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Jabłońska-Trypuć, A.; Hawrylik, E.;

Butarewicz, A.; Rodziewicz, J.;

Janczukowicz, W.; Wołejko, E. Heavy

Metals Behavior in Soil/Plant System

after Sewage Sludge Application.

Energies 2021, 14, 1584. https://

doi.org/10.3390/en14061584

Academic Editors: Giovanni Esposito

and Attilio Converti

Received: 29 January 2021

Accepted: 10 March 2021

Published: 12 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Chemistry, Biology and Biotechnology, Faculty of Civil Engineering and Environmental
Sciences, Bialystok University of Technology, 15-351 Białystok, Poland; a.jablonska@pb.edu.pl (A.J.-T.);
e.hawrylik@pb.edu.pl (E.H.); a.butarewicz@pb.edu.pl (A.B.); e.wolejko@pb.edu.pl (E.W.)

2 Department of Environment Engineering, Faculty of Geoengineering, University of Warmia and Mazury in
Olsztyn, Warszawska Street 117a, 10-719 Olsztyn, Poland; joanna.rodziewicz@uwm.edu.pl (J.R.);
jawoj@uwm.edu.pl (W.J.)

* Correspondence: u.wydro@pb.edu.pl

Abstract: One of the possibilities of removing heavy metals (HMs) from soil is the use of phytore-
mediation techniques supported with biosolids, which also allow for their disposal. Therefore,
the objective of the research was the determination of the sewage sludge suitability after its applica-
tion to urban soil in order to increase the phytoremediation efficiency of contaminated soil. A field
experiment was established on lawns in Białystok (Poland) in two locations with different traffic.
The research plots were fertilized with sludge in doses of 14.5 t DM/ha and 29 t DM/ha. A mixture
of lawn grasses was sown on the prepared plots. During two years of experiment soil/plant samples
were collected, and pH, organic matter, dehydrogenase and catalase activity (soil), the total content
of Cd, Cr, Cu, Mo, Ni, Pb, Zn, and Hg (soil/plant), and their fractions (soil) were determined.
The HMs in soil were present mainly in residual and reducible fractions. Zn had the highest share in
acid-soluble fractions (17–45%). The efficiency of urban soil phytoremediation was determined by
the calculation of bioconcentration (BCF) and translocation (TF) factors. The highest values for BCF
and TF were obtained for Mo (1.97 and 1.99, respectively). In the presented study, sludge amendment
caused an immobilization of heavy metals.

