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Abstract: There has been an effort for a few decades to keep energy consumption at a minimum
or at least within a low-level range. This effort is more meaningful and complex by including a
customer’s satisfaction variable to ensure that customers can achieve the best quality of life that could
be derived from how energy is used by different devices. We use the concept of Shapley Value from
cooperative game theory to solve the multi-objective optimization problem (MOO) to responsibly
fulfill user’s satisfaction by maximizing satisfaction while minimizing the power consumption, with
energy constrains since highly limited resources scenarios are studied. The novel method uses the
concept of a quantifiable user satisfaction, along the concepts of power satisfaction (PS) and energy
satisfaction (ES). The model is being validated by representing a single house (with a small PV
system) that is connected to the utility grid. The main objectives are to (i) present the innovative
energy satisfaction model based on responsible wellbeing, (ii) demonstrate its implementation using
a Shapley-value-based algorithm, and (iii) include the impact of a solar photovoltaic (PV) system in
the energy satisfaction model. The proposed technique determines in which hours the energy should
be allocated to maximize the ES for each scenario, and then it is compared to cases in which devices
are usually operated. Through the proposed technique, the energy consumption was reduced 75%
and the ES increased 40% under the energy constraints.

Keywords: electrical energy; load scheduling; satisfaction; Shapley Value; smart meter; solar
photovoltaics

1. Introduction

Energy is the backbone of modern society. It provides the means to support everyday
infrastructure, such as hospitals, schools, and homes. In the case of homes, for most of the
90 percent of the global population with access, it is difficult to imagine living without
electric energy [1]; it powers our essential needs, such as water pumping, lighting, cooling,
and very often also cooking, among others. Additionally, electric energy provides comfort
and entertainment, and although these are not essential needs, they can also improve
quality of life.

Throughout the years, with an increasing energy demand, managing energy consump-
tion has become important. Demand Side Management (DSM) encapsulates those strategies
that change the main power consumption to better match the power supply. Through DSM
methodologies, one of the purposes is to create an energy demand scheduling to benefit
a household.

Many DSM studies focus on minimizing energy cost, achieving utility stability, and
shifting peak demand. Wu et al. [2] proposed a mixed-integer linear programming (MILP)
model for the energy system optimization to reduce the annual cost in a building distributed
heating network. Similarly, Tang et al. [3] proposed a game theoretic method to maximize
net profit and reduced demand fluctuation using real data of building on a campus in

Energies 2021, 14, 1485. https://doi.org/10.3390/en14051485 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-7562-004X
https://orcid.org/0000-0002-7650-4112
https://doi.org/10.3390/en14051485
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14051485
https://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/14/5/1485?type=check_update&version=1


Energies 2021, 14, 1485 2 of 18

Hong Kong. Conversely, Lokeshgupta et al. [4] proposed a mathematical model of an
intelligent multi-objective home energy management (HEM) to simultaneously minimize
the consumer’s bill and system peak demand.

Some authors have aimed at the time of device usage instead of the costs while en-
suring a level of satisfaction. Yang et al. [5] implemented a Nash-based game theoretic
approach to optimize time-of-use (ToU) pricing strategies considering the costs of fluc-
tuating demands to the utility company and the satisfactions costs of user. Additonally,
Marzband et al. [6] introduced a satisfaction function in a bi-level model to maximize
and allocate the profit. The authors included a satisfaction function as part of the payoff
function. The function is calculated at the end of each time slot and depends on the amount
of energy generation.

Among the studies that include satisfaction as part of the objectives, it is defined in
terms on how much their expectations are met [7,8]. The aforementioned methodologies
tackle the comfort/satisfaction/welfare part as an indirect measure. It is derived from
another variable taking this into account. Ogunjuyigbe et al. [8], on the other hand,
developed a cost per unit satisfaction index. Their model considered individual devices at
each time of the day. The index was maximized by using a genetic algorithm.

Game theory approaches have become one of the tools adopted for modeling and
analyzing energy consumption, due to its effectiveness to capture complex interactions
between multiple players. The Stackelberg game is one of the most used game strategies
for demand response problems [3,9–12]. Another largely used non-cooperative approach,
as a solution for DSM, is the Nash equilibrium strategy [3,13–16].

