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Abstract: The estimated ultimate recovery (EUR) of a single shale gas well is one of the important
evaluation indicators for the scale and benefit development of shale gas, which is affected by many
factors such as geological and engineering, so its accurate prediction is difficult. In order to realize
the accurate prediction of ultimate recovery, this study considered 172 shale gas wells in the Weiyuan
block as samples and selected 19 geological and engineering factors that affect the ultimate recovery
of shale gas wells. Furthermore, eight key controlling factors were selected by means of the Pearson
correlation coefficient and maximum mutual information coefficient comprehensive evaluation
method. The data were divided into training and testing samples. Different numbers of training
samples were selected and seven schemes were designed. Based on the key controlling factors,
the ultimate recovery prediction model for shale gas wells in this block was established through
multiple regression methods. The effectiveness of the prediction model was verified by analyzing
the testing samples. The result shows that with the increase of the size of training samples, the error
of the ultimate recovery predicted by the model gradually decreases gradually. When predicting
the single gas well, the average absolute error of ultimate recovery is less than 20% if the number of
the training gas well is more than 80. When analyzing the development potential of similar blocks
without drilling, the error of the sum of ultimate recovery is less than 10% if the size of the training
gas well reaches 60.

Keywords: shale gas well; multiple regression; Weiyuan block; key controlling factors; production prediction

1. Introduction

In China, there is abundant shale gas of different types that are distributed widely [1–4].
For shale gas with enormous resources, the estimated ultimate recovery (EUR) of a single
well is important to accurately estimate the potential of shale gas and to achieve scale and
efficient development [5]. The nano-scale pore characteristics, the multi-shift mechanism,
and the working system of “non-fixed pressure and non-fixed production” of the shale gas
reservoir lead to the complex flow characteristics of shale gas [6–9]. These complexities
bring great uncertainty to the EUR evaluation of shale gas wells. Therefore, it is instructive
for exploring shale gas efficiently to figure out the key controlling factors of shale gas wells
and obtain the EUR prediction model.

The EUR of shale gas wells is affected by many factors, and the factors influencing the
EUR of shale gas wells in different blocks are different. Therefore, an increasing number of
studies have been performed on the EUR in shale gas wells. Lei et al. [10] and Jia et al. [11]
analyzed the key factors affecting shale gas well production and further proposed the
technical direction of improving single well EUR. Xiao [12] and Geng et al. [13] screened the
main controlling factors of shale gas well production and established the prediction model
by using the grey correlation analysis method. Ma et al. [14] used the Pearson correlation
coefficient (Pearson) and maximum mutual information coefficient (MIC) analysis method
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to analyze the key factors controlling the productivity of shale gas wells in the early stage.
The key factors controlling the EUR of shale gas wells are determined, which plays an
important role in increasing the output of shale gas wells and guiding the development of
shale gas.

The multiple regression method is a type of mathematical statistics method, which is
based on the fundamental regression principle. It can screen out the significant factor, which
influences the variation of a dependent variable so that it can be applied to the forecasting
production rate of oil and gas fields [15]. Many Chinese scholars have researched the
application of the multiple regression method in oil and gas fields. Tang et al. [16] predicted
the production capacity of oil fields by mean of the multiple regression method, tested,
and made an accurate estimation to the prediction. They thought the prediction has great
instructive meanings and suggested that the multiple regression method should be used for
the oil and gas production capacity prediction. Hu et al. [17] built a productivity prediction
model for the Changqing oil field by using the multiple regression method. The prediction
accuracy for the daily oil production per well reaches 85%. Wu et al. [18] built an initial
productivity prediction model for the main area of Jiaoshiba after fracturing by means of
the multiple regression method and the prediction is certainly accurate. Li et al. [19] built
the productivity analogy prediction model for the oil well areas of Huangjinba by using
the multiple regression method.

So far, however, the application of multiple regression methods to shale gas wells has
been less researched. To this end, this paper studied the application of the multiple regres-
sion method to the productivity prediction of shale gas wells by considering 172 shale gas
wells in the Weiyuan block as samples from the perspective of multiple linear regression.

2. Methods

EUR is influenced by many factors, some of which are in a linear relationship with EUR
and others are in a nonlinear relationship with EUR. In order to determine the key controlling
factors of EUR comprehensively, the Pearson correlation coefficient and maximum mutual
information coefficient (Pearson–MIC) method were adopted in this study to measure the
linear and nonlinear relationships between EUR and various factors respectively.