Keywords: sewage sludge; HMs; fractions; BCF; TF

1. Introduction

Urban soils are an integral part of the urban ecosystem, which directly and indirectly
determines the quality of life of its inhabitants. Moreover, more than any other type of soil,
they are exposed to pollution, both from point and diffuse sources [1,2]. One of the most
important aspects determining the chemical properties of soil and land in urban space
is the content of heavy metals (HMs). The presence of HMs in urban soils depends on
biotic factors (the level of geochemical background, type of bedrock, size of soil sorption,
or climatic conditions) and abiotic factors, which include the location, type of industry,
the presence of communication routes, topography, or airflow over a given area [3]. Ac-
cording to Chen et al. [4] and Hong et al. [5], the main source of chemical pollution of
urban soils with trace elements is primarily an exposition to pollution from the atmosphere.
HMs are introduced into soils from the air in the form of industrial dust, or they are
released from vehicles when fuels are burned. HMs present in soil can be taken up by
plants through the root system. In the case of their high concentrations in soil, there is
a risk of their incorporation in the trophic circulation, which may pose a threat to living
organisms, including humans. Moreover, too high concentrations of metals in soil reduces
the rate of decomposition of organic matter and disrupts the biogeochemical cycle [1,6].
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The overall content of HMs detected in soils may be an indicator of soil contamination
and may inform about a potential threat to the environment. In order to determine the
bioavailability, toxicity, ability to move, and accumulation of HMs for plants and other
living organisms, it is necessary to conduct a speciation analysis, allowing to obtain in-
formation regarding the compound that is connected to the metal [7–9]. HMs form a
variety of compounds with different availability in soil. They may occur in soil solution in
the form of simple ions or complex compounds, in combination with oxides, carbonates,
phosphates, and an organic substance. They may also be incorporated into the crystal
lattice of minerals, creating a residual fraction. It should be noted that only some of the
metals in soil or sediments are bioavailable. One of the most widely used methodologies
regarding the sequential extraction of metals is the procedure proposed by the European
Community Bureau of Reference (BCR), in which three fractions are determined—easily
soluble in an acidic environment, reducible, and oxidizable fractions [10–12]. In order to
determine the fraction of HMs, various analytical methods are used, including atomic
absorption spectrometry (AAS), the AAS method with electrothermal atomization on iCE
3400, or the currently preferred inductively coupled plasma optical emission spectroscopy
(ICP–OES). The above-mentioned methods allow the determination of the content of metals
such as Cd, Cr, Cu, Ni, Pb, and Zn in the sample. Metals, such as Hg and Mo, show greater
difficulties in determination, which results from their low content and the influence of the
matrix on the reliability of the result. According to the literature data [13–15], in order
to determine the Hg and Mo fractions, electrothermal atomic absorption spectrometry
(ET–AAS), cold vapor atomic absorption spectrometry (CV–AAS), atomic fluorescence
spectrometry (AFS), inductively coupled plasma atomic emission spectrometry (ICP–AES),
inductively coupled plasma mass spectrometry (ICP–MS), and gas chromatography-mass
spectrometry (GC–MS) may be used. In case of the low concentrations of some HMs (Hg,
Mo) in the sample and because of the use of multiple reagents in the extraction, which can
reduce or increase the Mo/Hg signal, very sensitive methods are required to eliminate
matrix interference. One of these methods can be quadrupole ICP–MS (ICP–QQQ, ICP–
MS/MS). The high sensitivity of this apparatus and the possibility of removing spectral
interferences were achieved by applying the kinetic energy discrimination (KED) mode [16].
Vegetation, including grass, plays an important role in the purification of soil and urban
areas. Its role is primarily removing contamination from soil supporting soil-forming
processes, stabilizing soil formations, and protecting against water erosion [17]. The use
of plants as a cheap and safe repair strategy in the removal of heavy metals from soil is
defined as phytoremediation. Phytoremediation concerns the removal of pollutants with
the participation of higher plants through their uptake and accumulation in above-ground
and underground organs (phytoextraction) or their retention in the rhizosphere (phytosta-
bilization). Microorganisms inhabiting the rhizosphere zone, whose role is to decompose
and immobilize some xenobiotics, have a large share in this process [18]. Phytoremediation
in urban areas has been used in two fields: the first is post-industrial, while the second is
in the vicinity of communication routes, where the adjacent soil is exposed to pollution,
including HMs, the main source of which is transport. In order to effectively conduct
phytoextraction, soil must be fertile and rich in nutrients to ensure a sufficiently large
increase in plant biomass. In turn, plants used in the phytoremediation process should
exhibit the following characteristics: tolerance for high concentrations of HMs, fast growth,
high biomass production, and profuse root system [19–21]. The properties of HMs, namely,
their solubility, bioavailability, and the ability to migrate to plant shoots, are also important
factors in phytoremediation processes [22].

The application of sewage sludge characterized by relatively low HMs concentration
to soil seems to be an attractive solution applied in order to recycle organic matter into
the environment. Several studies have reported that soil treatment with sewage sludge
could improve its properties such as soil’s aggregate stability, air–water condition, nitrogen,
phosphorus and carbon content, and enzyme activities [20,23,24].
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Choosing the presented research topic was caused by the emerging scientific reports
concerning the need to search for new solutions allowing for safe and efficient use of
municipal sewage sludge. A rational solution seems to be the use of sewage sludge as a
substrate for soil reclamation for lawns along the main communication routes in urbanized
areas. Enrichment of soil substrate with sewage sludge supporting phytoremediation
conducted with the participation of lawn grass mixtures may allow the urban green zones
to be kept in proper appearance and in an appropriate sanitary condition.

Considering the above, the aim of this study was to analyze the influence of sewage
sludge application to urban soil on the behavior of heavy metals in soil and plant systems.
It was estimated through (1) the analysis of total HMs content and their fractions in soil,
(2) the study of HMs level in root and shoot of the lawn grasses, and (3) the calculation
of TF and BCF factors. Moreover, the relation between selected properties of soil treated
with sewage sludge and the ability of grasses to the uptake of analyzed heavy metals
was determined.