Summarizing the aforementioned studies, even though research efforts are starting to
emerge in the point of confluence of analyzing energy systems while considering quality of
life, they are still less prevalent. Two knowledge gaps in these studies are that satisfaction
is not computed directly, neither is satisfaction considered in most cases from the point as
time dependent. This study provides a motivation for such a granular level of smart meter
data with distinct energy uses. The proposed study explores more ways to harness smart
meters data to improve people’s wellbeing. Detailed and granular information on energy
consumption is expected to be broadly available in most households in the near future.
This study is centered on the specific power usages at the household level. The benefits
they bring to the household, as captured by human satisfaction, is also studied. The user
satisfaction is not studied as a posteriori parameter to test the model but as a key part of
the problem.

DSM requires the processing of a high amount of data to coherently use consumption
patterns and manage demand. Smart metering infrastructure (SMI) provides the means
to gather this high amount of electrical consumption information. However, it is still a
challenge to consider people´s wellbeing while using smart meter data. Buchanan et al. [17]
studied how smart meters can affect consumer’s wellbeing. Under the ‘five ways to well-
being framework’ [18], they explored other areas that may be found with the consumer
acceptance and engagement with smart meter enabled services (SMES). To address this
gap, this work is also contributing to a new platform to insert smart meter research directly
into the exploration of wellbeing and the human impact of energy socio-technical systems.
The present research offers a Shapley Value (SV) game-theory approach to solve the multi-
objective optimization problem (MOO) to optimize energy consumption. The hours of the
day for which energy should be allocated are found. Quantifiable user satisfaction metric
is used through the concepts of power satisfaction (PS) and energy satisfaction (ES). PS
and ES were recently developed by the authors [19]. PS and ES were computed hourly
and incorporated the detrimental impact that excess consumption can have in the quality
of life. Although the state of art may offer other traditional [20] and metaheuristics [21]
multi-objective based approaches, the present novel SV-based game-theoretic approach, as
seen in mentioned research, offers a simpler and more intuitive way to tackle the problem.

Chambers [22] proposed responsible wellbeing to combine the concept of wellbeing
with personal responsibility. Castro-Sitiriche and Ozik [23] delved into the matter when



Energies 2021, 14, 1485 3 of 18

considering responsible wellbeing in terms of energy consumption. The energy threshold
hypothesis is defined. It was previously presented by Max-Neef [24] in terms of economic
growth and quality of life. The proposed MOO consists of responsibly fulfilling user’s needs
by maximizing satisfaction while minimizing the power consumption. A novel model is
proposed to include customer’s satisfaction in an optimization problem to minimize the
energy consumption. To summarize, the contributions of this paper can be highlighted
as follows:

• Energy satisfaction (ES) is proposed to capture the benefit of energy uses and to model
the optimization problem.

• The Shapley Value algorithm is implemented to maximize ES and minimize
energy consumption.

• The proposed model also integrated solar-based renewable-energy resources (RESs).
Real data from [25] was used for validation.

2. Cooperative Game Theory
2.1. Overview of Game Theory

Game theory provides a series of analytical tools, which allows us to understand what
is observed in decision-making interactions. The foundation of the theory is formed by two
basic assumptions: decision-makers are rational, and reason strategically by considering
the expectations of other decision-makers’ behaviors. Real-life situations are modeled by
game theory through highly abstract representations, thus, allowing their use to study
problems in many fields [26].

2.2. Types of Games

There are noncooperative games and cooperative (or coalitional) games. In the former,
each action is taken by a single player in response to the other players [27]. In cooperative
games, the model consists of the set of joint actions that each group of players (or coalition)
can take in response to the other players. Cooperative games are concerned with the
interactions among players, the value of each coalition and how the value can be distributed
to the participating players.

2.3. Shapley Value

The Shapley Value [28] is a solution concept for coalitional games along with the core,
nucleolus and Pareto optimal, among others. Given a coalitional game (N , v), there is a
unique feasible payoff division x(v) = ϕ (N , v) that divides the full payoff of the grand
coalition. The Shapley Value can be defined as [29],

ϕi(N , v) =
1

N!

N!