2.1. Pearson Correlation Analysis

Pearson correlation coefficient, one of the widely used relation measurement standards,
can measure the linear relation between two random variables [20,21]. The calculation
formula is as follows:

ρ =
Cov(x, y)√

Var(x)Var(y)
(1)

where Cov(x,y) is the covariance of x and y, Var(x) is the variance of x, and Var(y) is the
variance of y.

The greater the absolute value of the correlation coefficient is, the stronger the correla-
tion is. The closer the correlation coefficient is to 1 or −1, the stronger the correlation is.
The closer the correlation coefficient is to 0, the weaker the correlation is. Generally, the cor-
relation strength of variables is judged according to the following value ranges, i.e., 0.8–1.0:
extremely strong correlation; 0.6–0.8: strong correlation; 0.4–0.6: moderate correlation;
0.2–0.4: weak correlation; and 0.0–0.2: extremely weak correlation or no correlation.

2.2. Maximum Mutual Information Coefficient

Maximum mutual information coefficient (MIC) is a non-parametric exploration based
on information, which is used to measure the strength of linearity or nonlinearity between
two variables [22,23]. It can show the linear functional relationship between variables and
find the nonlinear functional relationship (exponential and periodic). Moreover, it can
show the functional relationship and the nonfunctional relationship. In this way, it has
broad application [23].
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MIC fundamental takes advantage of the mutual information concept, which can be
illustrated in the following formula [24]:

I(x; y) =
∫

p(x, y) log2
p(x, y)

p(x)p(y)
dxdy (2)

The calculation formula of MIC is as follows:

MIC(x; y) = max
a∗b<B

I(x, y)
log2 min(a, b)

(3)

where: p(x) is the probability of variable x, p(y) is the probability of variable y, p(x,y) is the
joint probability of variable x and variable y, and a and b are the number of grids divided
in the x and y directions, which is essentially a grid distribution and B is a variable.

The calculation result of the MIC method is between 0 and 1.0 indicates full uncorrela-
tion, and 1 indicates complete correlation. It is generally deemed that the two variables
have a strong correlation when MIC is bigger than 0.5 [25].

2.3. Pearson–MIC Comprehensive Evaluation Method

Pearson correlation coefficient is sensitive to linear relationships [25–28]. Compared
to the Pearson correlation coefficient, MIC is more robust than the Pearson correlation
coefficient, less susceptible to outlier values, and can be used to detect potential nonlinear re-
lationships between variables [14]. Combined with the advantages of these two correlation
analyses, the Pearson–MIC comprehensive evaluation method proposed by Ma et al. [14]
is used to screen the key controlling factors affecting the EUR of shale gas wells.

2.4. Multiple Linear Regression Method

Linear regression is one of the most important mathematical models, and it is often
used as the base of many other models [29]. Multiple linear regression is a very important
method for multivariate statistical analysis. This method can be used to evaluate the
relative importance of each independent variable to the dependent variable [30]. Multiple
linear regression model can be expressed as

y = β0 + β1x1 + β2x2 + . . . + βnxn, (4)

where y is the dependent variable, x1 . . . xn is the independent variable, and β0 . . .βn is the
unknown parameter.

Due to the importance of the multiple linear regression model, this method has been widely
used in various industries, such as the economy, petroleum, and meteorological industries.

3. Factor Selection

Weiyuan shale gas field is located in the northern part of southern Sichuan, with an
area of about 4024 km2, showing a northern mountain and hilly terrain in the central and
southern regions. The terrain is tilted from northwest to southeast [31]. The buried depth
of the high-quality shale section of the Wufeng-Longmaxi Formation of Lower Silurian in
the Weiyuan block is 1500–3700 m deep, and the burial depth increases from southwest to
southeast. The pressure coefficient is 1.2–2.0, indicating that they are mostly overpressure
gas reservoirs. The target horizon of the Weiyuan shale gas field in the study area is the
L11 sub-member of Longmaxi Formation (Longmaxi Formation is vertically divided into
the first and second members, which are referred to hereinafter as L1 and L2, respectively.
L1 member is further subdivided into the first (L11) and second (L12) sub-members. The L11
sub-member is further divided into L11

