
of matrices were developed. The calculation is performed by calculating CIs and CI for
each size of the matrix (i.e., referred to as an RCI—random consistency index) [39].

The consistency ratio (CR) is defined according to the equation:

CR =
CI

RCI
(4)

where if CR < 0.1 (or 10%), then the judgments are considered consistent.
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Step 4: Calculate the value of the fuzzy synthetic extent values. The fuzzy synthetic
extent value of the criteria is defined as:

Si =
m

∑
j=1

Mj
gi ⊗ [

n

∑
i=1

m

∑
j=1

Mj
gi]
−1

(5)

where Mj
gi (j = 1, 2, 3, . . . , n) are TFNs.

Step 5: Compute the degree of possibility of Mi ≥ MjV (Si ≥ Sj) according to the
equation:

Si ≥ Sj V
(
Si ≥ Sj

)
=


1, i f mi ≥ mj

ui−uj

(ui−mi)+(mj−lj)
, i f lj ≤ ui, i, j = 1, . . . , n; i 6= j)

0, others

 (6)

Step 6: Calculate the degree of possibility of Si over all fuzzy numbers. The degree of
possibility of Si is defined as:

V
(
Si ≥ Sj I j = 1, . . . , n; i 6= j

)
= minV

(
Si ≥ Sj

)
, jε(1, . . . , n), i = 1, i 6= j (7)

Step 7: Define the priority vector W = (wi, . . . , wn)
T of the fuzzy comparison matrix

for a convex fuzzy number to be larger than k convex fuzzy numbers

wi =
V (Si ≥ Sj, jε(1, . . . , n), i = 1, i 6= j)

∑n
k=1
(
Sk ≥ Sj I j = 1, . . . , n; j 6= k

) (8)

where W is a non- fuzzy number. It gives the priority weights of each criterion.

3.3. Fuzzy TOPSIS

The procedure of fuzzy TOPSIS used in this study is similar to the approach used by
Chen [53] and can be expressed in six steps:

Step 1: Choose the appropriate linguistic variables for the linguistic ratings for alter-
natives with respect to criteria. Linguistic variables can be expressed in triangular fuzzy
numbers (TFN), as in Table 1 as presented in [53].

Table 1. Linguistic expression for alternative ratings. Source: Own table adapted from [53].

Linguistic Expression Abbreviation Triangular Fuzzy Number

Very poor VP (0, 0, 1)
Poor P (0, 1, 3)

Medium poor MP (1, 3, 5)
Fair F (3, 5, 7)

Medium good MG (5, 7, 9)
Good G (7, 9, 10)

Very good VG (9, 10, 10)

Decision-makers use the linguistic variables (shown as Table 1) for the rating of
alternatives with respect to many criteria.

Assume that a decision group has K persons, then the rating of alternatives with
respect to each criterion can be calculated as [53]:

x̃ij =
[

x̃1
ij(+)x̃2

ij(+) . . . (+)x̃K
ij /K

]
(9)

where x̃K
ij is the rating of the Kth decision-maker.

Step 2: Determine decision matrix Di of ith decision-maker and compute the fuzzy
decision matrix.
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There are K decision-makers (D = (D1, D2, . . . , Dk)), n alternatives (A = (A1, A2, . . . ,
An)), and m criteria (C1, C2, . . . , Cm). The performances of alternatives under j criteria are
obtained by each decision-maker with linguistic values based on Table 1. Then, based on
the aggregated assessments of alternatives, a fuzzy decision matrix is constructed [53]:

D̃ =
[
x̃ij
]

m×n, i = 1, 2, . . . , m, j = 1, 2, . . . , n, (10)

where x̃ij, ∀i, j are linguistic variables, x̃ij =
(
aij, bij, cij

)
.

Step 3: Normalize the fuzzy decision matrix and compute the weighted normal-
ized matrix.

The raw data are normalized using a linear scale transformation to bring the various
criteria scales into a comparable scale. The normalized fuzzy decision matrix R̃ is given
by [53]:

R̃ =
[
r̃ij
]

m×n, i = 1, 2, . . . , m, j = 1, 2, . . . , n (11)

where

r̃ij =

(
aij

c∗j
,

bij

c∗j
,

cij

c∗j

)
, c∗j = max

i
cij j ∈ B, (benefit criteria) (12)

r̃ij =

(
a−j
cij

,
a−j
bij

,
a−j
aij

)
, a−j = min

i
aij j ∈ C, (cost criteria) (13)

The normalization method mentioned above is to preserve the property that the ranges
of normalized triangular fuzzy numbers belong to [0; 1].

Considering the different importance of each criterion, the weighted normalized fuzzy
decision matrix can be constructed as [53]:

Ṽ =
[
ṽij
]

m×n, i = 1, 2, . . . , m, j = 1, 2, . . . , n, (14)

where ṽij = r̃ij(0)w̃j.
Step 4: Determine the fuzzy positive ideal solution (FPIS) and fuzzy negative ideal

solution (FNIS) and compute the distance of each alternative from the FPIS and FNIS.
Compute the fuzzy positive ideal solution (FPIS) and fuzzy negative ideal solu-

tions (FNIS):
A∗ = (ṽ∗1 , ṽ∗2 , . . . , ṽ∗n) (15)