2. Materials and Methods
2.1. Study Area

The study area consisted of plots selected on lawns along communication routes in
Białystok (Poland) (Figure 1). The first research object (L1) was marked on the lawn in
the lane separating single-lane roadways in the south-western part of the city, and the
border of the research objects was located 1 m and 1.5 m away from the edge of the road.
The average traffic volume was 1157 vehicles per hour. The second research object (L2)
was located in the lane separating the two-lane roadways in the western part of the city,
and the border of the research objects was located 3–5 m and 15 m away from the edge of
the road. The average traffic volume for this communication was 2561 vehicles per hour.
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L1 and L2 are the localizations of the study area along communication routes.

2.2. Sewage Sludge

Stabilized sewage sludge in granulated form (G) obtained from the Wastewater Treat-
ment Plant in Białystok (53◦10′12′′ N, 23◦5′19′′ E), was used in order to enrich the soil.
Analyzed sewage sludge, after the drainage process on presses, was subjected to thermal
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treatment in a dryer-granular (Keppel Seghers, Willebroek, Belgium), in which the drying
temperature reaches 200 ◦C.

2.3. Soil and Sewage Sludge Sample Collection before Experiment

Soil samples (10) were collected from all experimental designated areas (45 m2) from
a depth of 0–25 cm. Then, all samples were combined and mixed. Three representative
samples were used for the analyzes.

In the example of sewage sludge, 10 samples were collected that were then combined
and thoroughly mixed. Three representative samples were used for investigation. The main
properties of sewage sludge used in the experiment and soil before starting the experiment
in both locations are presented in Table 1.

Table 1. Properties of soil on L1 and L2 and sewage sludge used in the experiment.

Characteristics L1 L2 G Detection Limit
[mg/kg]

Relative
Error
[%]

pH 8.1 7.7 8.2 - -
dry matter (DM), % - - 81.7 - -

OM, % - - 56.9 - -
Sand, % 76 ± 5 75 ± 0.4 - - -
Silt, % 22 ± 2 22 ± 2 - - -

Clay, % 2 ± 0.1 2 ± 0.1 - - -
Cd, mg/kg DM 0.5 ± 0.05 0.6 ± 0.03 1.3 ± 0.03 0.007 1.12
Cr, mg/kg DM 12.1 ± 1.1 11.5 ± 1.0 76.6 ± 8.9 0.007 1.53
Cu, mg/kg DM 16.7 ± 1.7 26.3 ± 1.8 198 ± 26.8 0.003 1.22
Ni, mg/kg DM 6.3 ± 0.5 8.5 ± 0.7 30.1 ± 4.9 0.02 2.04
Pb, mg/kg DM 7.5 ± 0.5 5.6 ± 0.5 26.0 ± 3.1 0.007 1.18
Zn, mg/kg DM 50.8 ± 4.1 74.4 ± 4.4 1045 ± 217 0.01 1.96
Hg, mg/kg DM 0.04 ± 0.003 0.19 ± 0.008 0.95 ± 0.05 0.00005 2.17

The soil and sewage sludge analyses were performed according to the Regulation of
the Minister of the Environment of 6 February 2015 on municipal sewage sludge [25]. Ref-
erence materials were used in order to control the quality of extraction and determination
of heavy metals in soil (NCS DC 73023, soil, LGC Standards, Kiełpin, Poland) and sewage
sludge (SRM 2781, domestic sludge, LGC Standards, Kiełpin, Poland).

2.4. Experiment Design

The experiment established in each location had an area of 45 m2, which was divided
into nine plots of 5 m2 each. In this manner, three blocks (replicates) were obtained,
each containing three test plots. In autumn 2015, the soil of test plots was fertilized with
sewage sludge (G) in doses of 14.5 t DM/ha (G1) and 29 t DM/ha (G2). The control (C)
was plot untreated with sewage sludge. In spring 2016, on the prepared plots, the mixture
of lawn grass, which included Lolium perenne, Poa pratensis, and Festuca rubra, was seeded.
The experiment lasted 24 months.

2.5. Soil Sampling and Analyses after Sewage Sludge Application

The soil samples were collected monthly from 6 to 12 months after sewage sludge
application in the first year of study (T1), and from 18 to 24 months after sewage sludge
application (in the second year—T2). Soil samples were taken from each plot from a depth
of 0–25 cm. From each plot, five samples were taken diagonally and placed in a specially
described container. Samples from plots with the same study variants were mixed, and then
three representative samples were taken for analysis. The samples were brought to the
Department of Chemistry, Biology, and Biotechnology (Białystok University of Technology,
Białystok, Poland) laboratory; subsequently, they were dried in order to obtain air dry mass
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and sieved through a sieve with a mesh diameter of 2 mm. The samples prepared in this
manner were intended at 4 ◦C for further analysis.