∑
R=1

[v(Pi(R) ∪ i)− v(Pi(R))] (1)

where R is the set of all N! orderings of N , Pi(R) is the set of players preceding i in the
ordering R and ϕi(N , v) is the expected marginal contribution over all orders of player i to
the set of players who are preceding it [26].

The Shapley Value also satisfies the following axioms [30]:

• Symmetry: The symmetry axiom states that interchangeable players i and j should
receive the same payments: ϕi(N , v) = ϕj(N , v). Two agents are interchangeable if
they contribute the same amount to every coalition with the other agents.

• Dummy Axiom: The dummy player i contributes to any coalition the same amount
that i can achieve alone. Thus, for any v, if i is a dummy player, then ϕi(N , v) = v(i).

• Additivity: The additivity axiom states that for any two coalitional game problems, de-
fined by v1 and v2, we have for any player i that ϕi(N , v1 + v2) = ϕi(N , v1) + ϕi(N , v2),
where the game ϕi(N , v1 + v2) is defined by (v1 + v2)(S) = v1(S) + v2(S) for every
coalition S.
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• Efficiency: The efficiency axioms states that the entire payoff is divided among the
players, so ∑N1 ϕi = v(N ), where ϕi is the Shapley Value of player i.

3. Satisfaction Model
3.1. Satisfaction Concept

The human experience is complex to describe since it depends on the reality of each
person. Satisfaction, on the other hand, is a more general concept and describes the user’s
perception and how its expectation can be fulfilled [7]. This research proposes a model
to quantify satisfaction in the context of a household with different devices. The use of
each device provides different levels of satisfaction at different times of the day. Daily
moments are captured and summed up to build the energy satisfaction concept. As part of
this model, we also consider excessive and poor consumption.

3.2. User Input Satisfaction

The proposed algorithm will be finding the hours of the day for which energy should
be allocated to achieve the maximum satisfaction at a minimum energy consumption. For
the user satisfaction, it is assumed:

• Satisfaction among devices can be compared at two levels: time-based, satisfaction Ω,
and device-based satisfaction ∆, as defined by Ogunjuyigbe [8]. The former implies
that if there is a device no. 1, then the satisfaction it is providing at time t1, (Ω1 (t1)),
can be compared with the satisfaction the same device is providing at different time t2,
(Ω1(t2)). For the latter, if the two devices need to be used at the same time, then there
is a satisfaction derived from using device no. 1 (∆1(t1)), which can be compared with
the satisfaction derived from using device no. 2 (∆2(t1)) at that hour.

• Time-based satisfaction Ω has an integer numerical value from zero (0) to six (6), where
six (6) means completely satisfied, three (3) means neutral, and small satisfaction
values, such zero (0), one (1) and two (2) will denote dissatisfaction.

• Three (3) levels of time-based satisfaction are identified according with these seven (7)
scores, see Table 1.

Table 1. Levels of Satisfaction.

Level Respondent’s Answer

Satisfied 4, 5, 6
Neutral 3

Unsatisfied 0, 1, 2

3.3. Power Satisfaction

The power satisfaction will not only depend on the user input satisfaction set by the
household’s head. PS also depends on the energy consumption patterns at each hour of
the day. Thus, PS depends on the number of hours of continuous usage (CLoU) and the
total length of use in a day (LoU). To find the PS at time t, we need to analyze the previous
24 h, i.e., from time t− 24 until time t− 1. It is suggested that PS cannot be tested based on
how satisfied a person is at t but it will be affected by its perception of the last 24 h.

3.4. Equation of Power Satisfaction

Power satisfaction at a given time/hour can be expressed as the function in
Equation (2) below:

PSi[t] =
(
αi [t]− βi[t]

∣∣t̂ui [t]− tui

∣∣ −γ[t]
∣∣ t̂ti[t]− tti

∣∣) ui[t] (2)

where,

βi [t] = γi[t] =
αi[t] + 3

48− tui − tti

(3)
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where, α is related to the customer’s answer, β is related to CLoU and γ is the related to
LoU. The main idea is to penalize the initial satisfaction, α according to an excess or poor
consumption. Variables β and γ depends on α and convert t̂u and t̂t, respectively, into a
value that can be deducted from α and,

αi [t] =
Ωi [t]

tti

, (4)

where Ωi is the time-based input satisfaction for device i and it is divided by the responsible
LoU, tti , hence α will reach its maximum if it used the expected time tti hours during a
24-h period. To find PS, 24 h of experiment is needed. For each device i, the array
ui = {un : n = 1, 2, . . . 24} where un is 0 or 1. It is the input vector for each device with
the operational status of the devices, it will be one (1) when ‘ON’ and (0) if it is ‘OFF’. For
further details, see previous work reference [19].

