Rapid Biochemical Methane Potential Evaluation of Anaerobic Co-Digestion Feedstocks Based on Near Infrared Spectroscopy and Chemometrics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation of Anaerobic Co-Digestion
2.2. Measurement and Preprocessing of Spectral Data
2.3. Determination of Biochemical Methane Potential
2.4. Selection Algorithms of Characteristic Wavelengths
2.4.1. GSA Algorithm
2.4.2. SiPLS-GSA and BiPLS-GSA
2.4.3. DGSA-PLS
2.4.4. CARS-GSA
2.5. Evaluation Indexes of Calibration Models
3. Results and Discussion
3.1. Analysis of Collected Data
3.2. Selection of Characteristic Wavelengths
3.2.1. Characteristic Wavelengths Selected by SiPLS-GSA
3.2.2. Characteristic Wavelengths Selected by BiPLS-GSA
3.2.3. Characteristic Wavelengths Selected by DGSA-PLS
3.2.4. Characteristic Wavelengths Selected by CARS-GSA
3.3. Performance Analysis of Models
3.4. Discussion of the Description Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, Y.; Zhang, Z.Z.; Sun, Y.M.; Yang, G.X. One-pot pyrolysis route to Fe−N-Doped carbon nanosheets with outstanding electrochemical performance as cathode materials for microbial fuel cell. Int. J. Agric. Biol. Eng. 2020, 13, 207–214. [Google Scholar] [CrossRef]
- Rekleitis, G.; Haralambous, K.; Loizidou, M.; Aravossis, K. Utilization of Agricultural and Livestock Waste in Anaerobic Digestion (A.D): Applying the Biorefinery Concept in a Circular Economy. Energies 2020, 13, 4428. [Google Scholar] [CrossRef]
- Yang, Y.; Ni, J.Q.; Zhu, W.; Xie, G. Life Cycle Assessment of Large-scale Compressed Bio-natural Gas Production in China: A Case Study on Manure Co-digestion with Corn Stover. Energies 2019, 12, 429. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Li, W.; Sun, M.; Xu, X.; Zhang, B.; Sun, Y. Evaluation of Biochemical Methane Potential and Kinetics on the Anaerobic Digestion of Vegetable Crop Residues. Energies 2019, 12, 26. [Google Scholar] [CrossRef] [Green Version]
- Qu, J.; Sun, Y.; Awasthi, M.K.; Liu, Y.; Xu, X.; Meng, X.; Zhang, H. Effect of different aerobic hydrolysis time on the anaerobic digestion characteristics and energy consumption analysis. Bioresour. Technol. 2021, 320, 124332. [Google Scholar] [CrossRef] [PubMed]
- Seruga, P.; Krzywonos, M.; Seruga, A.; Niedzwiecki, L.; Pawlak-Kruczek, H.; Urbanowska, A. Anaerobic Digestion Performance: Separate Collected vs. Mechanical Segregated Organic Fractions of Municipal Solid Waste as Feedstock. Energies 2020, 13, 3768. [Google Scholar] [CrossRef]
- Hamedani, S.R.; Villarini, M.; Colantoni, A.; Carlini, M.; Cecchini, M.; Santoro, F.; Pantaleo, A. Environmental and Economic Analysis of an Anaerobic Co-Digestion Power Plant Integrated with a Compost Plant. Energies 2020, 13, 2724. [Google Scholar] [CrossRef]
- Damtie, M.M.; Shin, J.; Jang, H.M.; Kim, Y.M. Synergistic Co-Digestion of Microalgae and Primary Sludge to Enhance Methane Yield from Temperature-Phased Anaerobic Digestion. Energies 2020, 13, 4547. [Google Scholar] [CrossRef]
- Rodrigues, R.P.; Rodrigues, D.P.; Klepacz-Smolka, A.; Martins, R.C.; Quina, M.J. Comparative analysis of methods and models for predicting biochemical methane potential of various organic substrates. Sci. Total Environ. 2019, 649, 1599–1608. [Google Scholar] [CrossRef]
- Mioduszewska, N.; Pilarska, A.A.; Pilarski, K.; Adamski, M. The Influence of the Process of Sugar Beet Storage on Its Biochemical Methane Potential. Energies 2020, 13, 5104. [Google Scholar] [CrossRef]