Soil pH was measure using a pH-meter (Mettler–Toledo, Polaris Parkway Columbus,
OH, USA) in a suspension containing soil and distilled water with a ratio of 1:2.5 (m:v) [26].
Organic matter (OM) was evaluated after the combustion of the sample at 550 ◦C in a
muffle furnace (LAC, s.r.o., Židlochovice, Czech Republic) and was expressed as losses in
weight after ignition [27]. The content of clay (particles less than 0.002 mm) was determined
by used laser particle size analyzer Analysette 22 NanoTec plus (Fritsch GmbH, Weimar,
Germany) according to the manufacturer’s instructions. Dehydrogenase activity (DHA)
was evaluated by using the colorimetric method according to the procedure proposed
by Casida et al. [28] at λ = 485 nm using Lambda Bio+ spectrophotometer (PerkinElmer,
Boston, MA, USA). The results were conveyed as micromole of triphenylformazane (TPF)
produced by 1 g of soil dry matter within 20 h (µmol TPF/(g DM 20 h). Catalase activity
(CAT) was analyzed by the manganometric assay described by Johnson and Temple [29].
The enzyme activity is expressed as the amount of degraded substrate (H2O2) per minute
per 1 g of dry matter soil (mmol H2O2/(g DM min)).

2.6. Total HMs Content and Their Fractions Levels in Soil

Soil samples (0.5 g) were analyzed for Cd, Cr, Cu, Ni, Pb, and Zn total content using
atomic absorption spectrometry (AAS) method by iCE 3000 Series apparatus (Thermo
Scientific, Waltham, MA, USA), while Mo and Hg using Agilent 8800 ICP-MS Triple Quad
(ICP-QQQ) System (Agilent Technologies Inc., Santa Clara, CA, USA) after mineralization
with aqua regia (HCl and HNO3 in a ratio of 3:1, 9 mL:3 mL) using Advanced Microwave
Digestion System Ethos Easy (Milestone, Sorisole (BG), Italy). The conditions of the diges-
tion process were as follows: Step 1: 10 min, 200 ◦C, 800 W; Step 2: 15 min, 200 ◦C, 800 W.
The quality control of HMs extraction and determination in soil was performed using the
certified reference material NCS DC 73023 (soil, LGC Standards, Poland). The soil metal
fractionation was determined using by BCR sequential extraction method with modifica-
tion [30,31]. It was determined ion exchange and soluble fraction (acid-soluble fraction)
(F1), fraction related to iron and manganese oxides-reducible fraction (F2), and oxidizable
fraction, associated with organic matter (F3). The residual fraction (F4) was evaluated as
the difference between the total metal and the F1, F2, and F3 content. The content of Zn,
Cu, and Pb fractions was measured using the iCE 3000 Series Apparatus (Thermo Scientific,
Waltham, MA, USA), while Cr, Cd, and Ni fractions were determined by the AAS method
with electrothermal atomization on the iCE 3400 Apparatus (Thermo Scientific, USA).
The content of Mo and Hg fractions was determined by using Agilent 8800 ICP–MS Triple
Quad (ICP–QQQ) System (Agilent Technologies Inc., Santa Clara, CA, USA) The quality
control of sequential extraction was performed using the certified reference materials,
namely, Cd, Cr, Cu, Ni, Pb, and Zn—CRM BCR-701 (sediment, LGC Standards, Poland),
Hg—CRM BCR-143R (sewage sludge amended soil, LGC Standards, Kiełpin, Poland) and
Mo—CRM-029 (sewage sludge, LGC Standards, Kiełpin, Poland).