1, L11
2, L11

3, and L11
4 sublayers), with reservoir

characteristics of high total organic carbon (TOC), high porosity, and high gas content [32].
The production of shale gas wells is affected by many factors, including geological

factors, engineering factors, and economic factors. Geological factors include reservoir
thickness, TOC, gas content, maturity, porosity and permeability characteristics of the
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matrix, pressure coefficient, fracture development, burial depth, contents of brittle min-
erals, water saturation, etc. Engineering factors include drilling length of a high-quality
reservoir, number of fracturing segments, number of perforation clusters, segment distance,
cluster distance, horizontal sections, sand contents, fracturing fluid volume, the amount of
proppant, flowback rate, etc. [11,14,33–40]. Geological factors are uncontrollable, whereas
engineering factors and economic factors are controllable. Engineering factors are affected
by geological factors and economic factors. Geological factors and engineering factors can
directly affect the productivity of shale gas wells [14].

In this study, the geologic and engineering parameters are collocated from 172 shale
gas wells in Weiyuan. As shown in Table 1, and 19 geological and engineering factors are
selected to analyze the key controlling factors of EUR in the Weiyuan block and build the
EUR prediction model according to the availability and the efficiency of the statistics.

Table 1. Geological and engineering factors.

Geological factors
vertical depth TOC porosity thickness of L11

1 sublayer

gas saturation pressure coefficient contents of brittle minerals

Engineering factors

fracturing segment length fracturing section fracturing fluids intensity

intensity of sand average discharge 30-day flowback rate

drilling catching length into the class I reservoir 90-day flowback rate

drilling catching length of L11
1 sublayer 180-day flowback rate

flowback rate of the gas generation peak 360-day flowback rate

4. Results
4.1. The Selection of Key Controlling Factors

Table 2 shows the scatter plot and linear fitting between EUR and 19 factors, and the
scatter plot with the goodness-of-fit greater than 0.1 is shown in Figure 1.

Table 2. The linear fitting between estimated ultimate recovers (EUR) and various factors (R2).

EUR

vertical depth TOC porosity thickness of L11
1 sublayer

3.805 × 10−4 0.015 0.002 0.189

gas saturation pressure coefficient contents of brittle minerals fracturing segment length
0.141 9.985 × 10−5 0.071 0.254

fracturing section fracturing fluids intensity intensity of sand average discharge
0.136 0.009 0.003 6.775 × 10−4

drilling catching length into the class I reservoir drilling catching length of L11
1 sublayer 30-day flowback rate

0.224 0.288 0.006

90-day flowback rate 180-day flowback rate 360-day flowback rate flowback rate of the gas generation peak
9.620 × 10−5 4.136 × 10−5 0.001 0.008

Table 3 shows the Pearson correlation coefficient between EUR and 19 factors, and the
influencing factors with the correlation coefficient bigger than 0.35 are selected. Geological
factors include the thickness of the L11

1 sublayer and gas saturation. Engineering factors
include fracturing segment length, fracturing section, drilling catching length into the class
I reservoir, and drilling catching length of L11

1 sublayer.
Table 4 shows the MIC correlation coefficient between EUR and 19 factors, and the

influencing factors with the correlation coefficient greater than 0.55 are selected. The geolog-
ical factor is the thickness of the L11

1 sublayer, and engineering factors include fracturing
segment length, fracturing fluids intensity, drilling catching length into the class I reservoir,
drilling catching length of L11

1 sublayer, and 360-day flowback rate.
Combined with the Pearson–MIC comprehensive evaluation method, factors selected

as the key controlling factors to build a multilinear regression model are as follows: geologi-
cal factors are the thickness of L11

1 sublayer and gas saturation, and engineering factors are
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fracturing segment length, fracturing section, fracturing fluids intensity, drilling catching
length into the class I reservoir, drilling catching length of L11

1 sublayer, and 360-day
flowback rate.
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Table 3. Pearson correlation coefficient table.

EUR

vertical depth TOC porosity thickness of L11
1 sublayer

−0.020 −0.122 0.050 0.434

gas saturation pressure coefficient contents of brittle minerals fracturing segment length
0.375 0.010 0.266 0.504

fracturing section fracturing fluids intensity intensity of sand average discharge
0.368 −0.097 −0.051 −0.026

drilling catching length into the class I reservoir drilling catching length of L11
1 sublayer 30-day flowback rate

0.474 0.536 0.080

90-day flowback rate 180-day flowback rate 360-day flowback rate flowback rate of the gas generation peak
0.010 0.015 −0.012 −0.088

Table 4. Pearson correlation coefficient table.