- Da Silva, C.; Astals, S.; Peces, M.; Campos, J.L.; Guerrero, L. Biochemical methane potential (BMP) tests: Reducing test time by early parameter estimation. Waste Manag. 2018, 71, 19–24. [Google Scholar] [CrossRef]
- Pilarski, K.; Pilarska, A.A.; Boniecki, P.; Niedbala, G.; Durczak, K.; Witaszek, K.; Mioduszewska, N.; Kowalik, I. The Efficiency of Industrial and Laboratory Anaerobic Digesters of Organic Substrates: The Use of the Biochemical Methane Potential Correction Coefficient. Energies 2020, 13, 1280. [Google Scholar] [CrossRef] [Green Version]
- Papirio, S.; Matassa, S.; Pirozzi, F.; Esposito, G. Anaerobic Co-Digestion of Cheese Whey and Industrial Hemp Residues Opens New Perspectives for the Valorization of Agri-Food Waste. Energies 2020, 13, 2820. [Google Scholar] [CrossRef]
- Yu, Q.; Sun, C.; Liu, R.; Yellezuome, D.; Zhu, X.; Bai, R.; Liu, M.; Sun, M. Anaerobic co-digestion of corn stover and chicken manure using continuous stirred tank reactor: The effect of biochar addition and urea pretreatment. Bioresour. Technol. 2021, 319, 124197. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Qin, K.; Ding, J.; Xue, M.; Yang, C.; Jiang, J.; Zhao, Q. Optimization of the co-digestion of sewage sludge, maize straw and cow manure: Microbial responses and effect of fractional organic characteristics. Sci. Rep. 2019, 9, 2374. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Awasthi, M.K.; Li, P.; Meng, X.; Wang, Z. Comparative analysis of prediction models for methane potential based on spent edible fungus substrate. Bioresour. Technol. 2020, 317, 124052. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Lu, F.; Jiang, Q.; Jiang, C.; Kashif, M.; Shen, P. Assessment of Multiple Anaerobic Co-Digestions and Related Microbial Community of Molasses with Rice-Alcohol Wastewater. Energies 2020, 13, 4866. [Google Scholar] [CrossRef]
- Thaemngoen, A.; Phuttaro, C.; Saritpongteeraka, K.; Leu, S.-Y.; Chaiprapat, S. Biochemical Methane Potential Assay Using Single Versus Dual Sludge Inocula and Gap in Energy Recovery from Napier Grass Digestion. Bioenergy Res. 2020, 13, 1321–1329. [Google Scholar] [CrossRef]
- Davidsson, Å.; Gruvberger, C.; Christensen, T.H.; Hansen, T.L.; Jansen, J.l.C. Methane yield in source-sorted organic fraction of municipal solid waste. Waste Manag. 2007, 27, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Dong, X.; Li, Y.; Peng, Y.; Chao, K.; Gao, C.; Tang, X. Identification of unfertilized duck eggs before hatching using visible/near infrared transmittance spectroscopy. Comput. Electron. Agric. 2019, 157, 471–478. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M.; Dowell, F.; Wang, D.H. Rapid Determination of Acetic Acid, Furfural, and 5-Hydroxymethylfurfural in Biomass Hydrolysates Using Near-Infrared Spectroscopy. ACS Omega 2018, 3, 5355–5361. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Altaner, C.M. Effects of variable selection and processing of NIR and ATR-IR spectra on the prediction of extractive content in Eucalyptus bosistoana heartwood. Spectrochim. Acta A 2019, 213, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Chu, X.; Wang, Z.; Xu, Y.; Li, W.; Sun, Y. Optimization of Characteristic Wavelength Variables of Near Infrared Spectroscopy for Detecting Contents of Cellulose and Hemicellulose in Corn Stover. Spectrosc. Spect. Anal. 2019, 39, 743–750. [Google Scholar] [CrossRef]