2.7. The Analysis of Lawn Grasses Mixture

The mixture of grass (root and shoot) was harvested monthly from 6 to 12 months
after sewage sludge application in the first year of study (T1), and from 18 to 24 months
after sewage sludge application (in the second year of study—T2). The dry matter of the
above-ground lawn grass mixture was determined according to Wu et al. [21]. The results
were expressed as the total yield from each study year (t DM/ha). The shoot and root
samples intended for HMs analysis were dried at 60 ◦C and ground to a fine powder.
Extraction of Cd, Cr, Cu, Ni, Pb, and Zn in grass mixture samples (0.5 g) was performed
by digestion in 65% HNO3 (7 mL) with 30% H2O2 (2 mL) using Advanced Microwave
Digestion System Ethos Easy (Milestone, Italy). The conditions of the digestion process
were as follows: Step 1: 4 min, 85 ◦C, 800 W; Step 2: 9 min, 145 ◦C, 800 W; Step 3: 4 min,
200 ◦C, 800 W; Step 4: 14 min, 200 ◦C, 800 W. The content of the heavy metals (Cd, Cr,
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Cu, Ni, Pb, Zn) was evaluated by using the AAS method, and for Mo and Hg, Agilent
8800 ICP–MS Triple Quad (ICP–QQQ) System (Agilent Technologies Inc., USA). The quality
control of HMs extraction and determination in grasses was performed using the certified
reference material CRM ERM-CD281 (ryegrass, LGC Standards, Kiełpin, Poland).

2.8. Bioaccumulation (BCF) and Translocation (TF) Factors Evaluation

The bioconcentration factor of metal (BCF) was calculated as the quotient of the
content of the metal in the above-ground part of the grass mixture (mg/kg DM) and the
total heavy metal content in soil (mg/kg DM). Translocation factor (TF) was determined as
a ratio of heavy metal content in the shoot (mg/kg DM) to heavy metal content in the root
(mg/kg DM).

2.9. Statistical Analysis

The statistical analysis was performed using Statistica 13.1 software (StatSoft Poland,
Cracow, Poland). The obtained data were presented as mean ± standard deviation (SD) of
triplicate. The multiple variances of ANOVA (MANOVA) were used to evaluate differences
between various treatments, locations, and time of sampling. The significant differences
were assessed by the Tukey test at p < 0.05. The relationships between examined parameters
were explained by Pearson’s correlation analysis at p < 0.05.

3. Results
3.1. Soil Properties after Sewage Sludge Application

The selected properties of soil are shown in Table 2. Both at L1 and L2, different
values of soil pH measured in water within the range of neutral and alkaline reaction were
observed. In T1, soil pH ranged from 7.05 to 7.48. Similar values were also recorded in T2
(from 6.96 to 7.65), with the clay content in soil from 5% to 6%.

Table 2. Selected properties of soil samples from control plots (C) and treated with sewage sludge in a dose of 14.5 t DM/ha
(G1) and 29 t DM/ha (G2) in L1 and L2, collected in first (T1) and second (T2) year of study.

Location Term Treatment pH
Min-Max

OM
(% DM)

DHA
(µmol TPF/g

DM/20 h)

CAT
(mmol H2O2/g

DM/min)

C 7.27–7.45 4.44 ± 0.46 0.22 ± 0.08 7.59 ± 1.28
T1 G1 7.26–7.37 6.38 ± 0.42 0.30 ± 0.16 8.75 ± 0.56

L1 G2 7.05–7.37 8.27 ± 2.19 0.32 ± 0.17 8.33 ± 1.39
C 7.08–7.55 5.12 ± 1.09 0.46 ± 0.32 7.82 ± 1.57

T2 G1 6.97–7.29 7.59 ± 2.06 0.53 ± 0.09 9.60 ± 1.57
G2 6.96–7.25 8.21 ± 0.90 0.60 ± 0.25 9.77 ± 3.85

C 7.10–7.34 6.11 ± 0.65 0.22 ± 0.03 7.86 ± 0.43
T1 G1 7.18–7.48 6.47 ± 0.92 0.30 ± 0.08 8.87 ± 0.32

L2 G2 7.23–7.41 7.90 ± 0.69 0.34 ± 0.08 9.55 ± 0.70
C 7.00–7.65 5.99 ± 0.62 0.28 ± 0.17 8.48 ± 1.30

T2 G1 7.05–7.64 6.28 ± 0.66 0.38 ± 0.17 8.64 ± 1.17
G2 6.99–7.46 7.96 ± 0.73 0.42 ± 0.12 8.97 ± 0.59

In T1 and T2, at locations L1 and L2, the content of OM in soil from each study site
was at similar levels. In T1, soil OM content was lowest in C in L1 (4.44% DM), while it was
highest in soil with a double dose of dried sludge in L1 (8.27% DM). In T2, soil OM content
was similar to that from T1 ranging from 5.12% (C, L1) to 8.21% DM (G2, L1). OM content
did not differ significantly depending on the sludge dose applied.