3.5. Energy Satisfaction

Each user has a subset {i : i = 1, 2, . . . , N} of N participant devices. Following the
well-known concept of electric energy, to find the energy satisfaction, ES, in time t, the
previous 24 values of PS are required, i.e., {PSi[t− 24], . . . , PSi[t− 1]}. To compute the
first PS, PSi[t− 24], the past 24 h before this time are also required. Hence, to compute ES,
48 h of experiment are required. ES is defined as in Equation (5).

ES[t] =
1
N ∑

i∈ N
∑
n=k

PSi,n , (5)

where N is the number of participant devices, k is the initial time of the experiment,
t = k + 23 and ∆i,t is the device-based satisfaction.

Equation (5) is modified to include the concept of device-based satisfaction ∆. ES
becomes a weighted summation and reflects the specific needs at that current time t.
Subsequently, the average is computed to obtain the ES value at time t,

ES′[t] =
1
N

(
∑

i∈ N
∆i,tPSi,t +

(
t−1

∑
n=k

PSi,n

))
, (6)

4. Problem Formulation
4.1. Electric Energy Function

The energy consumption in an hour from time t until time t + 1 is defined as in
Equation (7),

L[t] = ∑
i∈ N

ei,tui[t] , (7)

where ei,t represents an usual energy consumption of device i in one hour and ui is the
input vector for each device i with its operational status. It will be one (1) when ‘ON’ and
zero (0) if it is ‘OFF’.

4.2. Optimization Problem

The problem of jointly maximizing the satisfaction while minimizing the power
consumption f2(u) can be formulated as a multi-objective (MOO) problem:

min[ f1(u, t),− f2(u, t)], (8)

s.t. L[t] ≤ Econ, (9)

where,
f1(t, u) = L[t], (10)

f2(t, u) = ES′[t], (11)
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t ∈ {k, k + 1, . . . , k + 23} (12)

4.3. Constraint

The algorithm is subjected to the constraint that the total energy consumption of the
user is less or equal to a pre-defined energy budget, Econ,

s.t. L[t] ≤ Econ , (13)

4.4. Cooperative Game Model Implementation

A mathematical model based on cooperative game theory is developed to capture
the complex interactions among the different devices. The Shapley Value algorithm based
on the cooperative game implementation is applied to all participating devices to obtain
the ui vector. Such that energy can be allocated to simultaneously maximize the ES′ and
minimize the energy consumption L for a corresponding energy reference. The flow chart
for the proposed algorithm is shown in Figure 1. Time-based and device-based satisfaction
tables and power consumption for each device are established. The proposed approach is
to design a consumption scheduling for a selected number of hours n. Additionally, we
should decide time t to start the experiment and the number N of participating devices.
Considering the experiment should collect energy data for the 48 h before this time t, then
the status matrix is of size 48× N. The number of possible action profiles A, is found
(2N). Since each possible action profile contains the possible devices´ status, each of these
possible profiles are multiplied for the correspondent Device-based satisfaction ∆ according
to the time of the day and the device. PS and ES are computed using Equations (2) and (6)
at each time slot, respectively. Next, the worth of the coalition v(Sk) can be found for each
time slot for each profile. Lastly, the group of actions with maximum SV can be selected.

To implement this algorithm the following considerations are followed:

• Players:

Devices-agents i = 1, 2, . . . , N are considered the players.

• Actions:

Devices can be ON or OFF, so the actions would be turning ON or OFF the participant
devices (players.) The ui array will be zeros or one depending on the device status.

• Payoffs:

Consumption and ES are combined and modeled as optimization function using the
characteristic function.