- Liu, J.; Jin, S.; Bao, C.; Sun, Y.; Li, W. Rapid determination of lignocellulose in corn stover based on near-infrared reflectance spectroscopy and chemometrics methods. Bioresour. Technol. 2021, 321, 124449. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, N.; Zhen, F.; Xu, Y.; Li, W.; Sun, Y. Rapid detection of carbon-nitrogen ratio for anaerobic fermentation feedstocks using near-infrared spectroscopy combined with BiPLS and GSA. Appl. Optics 2019, 58, 5090–5097. [Google Scholar] [CrossRef]
- Fitamo, T.; Triolo, J.M.; Boldrin, A.; Scheutz, C. Rapid biochemical methane potential prediction of urban organic waste with near-infrared reflectance spectroscopy. Water Res. 2017, 119, 242–251. [Google Scholar] [CrossRef]
- Godin, B.; Mayer, F.; Agneessens, R.; Gerin, P.; Dardenne, P.; Delfosse, P.; Delcarte, J. Biochemical methane potential prediction of plant biomasses: Comparing chemical composition versus near infrared methods and linear versus non-linear models. Bioresour. Technol. 2015, 175, 382–390. [Google Scholar] [CrossRef]
- Mortreuil, P.; Baggio, S.; Lagnet, C.; Schraauwers, B.; Monlau, F. Fast prediction of organic wastes methane potential by near infrared reflectance spectroscopy: A successful tool for farm-scale biogas plant monitoring. Waste Manag. Res. 2018, 36, 800–809. [Google Scholar] [CrossRef]
- Yao, Y.; Shen, X.; Qiu, Q.; Wang, J.; Cai, J.; Zeng, J.; Lang, X. Predicting the Biochemical Methane Potential of Organic Waste with Near-Infrared Reflectance Spectroscopy Based on GA-SVM. Spectrosc. Spect. Anal. 2020, 40, 1857–1861. [Google Scholar] [CrossRef]
- Ward, A.J. Near-Infrared Spectroscopy for Determination of the Biochemical Methane Potential: State of the Art. Chem. Eng. Technol. 2016, 39, 611–619. [Google Scholar] [CrossRef]
- Yun, Y.H.; Bin, J.; Liu, D.L.; Xu, L.; Yan, T.L.; Cao, D.S.; Xu, Q.S. A hybrid variable selection strategy based on continuous shrinkage of variable space in multivariate calibration. Anal. Chim. Acta 2019, 1058, 58–69. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, H.; Zhang, Q.; Zhang, S.; Chen, M.; Wu, Y. Comparison of several variable selection methods for quantitative analysis and monitoring of the Yangxinshi tablet process using near-infrared spectroscopy. Infrared Phys. Technol. 2020, 105, 103188. [Google Scholar] [CrossRef]
- Ren, G.; Ning, J.; Zhang, Z. Multi-variable selection strategy based on near-infrared spectra for the rapid description of dianhong black tea quality. Spectrochim. Acta A 2021, 245, 118918. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Ren, G.; Sun, Y.; Jin, S.; Li, L.; Wang, Y.; Ning, J.; Zhang, Z. Qualitative discrimination of Chinese dianhong black tea grades based on a handheld spectroscopy system coupled with chemometrics. Food Sci. Nutr. 2020, 8, 2015–2024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Triolo, J.M.; Ward, A.J.; Pedersen, L.; Løkke, M.M.; Qu, H.; Sommer, S.G. Near Infrared Reflectance Spectroscopy (NIRS) for rapid determination of biochemical methane potential of plant biomass. Appl. Energ. 2014, 116, 52–57. [Google Scholar] [CrossRef]
- Zhang, B.; Li, W.; Xu, X.; Li, P.; Li, N.; Zhang, H.; Sun, Y. Effect of Aerobic Hydrolysis on Anaerobic Fermentation Characteristics of Various Parts of Corn Stover and the Scum Layer. Energies 2019, 12, 381. [Google Scholar] [CrossRef] [Green Version]
- Nørgaard, L.; Saudland, A.; Wagner, J.; Nielsen, J.P.; Munck, L.; Engelsen, S.B. Interval Partial Least-Squares Regression (iPLS): A Comparative Chemometric Study with an Example from Near-Infrared Spectroscopy. Appl. Spectrosc. 2000, 54, 413–419. [Google Scholar] [CrossRef]