As presented in Table 2, in T1, the activity of DHA was from 0.22 µmol TPF/(g DM
20 h) to 0.60 µmol TPF/(g DM 20 h), and higher values were obtained for the samples
collected from the plots with G. In T2, the range of activities of DHA was from 0.28 µmol
TPF/(g DM 20 h) to 0.60 µmol TPF/(g DM 20 h), for C in L2 and G2 in L1, respectively.
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The activity of CAT in the soil in T1 was from 7.59 µmol H2O2/(g DM min) (C, L1) to
9.55 µmol H2O2/(g DM min) (G2, L2). In T2, the range of CAT activity in the soil for the
analyzed objects was from 7.82 µmol H2O2/(g DM min) (C, L1) to 9.77 µmol H2O2/(g DM
min), (G2, L1). Generally, CAT activity was higher in the soil amended with G as compared
to C. The application of G to the soil at L2 in T1 caused a significant increase in CAT activity
with the G dose.

3.2. Heavy Metals and Their Fractions Concentration in Soil

Figure 2 presents the total content of Cd, Cr, Cu, Mo, Ni, Pb, Zn, and Hg in the soil
in T1 and T2, while Figure 3 depicts the share of F1, F2, F3, and F4 fractions in the total
content of the tested HMs.
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the oxidizable fraction (F3), and the residual fraction (F4) in the total content of Cd, Cr, Cu, Mo, Ni, Pb, Zn, and Hg in soil
samples from the control plots (C) and plots fertilized with sewage sludge in a dose of 14.5 t DM/ha (G1) and 29 t DM/ha
(G2) in L1 and L2, collected in the first (T1) and second (T2) year of study.

In T1, the average Cd content in soil was from 0.09 mg/kg DM to 0.20 mg/kg DM,
while in T2, it increased to the values from 0.21 mg/kg DM to 0.41 mg/kg DM. It was
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found that the average cadmium content in the soil in L2 differed significantly in T1 and
T2. In T1, most Cd was present in the F2 and F4 fractions, and its share ranged from 35% to
91% and from 1% to 59%, respectively. The share in the F3 fraction ranged from 4% to 18%
and in the F1 fraction reached the value <1%. In T2, as compared with the T1, the share
of Cd in the F2 decreased to the values from 33% to 76% and the share of F1 increased
(10–14%). The share of Cd in the F4 fraction ranged from 2% to 45%, while that in the
F3 fraction ranged from 6% to 11%. The application of sewage sludge to soil did not cause
any significant differences in the share of Cd in the analyzed fractions.

In T1, the average total Cr content in soils had different values that ranged from
8.1 mg/kg DM (G2, L1) to 23.3 mg/kg DM (G2, L2). In T2, the total content of this metal in
soil samples was lower than in T1 and ranged from 9.0 mg/kg DM to 13.7 mg/kg DM for
G1, L1, and G1, L2, respectively. The analysis of variance of the results showed that the
average content of total Cr in soil samples from the C and G2 in L2 was significantly lower
than in G2, L2. The highest percent of Cr in T1 and T2 was associated with F4 (49–78%),
followed by F3 fraction (17–41%). The share of the F2 fraction was from 2% to 10%, while
F1 exceeded 1%. In T2, in the samples from L1, the share of Cr in F2 and F3 decreased as
compared to that from T1, while the percentage of Cr in the F4 fraction increased.

The average Cu content in the soil in T1 was 17.9–37.4 mg/kg DM. In T2, the aver-
age Cu content in soil decreased significantly and in L1 ranged from 7.9 mg/kg DM to
9.7 mg/kg DM, while in L2 from 16.9 mg/kg DM to 18.2 mg/kg DM. Moreover, in T1,
the concentration of Cu was higher in soil samples from G1 and G2 at both localization
than in those from C, but the increase was not statistically significant. In the soil from C
and from plots with G, the highest Cu concentration in T1 was in F4 (from 40% to 54%),
in F3 fraction was 20–27%, and in the F2, 20–33%, while the share of Cu in F1 fraction was
5–7%. In T2, the share of Cu in the F4 fraction decreased (15–46%), while the share in the
F2 fraction increased (35–55%).