• Value of coalition:

Agents form coalitions and every coalition and corresponding actions have different
value. For K ⊆ N, SK is the group of K devices that agreed to make a coalition to maximize
the total expected payoff v(SK) that they can achieve together. The value of a coalition for
this cooperative game is,

v(SK)t =


0, |L[t] > Ere f ∩ ES′[t] < 4[
1− f

∣∣∣ L[t]−PPV [t]
max(L[t],PPV [t])

∣∣∣][ ES[t]
6

]
, PPV [t] < L[t] < Ere f[

1−
∣∣∣ L[t]−PPV [t]

max(L[t],PPV [t])

∣∣∣][ ES[t]
6

]
otherwise

, (14)

where f is a factor to penalize level of consumption among the energy reference
and solar energy less than cases when less then solar energy and PPV [t] is the min-
imum among the set of power output of generation(Ppv[t]) and the power inverter
(Pinv[t]), i.e., PPV [t] = min

(
Ppv[t], Pinv[t]

)
, for the cases with just utility and

PPV [t] = min
(

Ppv[t] + Pbat, Pinv[t]
)

for the cases with batteries and utility, where Pbat is
the set of power output from batteries.
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There are three levels of consumption: L ≤ PPV , PPV < L ≤ Ere f and L > Ere f .
Where Ere f would be a consumption that is acceptable, there will be penalty if it is less than
PPV or greater than Ere f .
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5. Experimental Results and Discussion
5.1. Case Study: House with Photovolatic System (PV) and Utility or House with PV, Batteries
and Utility

The proposed model is being validated by representing a single rural residential
house that may contain a small photovoltaic (PV) system that is composed of one or more
solar panels combined, a DC/AC inverter, and it is grid-connected. Figure 2 describes a
generalized version of the system. Energy data to simulate the case study is obtained in
two ways:

• Reference Energy Disaggregation Data Set (REDD) [31] for power ratings and status
vector (ui) for refrigerator, microwave, lighting, stove, and water heater.

• Power ratings for TV, AC, Radio and phone, are obtained from Ogunjuyigbe [8]. Status
vectors for these four devices are randomly generated.
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5.2. Data Characterization for the Algorithm Calibration
5.2.1. Household’s Load

For the load data, a single house’s devices (four of them) are analyzed, the REDD
data [31] is used to represent a part of house’s loads. Data that is shown in Table 2 contains
average power reading for the individual circuits of the house. The REDD data was
sampled every three seconds. Hence, there are 20 data points per minute. The ui array is
an hourly vector. For this vector, it needs to be decided how much time within an hour a
certain device must be ON to assign a one (1) in that time slot.
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Table 2. Load Description.

Device Rating (W) tu tt

Lightings 240 4 8
Refrigerator 170 24 24

Stove 2 3 9
Microwave (Oven) 1200 1 4

5.2.2. House Head’s Satisfaction

Satisfaction matrices were generated according to author’s personal experience and
they are described in Tables 3 and 4. This first stage of results is simply used as a sanity
check. In the Section 5.3, actual load description (see Table 5) is used for each device
based on REDD database and Ogunjuyigbe et al.’s [8] work. Besides, actual values of
satisfaction were used to generate Tables 6 and 7. The authors´ personal experience
reflects and summarizes how devices were prioritized by most of the population in extreme
conditions such as those experienced after hurricane Maria in 2017 in Puerto Rico. However,
future work will include field data to build the time-based satisfaction and device-based
satisfaction tables.

5.2.3. Results

Figure 3 depicts the amount of energy used by each of the four devices under the
proposed SV allocation algorithm and the actual energy usage according to the REDD
database [31]. The proposed optimization problem has been constrained. Thus, show-
ing how with the same amount or less energy than in the actual REDD scenario. ES
(see Figure 4) is higher at each time slot.
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Table 3. Time-based satisfaction.

S/N Equipment
Hours

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 Lightings −3 −3 −3 −3 −3 6 6 6 −2 −2 −2 −2 −2 −2 −2 −2 6 6 6 6 6 −3 −3 −3

2 Refrigerator 4 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4 4 4

3 Stove −2 −2 −2 −2 −2 6 6 6 −2 −2 −2 5 6 6 5 −2 −2 −2 −2 6 6 −2 −2 −2

4 Microwave 4 4 0 0 0 6 6 6 6 0 0 6 6 6 0 0 0 0 6 6 6 0 0 0

Table 4. Device-based satisfaction.