- Leardi, R.; Norgaard, L. Sequential application of backward interval partial least squares and genetic of relevant spectral regions. J. Chemometrics 2004, 18, 486–497. [Google Scholar] [CrossRef]
- Li, H.D.; Liang, Y.Z.; Xu, Q.S.; Cao, D.S. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 2009, 648, 77–84. [Google Scholar] [CrossRef]
- Yang, G.; Li, Y.; Zhen, F.; Xu, Y.; Liu, J.; Li, N.; Sun, Y.; Luo, L.; Wang, M.; Zhang, L. Biochemical methane potential prediction for mixed feedstocks of straw and manure in anaerobic co-digestion. Bioresour. Technol. 2021, 326, 124745. [Google Scholar] [CrossRef] [PubMed]
- Gaballah, E.S.; Abomohra, A.E.-F.; Xu, C.; Elsayed, M.; Abdelkader, T.K.; Lin, J.; Yuan, Q. Enhancement of biogas production from rape straw using different co-pretreatment techniques and anaerobic co-digestion with cattle manure. Bioresour. Technol. 2020, 309, 123311. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Li, Y.; Jia, S.; Song, Y.; Sun, Y.; Zheng, Z.; Yu, J.; Cui, Z.; Han, Y.; et al. Methane production from the co-digestion of pig manure and corn stover with the addition of cucumber residue: Role of the total solids content and feedstock-to-inoculum ratio. Bioresour. Technol. 2020, 306, 123172. [Google Scholar] [CrossRef]
- Xue, J.; Yang, Z.; Han, L.; Liu, Y.; Liu, Y.; Zhou, C. On-line measurement of proximates and lignocellulose components of corn stover using NIRS. Appl. Energ. 2015, 137, 18–25. [Google Scholar] [CrossRef]
- Liang, L.; Wei, L.; Fang, G.; Xu, F.; Deng, Y.; Shen, K.; Tian, Q.; Wu, T.; Zhu, B. Prediction of holocellulose and lignin content of pulp wood feedstock using near infrared spectroscopy and variable selection. Spectrochim. Acta A 2019, 225, 117515. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Chen, Z. Wavelength Selection of Near-Infrared Spectra Based on Improved SiPLS-Random Frog Algorithm. Spectrosc. Spect. Anal. 2020, 40, 3451–3456. [Google Scholar] [CrossRef]
- Xie, H.; Chen, Z.G. Application of Genetic Simulated Annealing Algorithm in Detection of Corn Straw Cellulose. Chin. J. Anal. Chem. 2019, 47, 1987–1994. [Google Scholar] [CrossRef]
- Charnier, C.; Latrille, E.; Roger, J.M.; Miroux, J.; Steyer, J.P. Near-Infrared Spectrum Analysis to Determine Relationships between Biochemical Composition and Anaerobic Digestion Performances. Chem. Eng. Technol. 2018, 41, 727–738. [Google Scholar] [CrossRef]
- Raposo, F.; Borja, R.; Ibelli-Bianco, C. Predictive regression models for biochemical methane potential tests of biomass samples: Pitfalls and challenges of laboratory measurements. Renew. Sustain. Energ. Rev. 2020, 127, 109890. [Google Scholar] [CrossRef]
- Guo, Q.; Nie, L.; Li, L.; Zang, H. Estimation of the critical quality attributes for hydroxypropyl methylcellulose with near-infrared spectroscopy and chemometrics. Spectrochim. Acta A 2017, 177, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Tian, G.; Qiu, Y.; Qu, H. Rapid quantification of active pharmaceutical ingredient for sugar-free Yangwei granules in commercial production using FT-NIR spectroscopy based on machine learning techniques. Spectrochim. Acta A 2020, 245, 118878. [Google Scholar] [CrossRef]
- Yang, M.; Xu, D.; Chen, S.; Li, H.; Shi, Z. Evaluation of Machine Learning Approaches to Predict Soil Organic Matter and pH Using vis-NIR Spectra. Sensors 2019, 19, 263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weng, S.; Guo, B.; Tang, P.; Yin, X.; Pan, F.; Zhao, J.; Huang, L.; Zhang, D. Rapid detection of adulteration of minced beef using Vis/NIR reflectance spectroscopy with multivariate methods. Spectrochim. Acta A 2020, 230, 118005. [Google Scholar] [CrossRef] [PubMed]