A− =
(
ṽ−1 , ṽ−2 , . . . , ṽ−n

)
(16)

where ṽ∗j = (1, 1, 1), and ṽ−j = (0, 0, 0), j = 1, 2, . . . , n.
The distance of each alternative from A* and A− can be calculated as:

d∗i =
n

∑
j=1

d(ṽij, ṽ∗j ), i = 1, 2, . . . , m, (17)

d−i =
n

∑
j=1

d(ṽij, ṽ−j ), i = 1, 2, . . . , m, (18)

where d (·,·) is the distance measurement between two fuzzy numbers.
Step 5: Compute the closeness coefficient (CCi) of each alternative. A closeness

coefficient is defined to determine the ranking order of all alternatives once the d∗i and d−i
of each alternative Ai (i = 1, 2, . . . , m) has been calculated. The closeness coefficient (CCi)
of each alternative is calculated as the following formula:

CCi =
d−i

d∗i + d−i
, i = 1, 2, . . . , m (19)
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Step 6: Rank the alternatives. According to the closeness coefficient, the ranking
order of all alternatives can be determined, and the best one from among a set of feasible
alternatives can be selected. The best alternative is closest to the FPIS and farthest from
the FNIS.

4. Results and Analysis

The proposed framework for identification and evaluation of the maintenance factors
affecting sustainability issues in manufacturing processes was performed in the manufac-
turing company according to the methodology presented in Figure 2 and Algorithm 1. The
structure of Algorithm 1 was prepared as suggested in [54].
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4.1. Description of Maintenance Factors Affecting Sustainable Manufacturing

According to the research methodology presented in Figure 2, the first stage of the
study presents the maintenance factors affecting the sustainable manufacturing from a
tactical point of view. The list of these factors includes 10 items, according to [14] and are
presented in more detail below.

A1 Spare parts and consumables management. The management of spare parts and
consumables is one of the key elements that support effective planning and scheduling of
work and ensures their quality and efficiency. In enterprises, optimization concerns the
minimalization of storage costs, the reduction of the probability of missing parts, machines’
inventory with hardware criticality, forecasting needs, stock levels, and the management of
substitutes [55–59].

A2 Cooperation with manufacturers/suppliers of machinery. Enterprises more and
more often expect manufacturers and suppliers of machines to actively participate in the
process of planning new investments as well as in the processes of using and servicing
the purchased machines and devices. New technologies of Industry 4.0 enable machine
manufacturers to obtain comprehensive information from their customers (machine users).
This information makes it possible to present the potential opportunities and threats associ-



Energies 2021, 14, 1436 12 of 30

ated with a new investment and better adaptation to current and past customers’ needs.
Moreover, by monitoring the machine usage (digital technologies allow the possibility
of access to more information and the collection and processing of data), manufacturers
can obtain information that allows their customers use the equipment more efficiently
(often in real time), and thus they can identify and eliminate the wastes in the implemented
processes. Therefore, maintenance collaboration with manufacturers and suppliers of
production equipment is essential. [60–63].

Algorithm 1. Identification and evaluation of maintenance factors.

Step 1: Identification of maintenance factors influencing sustainable manufacturing (Ai).
1: Step 1 was performed in earlier studies described in [14].
Step 2: Analysis of the interaction between the identified factors.
2: Expert evaluation of the mutual influences between each pair of factors (weak, strong, very
strong, potential).
3: Use MICMAC software (http://en.laprospective.fr/methods-of-prospective.html, accessd on 1
March 2021) to determine the mutual influence of the factors on each other.
Detail:
3.1: Determine the direct influence coefficients DIi (Equation (1)) and DPi (Equation (2)).
3.2: Determine the indirect influence coefficients using matrix multiplication (M4).
3.3: Prepare the direct influence map.
3.4: Prepare the indirect influence map.
3.5: Prepare the potential indirect influence map.
3.6: Select the relevant factors Fi (cluster III and IV from the potential indirect influence map) for
further analysis.
Step 3: Identification and weighting of factor evaluation criteria using F-AHP.
4: Identify the Ci evaluation criteria by experts.
5: Define the pairwise comparison matrix of the criteria (in a linguistic scale).
6: Check the consistency of the pairwise experts’ judgments.
Detail:
6.1: Defuzzify each triangular fuzzy number in the pairwise comparison matrix.
6.2: Calculate the consistency index of the comparison matrix (Equation (3)).
6.3: Calculate the consistency ratio of the comparison matrix (Equation (4)).
7: Calculate the value of the fuzzy synthetic extent values (Equation (5)).
8: Compute the degree of possibility (Equation (6)).
9: Calculate the degree of possibility (Equation (7)).
10: Define the priority vector (weights of criteria—wi) (Equation (8))
Step 4: Ranking of the most important maintenance factors with F-TOPSIS.
11: Determine the linguistic scale of the value ratings.
12: Assess the factors Fi against criteria Ci by decision-makers using a linguistic scale.
13: Replace the linguistic grades in decision-makers’ assessment with fuzzy grades according to
the adopted scale (Step 4, Point 11).
14: Average experts’ assessments and create a fuzzy decision matrix (Equations (9) and (10)).
15: Normalize the fuzzy decision matrix (Equations (11)–(13)—only benefit criteria were used).
16: Calculate the weighted normalized decision matrix using criteria weights (Equation (14)).
17: Compute the fuzzy positive ideal solution (Equation (15)) and fuzzy negative ideal solutions
(Equation (16)).
18: Calculate the distances of each factor from the fuzzy positive ideal solution d∗i (Equation (17))
and fuzzy negative ideal solution d−i (Equation (18)).
19: Calculate the closeness coefficient CCi of each factor and rank the alternatives (Equation (19)).
Step 5: Evaluation of the sensitivity of the ranking to the fluctuations of the experts’ assessments.
20: Perform F-TOPSIS analysis for hypothetical cases in which the lowest expert rating against
each criterion was raised (Fi+) for the selected factor or the highest rating for each criterion was
lowered (Fi−).
21: Compare the resulting rankings and analysis of their variability.