EUR

vertical depth TOC porosity thickness of L11
1 sublayer

0.48 0.46 0.050 0.59

gas saturation pressure coefficient contents of brittle minerals fracturing segment length
0.45 0.48 0.55 0.6

fracturing section fracturing fluids intensity intensity of sand average discharge
0.5 0.57 0.43 0.46

drilling catching length into the class I reservoir drilling catching length of L11
1 sublayer 30-day flowback rate

0.63 0.71 0.52

90-day flowback rate 180-day flowback rate 360-day flowback rate flowback rate of the gas generation peak
0.53 0.52 0.58 0.49

4.2. EUR Prediction of Shale Gas Wells Based on Multiple Regression

By considering 172 shale gas wells in the Weiyuan block as samples and EUR as the
final evaluation target, the paper designed seven schemes to verify the effect of training
sample size on the results of the regression model, and the details of the schemes are shown
in Table 5. Among them, 40 testing samples are the same data of gas wells.

Table 5. Schemes.

Scheme 1 2 3 4 5 6 7

Training set 10 20 40 60 80 100 120
Test set 40 40 40 40 40 40 40

Sum 50 60 80 100 120 140 160

To carry out multi-factor analysis, a nondimensional treatment shall be performed
to solve the problem that various indicators cannot be integrated because each indicator
has its own nature and measurement unit, which are not comprehensive [41,42]. There-
fore, the nondimensional treatment is used to deal with various factors by applying the
extremum method to eliminate the influence of different dimensions (Formula 4). EUR pre-
diction model can be built up based on the multiple regression of the processed data.

x′i =
maxxi − xi

maxxi −minxi
(5)

where maxxi is the maximum value of the sample data and minxi is the minimum value of
the sample data.

From the Pearson–MIC comprehensive evaluation method, it can be derived that
EUR has a nonlinear relationship with fracturing fluid intensity and 360-day flowback
rate. After curve fitting, it is found that the secondary correlation between EUR and
fracturing fluid intensity is better. The relationship is: y = 0.109x − 0.002x2 − 0.467;
the cubic correlation between EUR and 360-day flowback rate is better. The relationship is:



Energies 2021, 14, 1461 7 of 11

y = − 3.418x + 5.295x2 − 2.391x3 + 1.5. Multiple linear regression was performed through
a linear transformation of fracturing fluid intensity and 360-day flowback rate.

Considering that the relationship between various factors is relatively complicated and
there may be multicollinearity, this paper adopts the stepwise regression method to solve
this problem. The basic idea of this method is to gradually introduce new variables. If the
partial regression square sum of the new variables is significant after testing, it indicates
that it can be introduced. At this time, the new variables are considered as independent
explanatory variables and cannot be represented by other explanatory variables (approxi-
mately) linearly. Otherwise, it means that the new variable is not independent and should
not be introduced [43].

The multiple linear regression models and goodness-of-fit (R2) of the seven schemes
are shown in Table 6. For the test results of each scheme, the average relative error and the
average absolute error of the true value, and the model predictions for each testing sample
are calculated respectively. The evaluation results are shown in Figure 2 and Table 7.

Table 6. Multiple linear regression model results.

Scheme Sample Size Regression Model R2

1 50 y = −6.329 * gas saturation −0.548 * fracturing segment length +3.363 0.923
2 60 y = −2.587 * gas saturation −1.263 * fracturing segment length +2.361 0.873

3 80 y = −0.881 * fracturing segment length −0.538 * thickness of L11
1 sublayer −0.646*

drilling catching length into the class I reservoir +1.899
0.640

4 100 y = −0.742 * fracturing segment length −0.655 * thickness of L11
1 sublayer −0.600*

drilling catching length into the class I reservoir +1.792
0.647

5 120 y = −0.771 * fracturing segment length −0.608 * thickness of L11
1 sublayer −0.528*

drilling catching length into the class I reservoir +1.711
0.616

6 140 y = −0.611 * fracturing segment length −0.625 * thickness of L11
1 sublayer −0.469 *

drilling catching length into the class I reservoir +1.605
0.542

7 160 y = −0.638 * fracturing segment length −0.465 * thickness of L11
1 sublayer −0.687 *

drilling catching length of L11
1 sublayer +1.613

0.491

* represents the product of two variables.
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Table 7. The prediction results of different schemes.