S/N Equipment
Hours

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 Lightings 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

2 Refrigerator 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 Stove −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2

4 Microwave 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
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Table 5. Load description.

Device Rating (W) tu tt

Lightings 135 4 8
Microwave (Oven) 1200 1 4

TV 200 2 4
AC 800 6 8

Radio 50 5 12
Water Heater 2000 1 2

Laptop 100 8 12
Phone 10 1 3

Figure 5 depicts how power is used in both scenarios. Figure 6 shows the resulting
ES from that energy usage. Lighting is suggested to be on early in the morning and in the
afternoon when the satisfaction derived from them is the highest. Therefore, the refrigerator
needs to be off for one hour because it is a priority (see Table 4 to have lighting on since its
contribution to the total ES is higher. However, analyzing ES brought by refrigerator in
Figure 6 is slightly lower for the proposed algorithm since it was turned off. According to
the REDD database [31], the stove is in on status during one hour but it is on at a time that
is not bringing any satisfaction, hence the proposed algorithm recommends to not turn it
on under the energy restrictions. For the microwave, in the REDD database [31], it is on
at different times of the day however it is not on when the satisfaction is the highest. For
example, in the morning it is preferable to have lighting on instead of the microwave, since
the energy usage of lighting is less than the energy usage of the microwave.
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Table 6. Time-based satisfaction.

S/N Equipment
Hours

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 TV 0.0 0.0 0.0 0.0 0.0 0.0 −2.4 −2.4 0.0 0.0 0.0 0.0 0.0 0.0 −2.4 −2.4 −2.4 −1.8 4.4 6.0 6.0 5.2 4.4 −0.6

2 Lighting 0.0 0.0 0.0 0.0 0.0 4.8 4.0 −0.6 −2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −1.2 4.0 4.4 6.0 6.0 5.2 4.4 −1.2

3 AC 0.0 0.0 0.0 0.0 −2.4 −0.6 −1.8 −2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −2.4 −1.2 −1.2 4.4 6.0 6.0 −1.8 −2.4

4 Radio 0.0 0.0 0.0 0.0 −2.4 −1.8 6.0 −1.8 −1.8 −2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −2.4 −1.8 −1.8 0.0 0.0 0.0

5 Water Heater 0.0 0.0 0.0 −2.4 −1.2 6.0 4.0 −1.8 −2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6 Lighting 0.0 0.0 0.0 0.0 −1.2 6.0 −1.2 −1.8 −2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −1.8 −2.4 −1.8 6.0 4.0 −1.2 −1.8

7 Microwave Oven 0.0 0.0 0.0 0.0 −2.4 6.0 6.0 −2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −2.4 −2.4 4.8 6.0 −1.2 −2.4 0.0 0.0

8 Lighting 0.0 0.0 0.0 0.0 −1.2 6.0 4.0 −1.2 −2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −2.4 4.8 6.0 −0.6 −1.8 −2.4 0.0

9 Lighting 6.0 6.0 5.6 5.2 4.8 4.4 −1.2 −2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −2.4 −1.8 4.0 4.8 5.2 5.6 6.0

10 Lighting 0.0 0.0 0.0 0.0 −1.8 6.0 4.8 −1.2 −2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −2.4 −1.8 −0.6 4.0 4.8 6.0 −0.6

11 Laptop 0.0 0.0 0.0 0.0 −2.4 4.0 −1.2 −2.4 −2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −2.4 −2.4 −1.2 4.0 6.0 5.2

12 Phone 6.0 4.8 4.4 −0.6 −1.2 −1.2 −1.8 −2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −2.4 −2.4 −2.4 −1.2 4.0 6.0

Table 7. Device-based satisfaction.