A3 Cooperation with service providers. The service provider is a crucial part in
the maintenance processes realization [64]. According to [65], in a circular economy,
maintenance providers must consider environmental compatibility, energy efficiency, and

http://en.laprospective.fr/methods-of-prospective.html
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human health and safety. As such, the selection of appropriate service providers is critical.
The problem of service provider selection in maintenance service was discussed by [66].
The need for cooperation with service providers is pointed out by [67,68].

A4 Cooperation of maintenance with the research and development (R&D) depart-
ment. Collaboration between R&D and maintenance departments concerns all issues
related to sustainable development. At the stage of designing a new product, it is nec-
essary to take into account not only the requirements of the user (machine operator),
but also the requirements of the employees who carry out the maintenance processes
of the machines [69,70]. Moreover, when introducing a new product for production, it
is necessary to establish the required machine working parameters and the necessary
tools and machine equipment [71]. The consequence of good cooperation between these
departments is products in accordance with the specification that are user-friendly and
maintenance-friendly.

A5 Cooperation with production and quality (P&Q) departments. Production and
maintenance are three functionally related departments in the manufacturing enterprise.
Understanding the interactions and trade-offs between these departments is essential
for rationale decision-making [72–77]. According to [78], “the three-way integration of
production, maintenance, and quality, all major functions in the production system can be
optimized simultaneously, resulting in a global optimal solution”. That is why appreciating
the cooperation between maintenance and P&Q departments is important.

A6 Cooperation with the safety, health, and environment (SHE) department. Ac-
cording to the results of the research conducted by Hill and Seabrook [79], 71% of the
respondents believe that SHE is a department in organizations that fits well with sustain-
ability. Thus, SHE professionals can play an important part in achieving the sustainable
aspirations of organizations. Safety is a priority in the whole maintenance system and
should be part of the routine procedures [80].

Due to the risky nature of maintenance activity, SHE departments need to work
together in the planning and supervision of working conditions, both for the company and
for the maintenance operators. Both maintenance and SHE departments are secondary
activities of companies, and both are seen as a necessary cost for proper operations [80].
Cooperation with the SHE department allows reduction in the risks in relation to people.
Good cooperation also means building knowledge and awareness, complying with legal
requirements, and helping in improving activities [10,64]. According to [81], effective
communication related to maintenance tasks and communication amongst workers are
the first step in achieving more safety in the working environment in repair and other
maintenance activities

A7 Competence of maintenance workers. Two factors—technology and people—are
the keys to transforming maintenance processes, in a way enabling meeting requirements
of sustainable manufacturing. The main factor that affects the quality of maintenance
processes is competent employees [82,83]. Their knowledge and skills determine the
efficiency of machines and devices in an enterprise [70]. This is especially important
in relation to the new generation of manufacturing machines and challenges related to
the Maintenance 4.0 technologies [84]. Regarding new technologies and digitalization of
manufacturing processes, [85,86] suggested that securing competencies and competence
development is a long-term challenge for maintenance organizations.

A8 Implementation of preventive and prognostic service strategies. Several mainte-
nance strategies in the literature are proposed [87]. According to [30,88–90], an effective
maintenance strategy may decrease environmental risks, energy usage and reduce green-
house gas emissions, water pollution, soil contamination, and cost reduction. Regarding
sustainability challenges, [23,91,92] believe that “predictive maintenance is one particular
area, enabled by digital technologies, that has much to offer towards the effective utili-
sation of maintenance for sustainability”. The application of preventive and prognostic
maintenance strategies requires reliable data and information as well as systems for their
processing and management [86,93,94].
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A9 The usage of maintenance and operation (M&O) data collection and processing
systems. Data are the key to maintenance process planning and realization. The use of data
allows a better understanding of factors affecting the operation of machines and provides
more opportunity to predict upcoming events. Owing to this, maintenance processes will
be able to be carried out in a more predictive way than before. Real-time data acquisition
enables the development of a joint control framework for maintenance and energy saving
to reduce energy waste and improve system efficiency [95]. By utilizing oil analysis data
to implement optimal maintenance, it is possible to ensure operation safety, availability,
and environmental and economic gains [96]. According to [97], data analytics “enabling
companies to implement safety programmes focused on zero fatalities (rather than zero
harm). Companies are able to better correlate the safety data they collect with other
available data-sets (e.g., production data, employee rosters, maintenance schedules, etc.).
By correlating this data, companies can recognize safety incident patterns and employees
that are particularly at risk. They are then in the position to adopt processes and procedures
to minimize incidents and injuries”.

A10 Modernization of machines and devices. An alternative to buying new machines
is changing the implementation of the existing machines. These changes allow one to adopt
machines according to the current needs: performance and a production profile of the
company. The modernization of industrial machines is often related to the programming
and assembly of industrial automation systems. Additionally, the implemented changes
improve the efficiency of technological processes, the efficiency of raw materials usage,
and the consumption of technological media (water, compressed air, energy). Moreover,
the modernization of machines and equipment improves the working conditions of op-
erators, especially the safety of performed activities. In addition, the modernization of
the machinery can reduce the risk of unexpected failures, and thus decrease repair costs.
Owing to modernization, many years of equipment and machinery can be adapted to the
requirements of a modern plant [10,20,70,98].

Table 2 shows the 10 maintenance factors affecting sustainable manufacturing.

Table 2. Maintenance factors affecting sustainable manufacturing.