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 Scheme 6 Scheme 7

Data sample size 50 60 80 100 120 140 160
Training sample 10 20 40 60 80 100 120
Testing sample 40 40 40 40 40 40 40

The mean absolute error of testing sample 83.87% 41.63% 27.55% 23.41% 20.10% 19.18% 19.29%
The error of the sum of EUR of testing sample 21.72% 18.35% 16.56% 9.34% 4.23% 2.20% 0.83%

5. Discussion

By observing the model obtained by means of multiple linear regression, it can be
observed that when the training sample sizes were 10 wells and 20 wells, the relationship
between EUR and each key controlling factor could not be explored fully due to the
small amount of data; therefore, only two factors including gas saturation and fracturing
segment length were included in the regression model. When the number of training
samples increased to 40 gas wells, the regression model included three key controlling
factors, namely, fracturing segment length, the thickness of the L11

1 sublayer, and drilling
catching length into the class I reservoir. When the training sample size is increased to
120 gas wells, the significant impact of the drilling catching length of the L11

1 sublayer on
EUR exceeds that of drilling catching length into the class I reservoir.

The prediction results of the testing samples show that as the number of training
samples increases, the error of the prediction results can be significantly reduced, but the
increase in the sample size makes the goodness-of-fit of the regression model worse.
When the training sample size is less than 40 gas wells, the average absolute error and
average relative error of the test samples are both large, and the ideal prediction effect
cannot be achieved. As the training sample size increases to more than 80 gas wells,
the average absolute error of the test samples can be reduced to less than 20%.

The error of the sum of EUR of 40 gas wells in the seven schemes of testing samples
also gradually decreases with the increase of the training sample size. When the training
sample size is 60 gas wells, the error is less than 10%, and when the sample size is 120 gas
wells, the error is only 0.83%.

All in all, the EUR prediction model for shale gas wells in this area is established
based on the multiple linear regression method, which verifies the effectiveness of the
multiple regression method in shale gas well EUR prediction. This method can be operated
simply and is suitable for on-site production prediction of shale gas well EUR. However,
the application and promotion of the shale gas well EUR prediction model established by
the above method in other blocks may still have certain restrictions. This paper only takes
the Weiyuan block as an example to analyze the effectiveness of the multiple regression
method, and specific blocks need specific analysis. The research results show that to reduce
the error of the EUR prediction model, more production gas well data are needed. How to
obtain a more accurate EUR prediction based on few data on gas wells is still the direction
of continuous improvement.

6. Conclusions

(1) The geological and engineering parameters of 172 shale gas wells in the Weiyuan
block are comprehensively analyzed. The key controlling factors affecting EUR in this
block are determined by means of the Pearson–MIC comprehensive correlation evaluation
method. The result shows that the main geological factors that affect the EUR of this block
include the thickness of the L11

1 sublayer and gas saturation, and the engineering factors
include the fracturing segment length, fracturing section, fracturing fluid intensity, drilling
catching length into the class I reservoir, drilling catching length of L11

1 sublayer and
360-day flowback rate;

(2) The data of 172 actual production wells in the Weiyuan block are selected as
samples, and seven different training sample schemes are designed. The multiple linear
regression models are established based on the selected key controlling factors. The result



Energies 2021, 14, 1461 9 of 11

shows that the number of training samples for establishing the model has a great influence
on the accuracy of prediction results. The more the training samples are, the smaller the
error of predicted EUR is. When the training sample size is greater than 80 wells, the EUR
prediction error is less than 20%, and the prediction applied to a single well EUR has
good accuracy;

(3) By introducing the multiple linear regression method in the EUR prediction,
the error of the sum of the EUR of the testing samples (40 gas wells) is less than 10% when
the training sample size reaches 60 gas wells, and as the training sample size gradually
increases, the sum of EUR of the testing samples will gradually decrease. This result shows
that this method can be used as a good criterion for block standard well evaluation and
applied to the development potential analysis of similar blocks without drilling.

In summary, this analysis method based on data mining provides a new idea for the
EUR prediction of shale gas wells and improves the efficiency of EUR prediction for shale
gas wells. Therefore, it is recommended to apply the multiple regression method to the
EUR prediction of shale gas wells.
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