Mo content in the soil in T1 was from 0.66 mg/kg DM to 1.13 mg/kg DM. A signifi-
cantly higher Mo content was observed for samples from L2. In T2, the content of Mo was
similar as in T1 and ranged from 0.62 mg/kg DM to 1.03 mg/kg DM. We did not observe
a significant effect of sewage sludge-amendments on Mo content in the soil. In T1 and
T2, most of Mo was bound in F2 (36–48%) and F3 (37–46%) fractions. The share of Mo in
F1 and F4 were from 1% to 4% and from 11% to 16%, respectively.

Both in T1 and T2, the content of Ni in the soil had similar average values ranging
from 4.6 mg/kg DM to 8.3 mg/kg DM. Significant differences in Ni content were conducted
in the soil sampled from L1 and L2. Significantly higher Ni contents were observed at
L2. In T1, most Ni was bound in F3 fraction (40–54%), followed by F4 fraction (1–18%),
F2 fraction (7–21%), and F1 fraction (11–26%). In T2 at L1, there was an increase in the Ni
share in the fractions F2 and F4, with a decrease in the Ni share in the F3 and F1 fractions.
The L2 site, on the other hand, showed an increase in Ni in the F4 fraction and a decrease
in Ni in the F1 and F3 fractions.

It was found that the content of total Pb in T1 ranged from 38.8 mg/kg DM to
39.6 mg/kg DM (L1) and from 43.1 mg/kg DM to 45.7 mg/kg DM in L2. On the other
hand, in T2, the average value of the discussed metal decreased significantly, reaching
14.7–15.7 mg/kg DM (L1) and 25.7–39.2 mg/kg DM (L2). Considering the contribution of
individual Pb fractions in the total content of soil samples, in T1 most Pb was presented in
the F4 fraction, and its share ranged from 44% to 68%; in the F2 fraction, Pb bounded from
29% to 51%, and in the F3 fraction, 2–7%, while in the F1 fraction, 1–2%. In T2, the share of
Pb increased in the F2 fraction at both locations and ranged from 62% to 86%, while the
share of Pb decreased in the F4 fraction (5–33%).

In T1, the Zn content in soil was different and ranged from 81.7 mg/kg DM (C, L1) to
173.8 mg/kg DM. (G1, L1). Moreover, the content of this metal in soil increased significantly
with the dose of G. In T2, the content of this metal in soil decreased significantly with
the values within the ranges 44.6–48.9 mg/kg DM (L1) and 71.7–76.4 mg/kg DM. (L2).
Considering the contribution of Zn fractions to the total content, in the first year, the greatest
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amount of Zn was observed in the F1 fraction (31–45%), then in the F2 fraction with 26–33%
Zn, and in the F3 fraction, 6–17%, while in the F4 fraction, 8–27%. In T1, the share of Zn
in F2 (25–47%) and F3 (19–33%) fractions increased, while it decreased in the F1 fraction
(17–26%).

In the tested soil, Hg content at L1 was from 0.06 mg/kg DM to 0.071 mg/kg DM.
The significantly higher values of Hg were reported in soil samples from L2 and were from
0.21 mg/kg DM to 0.23 mg/kg DM. The sewage sludge-treatment did not significantly
influence Hg content in soil samples. The highest percentage content of Hg was noted
in F4 (47–57%) and F3 (26–38%) fractions. The share of Hg in F1 and F2 fractions was
approximately 10%.