No. Factor References

A1 Spare parts and consumables management [10,27,55,56,58,59,86,99–101]
A2 Cooperation with manufacturers/suppliers of machinery [9,10,60,65,66,86,102,103]
A3 Cooperation with service providers [9,10,64,67,68]
A4 Cooperation with R&D department [10,69,104]
A5 Cooperation with P&Q departments [9,10,69,72,75–77,86,104–113]
A6 Cooperation with SHE department [9,10,64,80,81,86,102,110,114–119]
A7 Competence of maintenance workers [9,10,70,82,84–86,110,120,121]
A8 Implementation of preventive and prognostic service strategies [10,71,85,86,100,102,122–125]
A9 The usage of M&O data collection and processing systems [57,85,86,97,126–128]
A10 Modernization of machines and devices [10,20,97,98,102]

The ten factors presented above (A1 to A10) specify that by improving the effective-
ness of the maintenance processes, companies could create conditions for supporting the
implementation of sustainable manufacturing challenges.

4.2. Clustering and Identification of Key Maintenance Factors Affecting Sustainable
Manufacturing (MICMAC)

MICMAC analysis was performed for 10 factors, according to Table 2. For the factors,
a structural analysis matrix (M) was constructed. The impact of the factors was assessed
together by a team from the company:

• The first team (D1) represented production and consisted of a production manager
and a foreman;
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• The second team (D2) represented the maintenance department and consisted of a
maintenance manager and a maintenance technician;

• The third team represented SHE and consisted of two people: an occupational health
and safety specialist and an environmental management specialist.

The representatives were asked to assess the degree of influence between each pair
of factors on a 4-level scale from 0, no influence; 1, low influence; 2, medium influence;
and 3, high influence and P (potential influence–grey shade in the Table 3). In each case,
representatives were asked if the change to the first factor (listed in a row) would cause a
direct change to the second factor (listed in a column). Each factor with respect to the rest
of the factors was evaluated (Table 3).

Table 3. The degree of influence between each pair of factors.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

A1 0 0 0 0 2 0 0 0 0 0
A2 1 0 1 0 1 1 2 1 1 1
A3 2 0 0 0 3 0 1 1 0 1
A4 1 1 1 0 2 2 1 0 0 2
A5 0 3 2 P 0 0 2 0 3 3
A6 3 2 3 0 3 0 2 1 0 2
A7 0 0 0 0 2 0 0 3 0 2
A8 3 3 3 0 3 0 2 0 3 2
A9 3 2 3 0 3 2 1 3 0 1
A10 3 P 1 0 1 0 P 2 1 0

The size of the matrix was 10 × 10, which means that the experts participating in
the study were asked to determine relationships between the variables. In 41 cases, the
dominant value was zero, which means no influence between the factors; in 20 cases, weak
influences were found; and in 18 cases, a medium influence was found. Strong influences
between the factors were found in 18 cases, while the potential influence was identified
only in three cases.

First, the direct influence DIi and the dependence power DPi between 10 maintenance
factors affecting the sustainable production were analayzed. In Table 4, the calculated
direct influence DIi and the dependence DPi between factors are presented.

Table 4. The influence and the dependence between factors.

No. DIi DPi
A1 2 16
A2 9 11
A3 8 14
A4 10 0
A5 13 20
A6 16 5
A7 7 11
A8 19 11
A9 18 8
A10 8 14

110 110
The highest values
The lowest values

The obtained results indicate that the highest direct influence is gained by factors A8,
A9, A6, and A5 with the influence values DIi = 19, 18, 16, and 13, respectively. The lowest
influence DIi was identified for factors A1 = 2. However, the most dependent factors are A5
(DPi = 20), A3, and A10 (DPi = 14), as well as A1 (DPi = 16). No dependence was identified
for the factor A4 (DPi = 0). Additionally, as part of the analysis, a direct graph presenting
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the direct influences of the factors was created (Figure 2). MICMAC software was used
(http://en.laprospective.fr/methods-of-prospective.html, accessed on 1 March 2021) to
perform the analyses.

The analysis of the graph presented in Figure 3 shows that the factors A5 and A1
have the strongest influences on other factors. This factor has a strong influence from
the factors A2 and A9. The factor A1 has the strongest influence from factors: A6, A9,
A8, and A10. Moreover, a map that classifies factors based on DIi and DPi was created.
MICMAC analysis was used to classify 10 factors into four clusters based on their DIi and
DPi (Figure 4).
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Cluster I consists of “Autonomous factors”. In this case, factor A4 belongs to Cluster I,
which means that this factor is relatively disconnected from the system. Cluster II consists
of “Dependence factors”. In this case, they are: A1, A2, A3, A7, and A10. Cluster III
consists of “Linkage factors”. In this case, they are the A5 and A8 factors. The factor A5
has the strongest dependence value, which means it is the most direct maintenance factor
affecting sustainable manufacturing. Cluster IV consists of “Independent/Driving factors”:
factors A6 and A9. These factors are the maintenance factors which the most affecting
sustainable manufacturing and are the key factors that fall into the linkage or independent
factor cluster.

