Latent Heat Thermal Storage of Nano-Enhanced Phase Change Material Filled by Copper Foam with Linear Porosity Variation in Vertical Direction
Abstract
:1. Introduction
2. Mathematical Model
3. Numerical Approach and Grid Check
4. Results and Discussion
5. Conclusions
5.1. The Key Findings
5.2. Practical Significance/Usefulness
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Latin symbols | |
a | porosity slop |
A* | mushy constant, 5 × 105 |
Alnp | liquid surface area of the NePCM (m2) |
Asnp | solid surface area of the NePCM (m2) |
b | value of porosity at y = 0, ε0 |
Cp | heat capacity (J/(kg.K) |
ES | total stored energy (kJ/m) |
gi | gravity in the ith coordinate (m/s2) |
K | thermal conductivity (W/m.K) |
L | size of the latent heat thermal energy storage unit (cm) |
llpp | latent heat of pure PCM (kJ/kg) |
MVF | liquid fraction of the NePCM |
Ol | diameter of fiber (m) |
Op | diameter of pore (m) |
p | liquid pressure (Pa) |
P | performance of the energy storage unit (kW/m) |
PPI | pore per inch |
Rm | weighted mean of the residuals |
VFna | nano-additives concentration |
Vi | velocity in the ith coordinate (m/s) |
Wf | the weight function |
Xi | ith coordinate (m) |
Greek symbols | |
β | thermal expansion coefficient of PCM (1/K) |
γ | inclination angle of the unit (rad) |
δθmel | melting temperature window of the pure PCM (K) |
ε | porosity |
ε0 | porosity at y = 0 |
εL | porosity at y = L |
θ | temperature (K) |
η | permeability (m2) |
μ | dynamic viscosity (Pa.s) |
ρ | density (kg/m3) |
Subscripts | |
ave | average |
eff | effective characteristics of the copper foam and NePCM |
lnp | liquid nano-enhanced phase change material |
mel | melting |
cmf | copper metal foam |
na | dispersed nano-additives |
np | nano-enhanced phase change material |
pp | pure PCM |
snp | solid nano-enhanced phase change material |
References
- Sadeghianjahromi, A.; Wang, C.-C. Heat transfer enhancement in fin-and-tube heat exchangers—A review on different mechanisms. Renew. Sustain. Energy Rev. 2021, 137, 110470. [Google Scholar] [CrossRef]
- Mousa, M.H.; Miljkovic, N.; Nawaz, K. Review of heat transfer enhancement techniques for single phase flows. Renew. Sustain. Energy Rev. 2021, 137, 110566. [Google Scholar] [CrossRef]
- Mahdi, J.M.; Lohrasbi, S.; Nsofor, E.C. Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: A review. Int. J. Heat Mass Transf. 2019, 137, 630–649. [Google Scholar] [CrossRef]
- Ryu, S.; Han, J.; Kim, J.; Lee, C.; Nam, Y. Enhanced heat transfer using metal foam liquid supply layers for micro heat spreaders. Int. J. Heat Mass Transf. 2017, 108, 2338–2345. [Google Scholar] [CrossRef]
- Feng, S.; Li, F.; Zhang, F.; Lu, T.J. Natural convection in metal foam heat sinks with open slots. Exp. Therm. Fluid Sci. 2018, 91, 354–362. [Google Scholar] [CrossRef]
- Astanina, M.; Sheremet, M.; Mahabaleshwar, U.S.; Singh, J. Effect of Porous Medium and Copper Heat Sink on Cooling of Heat-Generating Element. Energies 2020, 13, 2538. [Google Scholar] [CrossRef]
- Liang, L.; Diao, Y.; Zhao, Y.; Wang, Z.; Bai, F. Numerical and experimental investigations of latent thermal energy storage device based on a flat micro-heat pipe array–metal foam composite structure. Renew. Energy 2020, 161, 1195–1208. [Google Scholar] [CrossRef]
- Shen, L.; Xu, S.; Bai, Z.; Wang, Y.; Xie, J. Experimental study on thermal and flow characteristics of metal foam heat pipe radiator. Int. J. Therm. Sci. 2021, 159, 106572. [Google Scholar] [CrossRef]