S/N Equipment
Hours

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 TV 0.0 0.0 0.0 0.0 0.0 0.0 −2.4 −2.4 0.0 0.0 0.0 0.0 0.0 0.0 −2.4 −2.4 −2.4 −1.8 4.4 6.0 6.0 5.2 4.4 −0.6

2 Lighting 0.0 0.0 0.0 0.0 0.0 4.8 4.0 −0.6 −2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −1.2 4.0 4.4 6.0 6.0 5.2 4.4 −1.2

3 AC 0.0 0.0 0.0 0.0 −2.4 −0.6 −1.8 −2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −2.4 −1.2 −1.2 4.4 6.0 6.0 −1.8 −2.4

4 Radio 0.0 0.0 0.0 0.0 −2.4 −1.8 6.0 −1.8 −1.8 −2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −2.4 −1.8 −1.8 0.0 0.0 0.0

5 Water Heater 0.0 0.0 0.0 −2.4 −1.2 6.0 4.0 −1.8 −2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

6 Lighting 0.0 0.0 0.0 0.0 −1.2 6.0 −1.2 −1.8 −2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −1.8 −2.4 −1.8 6.0 4.0 −1.2 −1.8

7 Microwave Oven 0.0 0.0 0.0 0.0 −2.4 6.0 6.0 −2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −2.4 −2.4 4.8 6.0 −1.2 −2.4 0.0 0.0

8 Lighting 0.0 0.0 0.0 0.0 −1.2 6.0 4.0 −1.2 −2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −2.4 4.8 6.0 −0.6 −1.8 −2.4 0.0

9 Lighting 6.0 6.0 5.6 5.2 4.8 4.4 −1.2 −2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −2.4 −1.8 4.0 4.8 5.2 5.6 6.0

10 Lighting 0.0 0.0 0.0 0.0 −1.8 6.0 4.8 −1.2 −2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −2.4 −1.8 −0.6 4.0 4.8 6.0 −0.6

11 Laptop 0.0 0.0 0.0 0.0 −2.4 4.0 −1.2 −2.4 −2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −2.4 −2.4 −1.2 4.0 6.0 5.2

12 Phone 6.0 4.8 4.4 −0.6 −1.2 −1.2 −1.8 −2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 −2.4 −2.4 −2.4 −1.2 4.0 6.0
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Figure 6. ES derived from each device with the proposed SV load allocation algorithm vs. real usage
according to the REDD [31] database.

For the calibration part, we made sure the algorithm was suggesting those profiles
where the Energy Satisfaction was highest at a minimum energy usage. In the following
section, we will be testing the algorithm for a different set of devices.

5.3. Data Characterization for the Algorithm Testing.

Eight devices were selected according to the ones used in Ogunjuyigbe et al. [8]
for testing purposes. For the algorithm simplicity, all lights were considered as a single
appliance. Ogunjuyigbe et al. [8] used some loads for which there are not data available
in the REDD database [31], such as TV, AC, Radio, and phone. Hence, for these ones,
Unit Wattage data from [8] was used. Additionally, ui was randomly generated for those
devices, such that a comparison can be made with the proposed algorithm’s ui output.
Table 5 describes the electrical appliances used by a user, their rating, their optimum CLoU,
tu and their optimum LoU, tt for a responsible consumption.

5.3.1. House Head’s Satisfaction

The algorithm also needs practical input data for satisfaction to create the model.
Data from Ogunjuyigbe et al. [8] (σt and σd) are being used for this purpose. Data from
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time-based satisfaction was mapped into satisfaction levels described in Table 1 in the
following fashion,

Ωt =


0, i f σt = 0.5

6− 2(1−σt [t])
0.5 , i f σt ≥ 0.5

6σt[t]− 3, i f σt < 0.5

, (15)

Dissatisfaction and ‘indifference’ values (0, 1, 2 and 3) are mapped into negative values
and zero (−3, −2, −1 and 0, respectively). The proposed model introduced negative values
when low satisfaction, thus making it preferable to have them ‘OFF’, representing by itself,
before the optimization problem, a more accurate satisfaction model, which allows making
decisions not only for energy and economic savings but also responsibly fulfilling the
customer’s satisfaction. Table 6 shows complete resulting time-based satisfaction table
and Table 7 shows device-based satisfaction after mapping d-domain satisfaction found in
Ogunjuyigbe et al. [8] (σd) by using Equation (16).