In the next step, indirect impacts were taken into account. To determine the matrix of
indirect influence (Table 5), the matrix of direct influence was used as the input data.

http://en.laprospective.fr/methods-of-prospective.html
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Table 5. The matrix of indirect influence.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

A1 4058 2934 3550 0 5056 1050 2980 3504 2932 3742
A2 15,422 11,900 13,854 0 19,138 3154 11,276 11,630 11,517 14,131
A3 12,299 9287 10,947 0 15,350 2772 9043 9837 9116 11,369
A4 15,328 11,534 13,616 0 19,004 3330 11,121 11,912 11,189 13,906
A5 21,859 16,822 19,623 0 26,930 4399 15,785 16,377 16,178 19,826
A6 21,890 16,808 19,626 0 27,373 4628 16,057 16,874 16,287 20,181
A7 14,916 10,873 13,052 0 18,451 3496 10,744 12,171 10,705 13,465
A8 29,062 22,364 26,090 0 36,064 6033 21,177 22,122 21,620 26,599
A9 29,112 21,919 25,850 0 36,278 6367 21,166 22,704 21,298 26,480
A10 12,792 9766 11,420 0 15,939 2693 9319 9789 9494 11,678

The analysis of the indirect influence matrix shows a significant increase in the strength
of interaction between the factors compared to the strength of direct interactions (large
values of matrix elements). The degree of matrix filling has increased significantly from
59% in the case of the direct interaction matrix to 90% in the case of the indirect influence
matrix. This indicates that taking into account indirect impacts significantly increases
the network of relationships between factors. Currently, the column matrix with all zero
elements corresponding to the factor A4 indicates that this factor is independent. The
calculation process of the indirect influence matrix achieved stability in relation to the
ranking of the influence power and the dependence power of individual factors after four
iterations I = 4. In Table 6, the calculated indirect influence and the dependence between
selected factors are presented.

Table 6. The influence and dependence between factors (indirect impacts).

No. DIi DPi
A1 29,806 176,738
A2 112,022 134,207
A3 90,020 157,628
A4 110,940 0
A5 157,799 219,583
A6 159,724 37,922
A7 107,873 128,668
A8 211,131 136,920
A9 211,174 130,336
A10 92,890 161,377

The highest values
The lowest values

The results show that taking into account the indirect influences, the factors having
the greatest impact on sustainable manufacturing did not change significantly. The highest
influence (DIi) is still obtained by factors A9, A8, A5, A6, and the lowest influence (DIi) was
identified for factor A1. The sequence of the dependent factors has changed slightly, but
they are still A1, A3, A5, and A9. No dependence was identified for the factor A4 (DPi = 0)
again. However, it should be noted that the assignment of factors to clusters has slightly
changed (Figure 5).

Analyzing the results presented on the map, it should be noted that factor A4 still
belongs to Cluster I “Autonomous factors”. In Cluster II “Dependence factors” are still A1,
A2, A3, A7, and A10. The changes are noticeable in clusters III and IV. Apart from factors
A5 and A8, cluster III also includes factor A9, which was previously assigned to cluster
IV. Currently, cluster IV contains only one factor, A6. Taking into account the indirect
influences and dependence, this factor is the most impact maintenance factor affecting
sustainable manufacturing.
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The next step of the study was to determine the matrix of indirect impacts, taking into
account the potential influence (Table 7).

Table 7. The matrix of indirect influences.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

A1 5720 5754 5044 1998 7360 1734 5872 4914 4102 5644
A2 19,673 19,880 17,715 6606 25243 5137 19,931 15,710 14,295 19,429
A3 16,844 16,985 15,024 5793 21,710 4689 17,197 13,944 12,194 16,664
A4 20,902 20,825 18,614 6885 26,876 5784 21,120 17,078 14,873 20,476
A5 33,511 33,712 30,183 11,040 42,980 8977 33,800 26,871 24,110 33,008
A6 29,234 29,456 26,232 9900 37,738 7793 29,686 23,768 21,177 28,938
A7 20,058 19,846 17,660 6639 25,783 5911 20,344 16,854 14,056 19,555
A8 37,375 37,679 33,611 12,519 48,112 9984 37,866 30,177 27,050 36,967
A9 36,936 36,994 32,978 12,345 47,519 10,018 37,429 30,159 26,452 36,311
A10 25,893 26,344 23,435 8856 33,315 6665 26,305 20,727 18,971 25,745

The analysis of the matrix shows that taking into account the potential interactions, the
matrix was 100% fulfilled. In addition, it can be noticed that the relationships between the
factors increased, which caused factor A4 to be no longer completely independent. These
changes are also noticeable in the summary results of the influence DIi and the dependence
DPi between the analyzed factors (Table 8).

Table 8. The influence and dependence between factors (indirect).

No. DIi DPi
A1 48,142 246,146
A2 163,619 247,475
A3 141,044 220,496
A4 173,433 82,581
A5 278,192 316,636
A6 243,922 66,692
A7 166,706 249,550
A8 311,340 200,202
A9 307,141 177,280
A10 216,256 242,737

The highest values
The lowest values

The graph of potential indirect influences (Figure 6) indicates that only factor A5
(cooperation with P&Q departments) is the factor with the strongest influence. This can be
seen from the color change of the line that connects the factors.
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The changes are also noticeable on the potential indirect influence map (Figure 7).
These changes are mainly related to cluster III and IV.
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Cluster III includes “Linkage factors” such as A5 “Cooperation with P&Q depart-
ments”, A8 “Implementation of preventive and prognostic service strategies”, and A10
“Modernization of machines and devices”. Whereas, factors A6 “Cooperation with the SHE
department” and A9 “The usage of M&O data collection and processing systems” in cluster
IV were categorized as “Independent/Driving factors”. Previously, factor A9 was classified
as cluster III.

To carry out further analysis, a team of experts chose factors from these clusters (A5,
A6, A8, A9, and A10) as key maintenance factors affecting sustainable production. These
factors were inputs for the F-TOPSIS analysis.