- Delgado-Diaz, W.; Stamatiou, A.; Maranda, S.; Waser, R.; Worlitschek, J. Comparison of Heat Transfer Enhancement Techniques in Latent Heat Storage. Appl. Sci. 2020, 10, 5519. [Google Scholar] [CrossRef]
- Mahian, O.; Kolsi, L.; Amani, M.; Estellé, P.; Ahmadi, G.; Kleinstreuer, C.; Marshall, J.S.; Siavashi, M.; Taylor, R.A.; Niazmand, H.; et al. Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamentals and theory. Phys. Rep. 2019, 790, 1–48. [Google Scholar] [CrossRef]
- Mahian, O.; Kolsi, L.; Amani, M.; Estellé, P.; Ahmadi, G.; Kleinstreuer, C.; Marshall, J.S.; Taylor, R.A.; Abu-Nada, E.; Rashidi, S.; et al. Recent advances in modeling and simulation of nanofluid flows–Part II: Applications. Phys. Rep. 2019, 791, 1–59. [Google Scholar] [CrossRef]
- Xu, H.; Xing, Z. The lattice Boltzmann modeling on the nanofluid natural convective transport in a cavity filled with a porous foam. Int. Commun. Heat Mass Transf. 2017, 89, 73–82. [Google Scholar] [CrossRef]
- Qi, C.; Tang, J.; Ding, Z.; Yan, Y.; Guo, L.; Ma, Y. Effects of rotation angle and metal foam on natural convection of nanofluids in a cavity under an adjustable magnetic field. Int. Commun. Heat Mass Transf. 2019, 109, 104349. [Google Scholar] [CrossRef]
- Xu, H.; Xing, Z.; Vafai, K. Analytical considerations of flow/thermal coupling of nanofluids in foam metals with local thermal non-equilibrium (LTNE) phenomena and inhomogeneous nanoparticle distribution. Int. J. Heat Fluid Flow 2019, 77, 242–255. [Google Scholar] [CrossRef]
- Ghaneifar, M.; Arasteh, H.; Mashayekhi, R.; Rahbari, A.; Mahani, R.B.; Talebizadehsardari, P. Thermohydraulic analysis of hybrid nanofluid in a multilayered copper foam heat sink employing local thermal non-equilibrium condition: Optimization of layers thickness. Appl. Therm. Eng. 2020, 181, 115961. [Google Scholar] [CrossRef]
- Yang, L.; Jin, X.; Zhang, Y.; Du, K. Recent development on heat transfer and various applications of phase-change materials. J. Clean. Prod. 2021, 287, 124432. [Google Scholar] [CrossRef]
- Bondareva, N.S.; Buonomo, B.; Manca, O.; Sheremet, M.A. Heat transfer inside cooling system based on phase change material with alumina nanoparticles. Appl. Therm. Eng. 2018, 144, 972–981. [Google Scholar] [CrossRef]
- El Idi, M.M.; Karkri, M. Heating and cooling conditions effects on the kinetic of phase change of PCM embedded in metal foam. Case Stud. Therm. Eng. 2020, 21, 100716. [Google Scholar] [CrossRef]
- Yang, X.; Wang, X.; Liu, Z.; Guo, Z.; Jin, L.; Yang, C. Influence of aspect ratios for a tilted cavity on the melting heat transfer of phase change materials embedded in metal foam. Int. Commun. Heat Mass Transf. 2021, 122, 105127. [Google Scholar] [CrossRef]
- Iasiello, M.; Mameli, M.; Filippeschi, S.; Bianco, N. Metal foam/PCM melting evolution analysis: Orientation and morphology effects. Appl. Therm. Eng. 2021, 187, 116572. [Google Scholar] [CrossRef]
- Zhang, X.; Su, G.; Lin, J.; Liu, A.; Wang, C.; Zhuang, Y. Three-dimensional numerical investigation on melting performance of phase change material composited with copper foam in local thermal non-equilibrium containing an internal heater. Int. J. Heat Mass Transf. 2021, 170, 121021. [Google Scholar] [CrossRef]
- Al-Jethelah, M.; Ebadi, S.; Venkateshwar, K.; Tasnim, S.; Mahmud, S.; Dutta, A. Charging nanoparticle enhanced bio-based PCM in open cell metallic foams: An experimental investigation. Appl. Therm. Eng. 2019, 148, 1029–1042. [Google Scholar] [CrossRef]