Parameter | Corn Stover | Dairy Manure | Goat Manure | Swine Manure | Inoculum |
---|---|---|---|---|---|
Total Solid (%) a | 86.02 ± 0.91 | 26.62 ± 0.86 | 79.86 ± 1.78 | 31.22 ± 3.97 | 4.76 ± 0.21 |
Volatile Solid (%) a | 80.89 ± 0.67 | 19.37 ± 0.43 | 66.72 ± 1.45 | 23.27 ± 2.61 | 3.47 ± 0.21 |
Crude Protein (%) b | 1.99 ± 0.01 | 11.65 ± 0.01 | 15.27 ± 0.03 | 22.49 ± 0.01 | -- |
Crude Fat (%) b | 8.83 ± 0.40 | 3.30 ± 0.58 | 6.68 ± 0.37 | 7.95 ± 0.75 | -- |
Cellulose (%) b | 32.41 ± 2.30 | 21.25 ± 0.32 | 22.63 ± 0.18 | 9.26 ± 0.22 | -- |
Hemicellulose (%) b | 28.40 ± 2.24 | 26.57 ± 0.85 | 28.15 ± 0.57 | 23.16 ± 0.56 | -- |
Lignin (%) b | 3.08 ± 0.08 | 6.88 ± 0.07 | 8.38 ± 0.45 | 2.56 ± 0.51 | -- |
Total Sugar (%) b | 51.03 ± 1.98 | 46.68 ± 1.48 | 59.96 ± 2.11 | 49.56 ± 1.89 | -- |
Total Carbon (%) b | 42.94 ± 0.29 | 38.26 ± 0.25 | 43.47 ± 0.72 | 37.66 ± 0.89 | 36.36 ± 0.19 |
Total Nitrogen (%) b | 0.49 ± 0.01 | 2.15 ± 0.06 | 2.41 ± 0.22 | 3.46 ± 0.14 | 3.23 ± 0.05 |
Carbon–nitrogen Ratio | 88.35 | 17.83 | 18.02 | 10.89 | 11.26 ± 0.15 |
BMP (mL/g VS) | 219 ± 19 | 176 ± 9 | 205 ± 14 | 332 ± 10 | 18 ± 0.35 |
Samples | Mean (mL/g VS) | Maximum (mL/g VS) | Minimum (mL/g VS) | Standard Deviation (mL/g VS) | Coefficient of Variation (%) |
---|---|---|---|---|---|
Calibration set | 243.02 | 331.90 | 175.69 | 40.21 | 16.83 |
Validation set | 242.02 | 313.80 | 185.83 | 39.38 | 17.26 |
Methods | Wavelength Variables | RMSEC (mL/g VS) | RMSEP (mL/g VS) | rRMSEC (%) | rRMSEP (%) | PCs | ||
---|---|---|---|---|---|---|---|---|
Full-PLS | 1845 | 0.975 | 0.899 | 6.341 | 12.974 | 2.609 | 5.361 | 8 |
SiPLS | 320 | 0.931 | 0.950 | 14.517 | 11.695 | 5.974 | 4.832 | 6 |
SiPLS-GSA | 285 | 0.937 | 0.953 | 13.923 | 11.655 | 5.729 | 4.816 | 5 |
BiPLS | 272 | 0.954 | 0.964 | 11.929 | 10.797 | 4.909 | 4.461 | 7 |
BiPLS-GSA | 260 | 0.955 | 0.973 | 11.885 | 8.780 | 4.891 | 3.628 | 7 |
GSA-iPLS | 398 | 0.927 | 0.971 | 14.904 | 9.260 | 6.133 | 3.826 | 6 |
DGSA-PLS | 344 | 0.933 | 0.974 | 14.288 | 8.255 | 5.879 | 3.411 | 6 |
CARS | 28 | 0.957 | 0.971 | 11.578 | 8.592 | 4.764 | 3.550 | 7 |
MCARS | 77 | 0.969 | 0.982 | 9.868 | 6.599 | 4.061 | 2.727 | 7 |
CARS-GSA | 57 | 0.970 | 0.984 | 9.761 | 6.293 | 4.017 | 2.600 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zeng, C.; Wang, N.; Shi, J.; Zhang, B.; Liu, C.; Sun, Y. Rapid Biochemical Methane Potential Evaluation of Anaerobic Co-Digestion Feedstocks Based on Near Infrared Spectroscopy and Chemometrics. Energies 2021, 14, 1460. https://doi.org/10.3390/en14051460
Liu J, Zeng C, Wang N, Shi J, Zhang B, Liu C, Sun Y. Rapid Biochemical Methane Potential Evaluation of Anaerobic Co-Digestion Feedstocks Based on Near Infrared Spectroscopy and Chemometrics. Energies. 2021; 14(5):1460. https://doi.org/10.3390/en14051460
Chicago/Turabian StyleLiu, Jinming, Changhao Zeng, Na Wang, Jianfei Shi, Bo Zhang, Changyu Liu, and Yong Sun. 2021. "Rapid Biochemical Methane Potential Evaluation of Anaerobic Co-Digestion Feedstocks Based on Near Infrared Spectroscopy and Chemometrics" Energies 14, no. 5: 1460. https://doi.org/10.3390/en14051460
APA StyleLiu, J., Zeng, C., Wang, N., Shi, J., Zhang, B., Liu, C., & Sun, Y. (2021). Rapid Biochemical Methane Potential Evaluation of Anaerobic Co-Digestion Feedstocks Based on Near Infrared Spectroscopy and Chemometrics. Energies, 14(5), 1460. https://doi.org/10.3390/en14051460