4.3. Assessment Criteria Identification and Weighting (F-AHP)

On the basis of the short-term and long-term goals set by the CEO and based on
literature survey [129,130] experts from the company defined the most important criteria
according to which the assessment of maintenance factors influencing the implementation
of sustainable challenges in the company will be carried out (Table 9).
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Table 9. The criteria for maintenance factor evaluation.

No Criteria

C1 Manufacturing cost
C2 Energy consumption
C3 Waste reduction
C4 Operational safety

Firstly, the decision0maker teams from the company (D1—production team, D2—
maintenance team, D3—SHE team) constructed together the pairwise comparison matrix
of the criteria. When analyzing the relationship between two factors, in each case of
discrepancies the teams discussed and made decisions on the basis of consensus. In this
study, a 5-level fuzzy scale according to [131] was adopted (Table 10).

Table 10. Linguistic expression for criteria ratings. Source: Own table adapted from [131].

Linguistic Expression Abbreviation Triangular Fuzzy Number

Extremely more importance EMI (7/2,4,9/2)
Very strong importance VSI (5/2,3,7/2)

Strong importance SI (3/2,2,5/2)
Moderate importance MI (2/3,1,3/2)

Equal importance EI (1, 1, 1)

In Table 11, the fuzzy evaluation matrix using the triangular fuzzy numbers obtained
by experts from the company scoring is presented.

Table 11. The fuzzy comparison matrix for the defined criteria.

Criteria C1 C2 C3 C4

C1 (1,1,1) (2/3,1,3/2) (3/2,2,5/2) (1,1,1)
C2 (3/2,1,2/3) (1,1,1) (2/3,1,3/2) (3/2,2,5/2)
C3 (2/5,1/2,2/3) (3/2,1,2/3) (1,1,1) (2/3,1,3/2)
C4 (1,1,1) (2/5,1/2,2/3) (3/2,1,2/3) (1,1,1)

After the pairwise comparison, the calculation method of consistency index and
consistency ratio in crisp AHP for checking the consistency of the pairwise experts’ judg-
ments Equations (3) and (4) were used. In the analyzed case, λmax = 4.2339, CI = 0.0780,
CR = 0.0866 < 0.1, so the level of consistency ratio is acceptable.

To find the priority weights, the fuzzy synthetic extent values of the criteria by using
Equation (5) were calculated. The different values of the fuzzy synthetic extent of the four
different criteria are represented by S1, S2, S3, S4 (Table 12).

Table 12. Results of fuzzy analytic hierarchy process (F-AHP) analysis.

Fuzzy Synthetic Extent W′ W Rank

S1 0.1953 0.2941 0.4348 C1 1.000 0.3159 1
S2 0.1797 0.2941 0.4710 C2 1.000 0.3159 1
S3 0.1281 0.2059 0.3382 C3 0.6182 0.1953 2
S4 0.1438 0.2059 0.3019 C4 0.5472 0.1729 3

The degree of possibility and the minimum degree of possibility were determined
by using Equations (6) and (7). Finally, the weights are given as W’, and after normal-
ization (Equation (8)) as W = (0.3159, 0.3159, 0.1953, 0.1729)T (Table 12). The R software
(version 3.6.1) was used to perform the analyses.
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Analyzing the results presented in Table 12, it should be noted that the most impor-
tant criteria are C1—manufacturing cost and C2—energy consumption, then C3—waste
reduction, and finally C4—operational safety.

4.4. Ranking of the Most Important Maintenance Factors (F-TOPSIS)

In this section, the five maintenance factors identified in Section 4.2 as key maintenance
factors were ranked from the sustainability perspective using the four criteria obtained and
weighted in Section 4.3. Firstly, each of the three decision-maker teams from the company
(D1—production team, D2—maintenance team, D3—SHE team) used the linguistic rating
variables (Table 13) were asked to rate each of the factors:

F1—(A5) Cooperation with P&Q departments;
F2—(A6) Cooperation with the SHE department;
F3—(A8) Implementation of preventive and prognostic service strategies;
F4—(A9) The usage of M&O data collection and processing systems;
F5—(A10) Modernization of machines and devices;

with respect to each criterion (shown in Table 9).

Table 13. Linguistic rating variables. Source: [53].

Linguistic Terms TFN

Very low important (VLI) (0, 0, 1)
Low important (LI) (0, 1, 3)
Medium low (ML) (1, 3, 5)
Medium Important (MI) (3, 5, 7)
Medium high (MH) (5, 7, 9)
High important (HI) (7, 9, 10)
Very important (VI) (9, 10, 10)

Then, the linguistic evaluation was converted into triangular fuzzy numbers (shown
in Table 13) to construct the fuzzy decision matrix (Table 14).

Table 14. The ratings of the five factors by decision-makers under all criteria.