- Choi, S.-K.; Kim, S.-O.; Lee, T.-H. Computation of the Natural Convection of Nanofluid in a Square Cavity with Homogeneous and Nonhomogeneous Models. Numer. Heat Transf. Part A Appl. 2013, 65, 287–301. [Google Scholar] [CrossRef]
- Nield, D.A.; Bejan, A. Convection in Porous Media; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Mesalhy, O.; Lafdi, K.; Elgafy, A.; Bowman, K. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix. Energy Convers. Manag. 2005, 46, 847–867. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, C.; Liu, Q.; Tian, Z.; Fan, X. Thermal performance of copper foam/paraffin composite phase change material. Energy Convers. Manag. 2018, 157, 372–381. [Google Scholar] [CrossRef]
- Reyes, J.C.D.L.; Andrade, S.G. A combined BDF-semismooth Newton approach for time-dependent Bingham flow. Numer. Methods Partial. Differ. Equ. 2011, 28, 834–860. [Google Scholar] [CrossRef]
- Schenk, O.; Gärtner, K. Solving unsymmetric sparse systems of linear equations with PARDISO. Future Gener. Comput. Syst. 2004, 20, 475–487. [Google Scholar] [CrossRef]
- Wriggers, P. Nonlinear Finite Element Methods; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Verbosio, F.; De Coninck, A.; Kourounis, D.; Schenk, O. Enhancing the scalability of selected inversion factorization algorithms in genomic prediction. J. Comput. Sci. 2017, 22, 99–108. [Google Scholar] [CrossRef]
- Xiong, Q.; Poor, H.Z.; Izadi, M.; Assareh, E. Natural heat exchange in inhomogeneous porous medium using linear and quadratic porosity distribution. Int. J. Therm. Sci. 2021, 161, 106731. [Google Scholar] [CrossRef]
- Feng, Y.; Li, H.; Li, L.; Bu, L.; Wang, T. Numerical investigation on the melting of nanoparticle-enhanced phase change materials (NEPCM) in a bottom-heated rectangular cavity using lattice Boltzmann method. Int. J. Heat Mass Transf. 2015, 81, 415–425. [Google Scholar] [CrossRef]
Properties | Symbols | CuO Particles | Coconut Oil (Measured) | Metal Foam | |
---|---|---|---|---|---|
Solid Phase | Liquid Phase | ||||
Density | ρ (kg m−1) | 6500 | 920 | 8900 | 914 |
Dynamic viscosity | μ (Pa s) | UD * | UD | UD | 0.0326 |
Thermal conductivity | k (W m−1 K−1) | 18 | 0.228 | 380 | 0.166 |
Specific heat capacity | Cp (J kg−1 K−1) | 540 | 3750 | 386 | 2010 |
Latent heat | llpp (kJ kg−1) | UD | UD | UD | 103 |
δθmel (K) | UD | 2 | UD | UD | |
θmel (K) | UD | 297 | UD | UD |
Design No | Control Parameters | Time | ES (kJ/m) | P (kW/m) | ||||
---|---|---|---|---|---|---|---|---|
VFna | ε | a | γ | PPI | ||||
1 | 0.00 | 0.800 | −4 | 0 | 10 | 361 | 325.92 | 0.903 |
2 | 0.00 | 0.825 | −2 | π/4 | 15 | 423 | 331.61 | 0.783 |
3 | 0.00 | 0.850 | 0 | 2π/4 | 20 | 510 | 337.98 | 0.663 |
4 | 0.00 | 0.875 | 2 | 3π/4 | 25 | 652 | 344.50 | 0.528 |
5 | 0.00 | 0.900 | 4 | π | 30 | 953 | 355.81 | 0.373 |
6 | 0.01 | 0.800 | −2 | 2π/4 | 25 | 313 | 322.97 | 1.032 |
7 | 0.01 | 0.825 | 0 | 3π/4 | 30 | 426 | 329.28 | 0.773 |
8 | 0.01 | 0.850 | 2 | π | 10 | 525 | 336.01 | 0.640 |
9 | 0.01 | 0.875 | 4 | 0 | 15 | 730 | 345.11 | 0.473 |
10 | 0.01 | 0.900 | −4 | π/4 | 20 | 922 | 353.05 | 0.383 |
11 | 0.02 | 0.800 | 0 | π | 15 | 350 | 320.98 | 0.916 |
12 | 0.02 | 0.825 | 2 | 0 | 20 | 420 | 327.38 | 0.779 |
13 | 0.02 | 0.850 | 4 | π/4 | 25 | 568 | 335.86 | 0.592 |
14 | 0.02 | 0.875 | −4 | 2π/4 | 30 | 670 | 342.10 | 0.511 |