∆ [t] = 10σd[t], (16)

5.3.2. Results

One of the main results to report is that the implementation of the SV optimization
provided a consumption pattern that represents an energy consumption less or equal than
the initial actual use and a higher energy satisfaction for almost all hours in all devices.
Figure 7 provides the graphical comparison of the power consumption at each hour for
the actual based case and the case with the SV optimization. Figure 8 presents the energy
satisfaction at each hour showing how the SV optimization outperforms the base case,
particularly increasing its advantage in the early morning hours and the late evening hours.
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Figure 9 depicts a comparison of the hourly power consumption of all devices between
the proposed SV allocation algorithm and the actual power consumption. In Figure 9 (left
side), the algorithm attempts to meet desired time-based and device-based satisfaction
tables (See Tables 6 and 7) while consuming equal or less hourly power than the one
shown in 9 (right side). The energy reduction was of approximately 75%, from 32.6 KWh
to 7.35 KWh. Equally important is the energy satisfaction increase of 40% with the SV
algorithm, from 5500 to 7825. A consumption plan is scheduled for the user by managing
devices based on the SV game theory approach. Next, a reliability signal or economic signal
will be sent to a Human-Machine Interface (HMI). A reliability signal will ensure that the
electric system keeps operating when a house is not connected to the grid, while an eco-
nomic signal ensures the same purpose when connected to the grid. This way, the customer
is aware of the situation and can make a final decision based on the available information.
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Figure 10 includes the ES for each device and it seems that the better SV performance
is due mainly to the microwave use in the morning and the TV at night. Since operational
status vectors, u for TV, AC, Radio, and phone, were randomly generated, Figure 9 shows
an atypical consumption pattern. Figure 10 shows a comparison between the hourly
ES obtained through the SV allocation algorithm and the ES obtained in the actual case
representation, for each of the devices. When attempting to meet the energy constraints
imposed by the actual case scenario, with the proposed SV algorithm, the ES obtained at
each hour is equal or higher for almost each of the hours for every device. This is one of
the most important results of this study. Only in the case of the laptop, the ES is higher at
the last hour of the day in the actual case scenario.

Similarly, Ogunjuyigbe et al. [8] presented their results in 24 h plots for three different
daily budget constraints to provide a maximum satisfaction at those predefined budgets.
On the other hand, the present research used energy constraints rather than budget,
and thus including a key component of the research when penalizing excessive and low
consumption, because of its detrimental impact in the quality of life. He compared a
‘desired satisfaction’ with an ‘achieved satisfaction’. The ‘achieved satisfaction’ was the
output of their load-satisfaction algorithm, which is analogous to the present ‘SV load
allocation’ algorithm. We did not choose to compare the output results with the ‘desired
satisfaction’ (as Seen in Tables 6 and 7). Instead, we compare it with an ‘actual’ scenario
represented by using the REDD database. Ogunjuyigbe et al. [8] implemented a genetic
algorithm (GA) approach. While the GA approach may have a good convergence speed
and good efficiency, the present approach does not have to deal with convergence times
and offers a more intuitive optimization framework.
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6. Conclusions

A novel model to include customer’s satisfaction in an optimization problem was
introduced. A quantifiable user satisfaction was developed. The satisfaction concept
through the novel concepts of power satisfaction (PS) and energy satisfaction (ES) included
the detrimental impact that excess consumption could have in the quality of life. The
algorithm provided the hours of the day for which the energy should be allocated to achieve
maximum satisfaction at an energy constraint imposed by the energy consumption in
actual case scenarios. Actual case scenarios were represented by using the REDD database.
The Shapley Value (SV) concept from the game theory framework was implemented to
obtain a recommendation on how energy should be allocated. The results showed how
the algorithm maximized user´s ES at a minimum energy consumption. The proposed
approach reduced energy consumption 75%, while increasing ES 40%.

SV-based optimization successfully achieved to maximize satisfaction at a minimum
energy consumption although it also has high computational complexity. Further work
can be done to decrease computational complexity and thus the required reduction pro-
cessing times. This could be achieved by using more powerful computers or through the
derivation recursive and/or parallel implementation of the proposed algorithm. The pro-
posed methodology is validated by simulating a rural single house with limited resources
connected to the grid. It should be pointed out that the satisfaction model can be readily
applied in a real case scenario of rural communities.
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