Linguistic Ratings Fuzzy Ratings

F/C D1 D2 D3 F/C D1 D2 D3

F1.C1 MI MH MH F1.C1 (3, 5, 7) (5, 7, 9) (5, 7, 9)
F1.C2 MI MI MI F1.C2 (3, 5, 7) (3, 5, 7) (3, 5, 7)
F1.C3 HI MI HI F1.C3 (7, 9, 10) (3, 5, 7) (7, 9, 10)
F1.C4 HI HI MI F1.C4 (7, 9, 10) (7, 9, 10) (3, 5, 7)
F2.C1 L ML ML F2.C1 (0, 1, 3) (1, 3, 5) (1, 3, 5)
F2.C2 MH ML ML F2.C2 (5, 7, 9) (1, 3, 5) (1, 3, 5)
F2.C3 MH MH MI F2.C3 (5, 7, 9) (5, 7, 9) (3, 5, 7)
F2.C4 VI HI VI F2.C4 (9, 10, 10) (7, 9, 10) (9, 10, 10)
F3.C1 MH HI VI F3.C1 (5, 7, 9) (7, 9, 10) (9, 10, 10)
F3.C2 MI HI HI F3.C2 (3, 5, 7) (7, 9, 10) (7, 9, 10)
F3.C3 MH VI VI F3.C3 (5, 7, 9) (9, 10, 10) (9, 10, 10)
F3.C4 HI HI VI F3.C4 (7, 9, 10) (7, 9, 10) (9, 10, 10)
F4.C1 HI VI HI F4.C1 (7, 9, 10) (9, 10, 10) (7, 9, 10)
F4.C2 MH HI MH F4.C2 (5, 7, 9) (7, 9, 10) (5, 7, 9)
F4.C3 HI HI HI F4.C3 (7, 9, 10) (7, 9, 10) (7, 9, 10)
F4.C4 HI HI HI F4.C4 (7, 9, 10) (7, 9, 10) (7, 9, 10)
F5.C1 MH MH HI F5.C1 (5, 7, 9) (5, 7, 9) (7, 9, 10)
F5.C2 HI HI HI F5.C2 (7, 9, 10) (7, 9, 10) (7, 9, 10)
F5.C3 MH HI HI F5.C3 (5, 7, 9) (7, 9, 10) (7, 9, 10)
F5.C4 MH HI HI F5.C4 (5, 7, 9) (7, 9, 10) (7, 9, 10)
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In the next step, the fuzzy decision matrix (Table 15), normalized fuzzy decision matrix
(Table 16), and weighted normalized matrix (Table 17) were computed.

Table 15. The fuzzy decision matrix and fuzzy weights of five factors.

Factor C1 C2 C3 C4

F1 (4.33, 6.33, 8.33) (3, 5, 7) (5.67, 7.67, 9) (5.67, 7.67, 9)
F2 (0.67, 2.33, 4.33) (2.33, 4.33, 6.33) (4.33, 6.33, 8.33) (8.33, 9.67, 10)
F3 (7, 8.67, 9.67) (5.67, 7.67, 9) (7.67, 9, 9.67) (7.67, 9.33, 10)
F4 (7.67, 9.33, 10) (5.67, 7.67, 9.33) (7, 9, 10) (7, 9, 10)
F5 (5.67, 7.67, 9.33) (7, 9, 10) (6.33, 8.33, 9.67) (6.33, 8.33, 9.67)

weight (0.2, 0.29, 0.43) (0.18, 0.29, 0.47) (0.13, 0.21, 0.34) (0.14, 0.21, 0.3)

Table 16. The normalized fuzzy decision matrix.

Factor C1 C2 C3 C4

F1 (0.43, 0.63, 0.83) (0.3, 0.5, 0.7) (0.5,7 0.77, 0.9) (0.57, 0.77, 0.9)
F2 (0.07, 0.23, 0.43) (0.23, 0.43, 0.63) (0.43, 0.63, 0.83) (0.83, 0.97, 1)
F3 (0.7, 0.87, 0.97) (0.57, 0.77, 0.9) (0.77, 0.9, 0.97) (0.77, 0.93, 1)
F4 (0.77, 0.93, 1) (0.57, 0.77, 0.93) (0.7, 0.9, 1) (0.7, 0.9, 1)
F5 (0.57, 0.77, 0.93) (0.7, 0.9, 1) (0.63, 0.83, 0.97) (0.63, 0.83, 0.97)

Table 17. The fuzzy weighted normalized decision matrix.

Factor C1 C2 C3 C4

F1 (0.08, 0.19, 0.36) (0.05, 0.15, 0.33) (0.07, 0.16, 0.3) (0.08, 0.16, 0.27)
F2 (0.01, 0.07, 0.19) (0.04, 0.13, 0.3) (0.06, 0.13, 0.28) (0.12, 0.2, 0.3)
F3 (0.14, 0.25, 0.42) (0.1, 0.23, 0.42) (0.1, 0.19, 0.33) (0.11, 0.19, 0.3)
F4 (0.15, 0.27, 0.43) (0.1, 0.23, 0.44) (0.09, 0.19, 0.34) (0.1, 0.19, 0.3)
F5 (0.11, 0.23, 0.41) (0.13, 0.26, 0.47) (0.08, 0.17, 0.33) (0.09, 0.17, 0.29)

After that, the distance of each alternative from the fuzzy positive ideal matrix(d*) and
fuzzy negative ideal matrix (d-) using Equations (15)–(18) and the closeness coefficient (CCi)
of each alternative was computed. The CCi is calculated using Equation (19) (Table 18). In
the next step, the factors are ranked according to CCi. The best alternative is closest to the
FPIS and farthest from the FNIS.

Table 18. Closeness coefficient (CCi) of the five factors.

F1 F2 F3 F4 F5

d∗i 3.28887129 3.40961956 3.10431321 3.09089235 3.1217108
d−i 0.84075017 0.7069268 1.01839507 1.04164368 1.01647544
CCi 0.20359013 0.17172813 0.24702089 0.25205919 0.24563308

Ranking 4 5 2 1 3

A comparison of d∗1 , d∗2 , . . . , d∗5 and d−1 , d−2 , . . . , d−5 d d-values which reflect the
maintenance factors is shown in Figure 8.
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solution (FPIS) and fuzzy negative ideal solution (FNIS) distance; (b) closeness ratio versus factor.