15 | 0.02 | 0.900 | −2 | 3π/4 | 10 | 842 | 346.79 | 0.412 |
16 | 0.03 | 0.800 | 2 | π/4 | 30 | 362 | 319.22 | 0.882 |
17 | 0.03 | 0.825 | 4 | 2π/4 | 10 | 427 | 326.10 | 0.763 |
18 | 0.03 | 0.850 | −4 | 3π/4 | 15 | 518 | 332.64 | 0.643 |
19 | 0.03 | 0.875 | −2 | π | 20 | 636 | 337.80 | 0.531 |
20 | 0.03 | 0.900 | 0 | 0 | 25 | 800 | 343.61 | 0.429 |
21 | 0.04 | 0.800 | 4 | 3π/4 | 20 | 356 | 317.75 | 0.891 |
22 | 0.04 | 0.825 | −4 | π | 25 | 420 | 323.94 | 0.771 |
23 | 0.04 | 0.850 | −2 | 0 | 30 | 502 | 329.35 | 0.656 |
24 | 0.04 | 0.875 | 0 | π/4 | 10 | 650 | 335.33 | 0.516 |
25 | 0.04 | 0.900 | 2 | 2π/4 | 15 | 818 | 341.69 | 0.417 |
Design No. | Parameter | Control Parameters | Time | ES (kJ/m) | P (kW/m) | ||||
---|---|---|---|---|---|---|---|---|---|
VFna | ε | a | γ | PPI | |||||
1 | VFna | 0.00 | 0.800 | −2 | 2π/4 | 25 | 368 | 325.60 | 0.885 |
2 | 0.02 | 0.800 | −2 | 2π/4 | 25 | 361 | 321.20 | 0.890 | |
3 | 0.03 | 0.800 | −2 | 2π/4 | 25 | 370 | 319.18 | 0.860 | |
4 | 0.04 | 0.800 | −2 | 2π/4 | 25 | 356 | 320.31 | 0.900 | |
5 | ε | 0.01 | 0.825 | −2 | 2π/4 | 25 | 426 | 329.52 | 0.773 |
6 | 0.01 | 0.850 | −2 | 2π/4 | 25 | 527 | 335.93 | 0.638 | |
7 | 0.01 | 0.875 | −2 | 2π/4 | 25 | 652 | 342.77 | 0.526 | |
8 | 0.01 | 0.900 | −2 | 2π/4 | 25 | 920 | 350.38 | 0.381 | |
9 | a | 0.01 | 0.800 | −4 | 2π/4 | 25 | 362 | 323.82 | 0.895 |
10 | 0.01 | 0.800 | 0 | 2π/4 | 25 | 375 | 330.84 | 0.881 | |
11 | 0.01 | 0.800 | 2 | 2π/4 | 25 | 364 | 323.20 | 0.889 | |
12 | 0.01 | 0.800 | 4 | 2π/4 | 25 | 370 | 324.98 | 0.878 | |
13 | γ | 0.01 | 0.800 | −2 | 0 | 25 | 352 | 323.21 | 0.918 |
14 | 0.01 | 0.800 | −2 | π/4 | 25 | 352 | 323.22 | 0.917 | |
15 | 0.01 | 0.800 | −2 | 3π/4 | 25 | 354 | 323.22 | 0.913 | |
16 | 0.01 | 0.800 | −2 | π | 25 | 353 | 323.19 | 0.915 | |
17 | PPI | 0.01 | 0.800 | −2 | 2π/4 | 10 | 363 | 323.25 | 0.890 |
18 | 0.01 | 0.800 | −2 | 2π/4 | 15 | 373 | 329.81 | 0.885 | |
19 | 0.01 | 0.800 | −2 | 2π/4 | 20 | 379 | 323.20 | 0.853 | |
20 | 0.01 | 0.800 | −2 | 2π/4 | 30 | 375 | 331.22 | 0.883 | |
21 | Best case | 0.01 | 0.800 | −2 | 2π/4 | 25 | 313 | 323.18 | 0.890 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghalambaz, M.; Shahabadi, M.; Mehryan, S.A.M.; Sheremet, M.; Younis, O.; Talebizadehsardari, P.; Yaici, W. Latent Heat Thermal Storage of Nano-Enhanced Phase Change Material Filled by Copper Foam with Linear Porosity Variation in Vertical Direction. Energies 2021, 14, 1508. https://doi.org/10.3390/en14051508
Ghalambaz M, Shahabadi M, Mehryan SAM, Sheremet M, Younis O, Talebizadehsardari P, Yaici W. Latent Heat Thermal Storage of Nano-Enhanced Phase Change Material Filled by Copper Foam with Linear Porosity Variation in Vertical Direction. Energies. 2021; 14(5):1508. https://doi.org/10.3390/en14051508
Chicago/Turabian StyleGhalambaz, Mohammad, Mohammad Shahabadi, S. A. M Mehryan, Mikhail Sheremet, Obai Younis, Pouyan Talebizadehsardari, and Wabiha Yaici. 2021. "Latent Heat Thermal Storage of Nano-Enhanced Phase Change Material Filled by Copper Foam with Linear Porosity Variation in Vertical Direction" Energies 14, no. 5: 1508. https://doi.org/10.3390/en14051508
APA StyleGhalambaz, M., Shahabadi, M., Mehryan, S. A. M., Sheremet, M., Younis, O., Talebizadehsardari, P., & Yaici, W. (2021). Latent Heat Thermal Storage of Nano-Enhanced Phase Change Material Filled by Copper Foam with Linear Porosity Variation in Vertical Direction. Energies, 14(5), 1508. https://doi.org/10.3390/en14051508