It is observed that factor F4 “The usage of M&O data collection and processing sys-
tems” has the highest closeness ratio; therefore, it is the highest ranked factor. Based on
the MICMAC approach, it has emerged as a major independent driver factor for support-
ing sustainable manufacturing challenges. The next important identified factors are F3
“Implementation of preventive and prognostic service strategies” and F5 “Modernization
of machines and devices”. These factors according to the MICMAC approach were cat-
egorized also as “Linkage factors”. It should be noted that these most important factors
are related to technical issues. That is why the company should pay attention to these
factors and firstly implement the activities in these areas to support achieving sustainable
manufacturing challenges.

4.5. Sensitivity Analysis

To examine the influence of the preferences given by the decision-makers for the
calculated closeness ratio, sensitivity analysis was performed. During the analysis, 10 cases
were conducted and performed in R software (version 3.6.1). In each case, the lowest rating
increased by one for each criterion (Fi+), for example, from MI to MH, or the highest rating
decreased by one level for each criterion (Fi−). The details of the obtained rankings of the
origin (without changes) results of the 10 cases are shown in Table 19, and the closeness
coefficient is shown in Figure 9.

Table 19. Sensitivity analysis results—the factor ranking.

Rank. Original Rank F1− F1+ F2− F2+ F3− F3+ F4− F4+ F5− F5+

1 A4 A4 A4 A4 A4 A4 A3 A3 A4 A4 A5
2 A3 A3 A3 A3 A3 A5 A4 A5 A3 A3 A4
3 A5 A5 A5 A5 A5 A3 A5 A4 A5 A5 A3
4 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1
5 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2
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The three dominant factors (F3, F4, F5) changed their position in the ranking, indicating
that with such small differences in the closeness ratio they should be treated as equally
important. The other two clearly smaller factors (F1 and F2), for which the difference in
coefficients was clearly visible, did not change their positions in the ranking, indicating
that a slight underestimation or overestimation of the ratings by any of the decision-makers
did not have a significant impact on the received ranking.

5. Conclusions

In this study, an integrated approach (MICAMC, F-AHP, and F-TOPSIS) was used
to analyze the maintenance factors influencing the implementation of sustainable man-
ufacturing challenges from a tactical perspective, and to rank them taking into account
the specificity of an operational context of an enterprise. Ten maintenance factors for
achieving sustainable manufacturing challenges have been described based on a literature
analysis and discussion with experts from the industry. After that, MICMAC analysis
was used to identify the key maintenance factors. Based on the influence and dependence
value, the factors involved in the study were classified into four clusters: I—autonomous
factors, II—dependent factors, III—linkage factors, and IV—independent factors. Factors
from the clusters III and IV were considered key maintenance factors affecting sustainable
manufacturing and were taken as an inputs for F-TOPSIS analysis. These factors were
“Cooperation with P&Q departments”, “Implementation of preventive and prognostic
service strategies”, “Modernization of machines and devices”, “The usage of M&O data
collection and processing systems”, and “Cooperation with the SHE department”. Then,
the assessment criteria of maintenance factors were identified, and their relative weights
were determined by fuzzy AHP. Finally, the results of MICMAN and fuzzy AHP analyses
were used as an input to rank the maintenance factors by the fuzzy TOPSIS method. As
a result of this method, the most important maintenance factors that have an impact on
sustainable manufacturing processes were identified.

The analysis showed that technical factors (“The usage of M&O data collection and
processing systems”, “Implementation of preventive and prognostic service strategies”, and
“Modernization of machines and devices”) are rated as the most important and influential
for sustainable manufacturing. It is characteristic that these three indicated factors (the first
two directly, the third indirectly) are related to the activities whose horizon is defined as
Industry 4.0. The wide collection of data and their analysis, in particular, the possibility
of self-diagnosis of machines and forecasting their condition, is one of the pillars of this
idea. These activities are related to investments in technical infrastructure, especially the
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modernization of machines and development of data acquisition and analysis systems,
with particular emphasis on the so-called Internet of Things and cloud computing. The
results of this study are compatible with the research conducted by [9,10]. Consequently,
the methodology presented in this paper could assist company managers in the adequate
choice of maintenance factors that will influence the social, environmental, and economic
aspects of manufacturing.

The proposed solution has also some limitations. Firstly, the analysis of the assessment
of the importance of factors influencing sustainability concerns selected a company from a
specific industry, hence the results obtained cannot be generalized. Secondly, the assess-
ment criteria of the maintenance factors were determined by experts from that company
and are related to the internal and external context of the organization. This represents a lim-
itation of the proposed approach, as it is difficult to benchmark sustainability performance
across companies in different sectors, as well as sometimes in the same sector.

By reviewing the results of these studies in terms of theory and practice, directions for
further research can be formulated. Due to the intensive development of Industry 4.0 tech-
nologies and their impact on meeting the challenges of sustainable production [3,132,133],
in subsequent stages of research it would be necessary to consider the potential benefits of
these technologies in supporting maintenance processes towards sustainable production.
In particular, research should focus on intelligent systems for collecting, processing and
analyzing data, and the benefits of new business models in maintenance management. This
is the first proposed research direction. The second direction of future research concerns
MCDM methods. In the literature on the subject, there are also other MCDM methods for
problem analysis that can be used in future research in this area, such as ELECTRE (Elimi-
nation et choix traduisant la realité), VICOR (Visekriterijumska optimizacija i kompromisno
resenje) or extensions of the TOPSIS method based on the application of intuitionistic, grey,
and neutrosophic numbers.
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