3.3. The Total Yield and HMs Content in Grass

As presented in Figure 4, in T1 and T2, on C at L1 and L2, the total yield was at a
similar level of approximately 2.5 t DM/ha. In T1 of the study, after the application of
G1 and G2 at L1, the total yield increased significantly by 76% and 104%, respectively,
compared to C. On the other hand, at L2 after application of G1 and G2, the total yield
increased by 63% and 86%, respectively. In the next year at L1, after the application of
G1 and G2, the total yield reached a similar level of approximately 4.8 t DM/ha, while
at L2, there was a significant increase in the total yield by approximately 92% and 123%,
respectively, compared to C.
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The average content of Cd, Cr, Cu, Mo, Ni, Pb, Zn, and Hg in shoots and roots of
lawn grass mixture is presented in Figure 5. The concentration of Cd in shoot samples
in T1 was from 0.06 mg/kg DM to 0.13 mg/kg DM and higher values were obtained for
samples from plots fertilized with sewage sludge. The content of Cd in the root was from
0.04 mg/kg DM to 0.11 mg/kg DM. In T2, the concentration of Cd in the above-ground
part of grasses was similar (0.08–0.15 mg/kg DM). The greatest value was observed for
samples from plots G2 in location L2. The highest content of Cd in roots (0.11 mg/kg DM)
was observed in samples from G2, L2. Cr concentration in the above-ground part of grass
mixture in T1 was from 0.43 mg/kg DM to 0.50 mg/kg DM, while in T2, the concentration
of this metal was significantly higher, both L1 and L2, and was from 1.98 mg/kg DM
to 2.46 mg/kg DM. No significant differences were found in Cr concentration in plants,
depending on the sewage sludge dose applied. Higher contents of Cr were found in root
samples, both in T1 and T2, and were 1.16–2.65 mg/kg DM and 3.62–11.66 mg/kg DM,
respectively. Cu content in the shoot part of grasses in T1 was from 8.1 mg/kg DM to
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14.4 mg/kg DM for control, L1, and G2, L2, respectively. In T2, the accumulation of Cu
was from 7.8 mg/kg DM (C, L1) to 13.3 mg/kg DM (G1, L2). The significant effect of
G treatment was noted in T2 for location L1 and in T2 for L2, where Cu concentration
in plant samples from G1 and G2 was higher than control. In root samples, the content
of Cu was from 11.34 mg/kg DM to 20.71 mg/kg DM (T1) and from 8.95 mg/kg DM to
19.68 mg/kg DM (T2). The significantly higher values of Cu were noticed in root samples
from plots sewage sludge amended. Mo uptake by grasses to shoot parts in T1 was from
0.98 mg/kg DM to 1.89 mg/kg DM, while in T2 was from 1.05 mg/kg DM to 1.92 mg/kg
DM. The higher values were noted for shoot samples from plots G1, but obtained results
were not statistically significant. The accumulation of Mo in root parts of grasses in T1 was
from 0.59 mg/kg DM to 1.63 mg/kg DM. In T2, the content of this metal in roots was
ranged from 0.58 mg/kg DM to 1.65 mg/kg DM. The significant differences between Mo
content in shoots and roots for samples from plots amendment with sludge at L2 were
indicated. Ni accumulation in grass mixture shoots in T1 was from 1.99 mg/kg DM (C,
L1) to 2.52 mg/kg DM (G2, L2). In T2, a significant decrease of Ni concentration in plant
was noticed (0.76–1.15 mg/kg DM). We did not observe a significant effect of G dose
application to soil on Ni concentration of lawn mixture of grasses. The accumulation of Ni
in roots in T1 was from 2.83 mg/kg DM to 8.98 mg/kg DM, whereas in T2 significantly
decreased and was from 1.99 mg/kg DM to 5.61 mg/kg DM. The concentration of Pb
in the shoot of examined grasses was from 0.71 mg/kg DM to 0.83 mg/kg DM in T1,
while in T2 was from 0.83 mg/kg DM to 1.47 mg/kg DM. In root samples, Pb content
was similar in T1 and T2 and was from 2.54 mg/kg DM to 5.18 mg/kg DM. We noted
no significantly different content of Pb in roots after G application. The presented data
indicate that the concentration of Zn in the shoot of lawn grasses mixture in T1 was from
51.6 mg/kg DM to 71.9 mg/kg DM and significantly higher values were noted for samples
collected from G-treated plots. In T2 of the experiment, Zn concentration in analyzed plants
was similar as in T1 (53.7–71.3 mg/kg DM). A significant increase in Zn concentration
in plants shoot dependent on sewage sludge dose was observed. A significantly lower
accumulation of Zn in grass roots was noted in T2 (42.4–66.5 mg/kg DM), as compared to
T1 (59.8–110.1 mg/kg DM). In T1, the effect of sewage sludge treatment was noticed. In T1,
Hg content in the shoot part of grasses was from 1.30 µg/kg DM to 2.50 µg/kg DM, while
in T2, from 1.50 µg/kg DM to 2.70 µg/kg DM. Hg uptake by grass roots was higher than
by shoots and in T1 was from 1.71 µg/kg DM to 3.03 µg/kg DM. In T2, the content of this
metal in roots was ranged from 1.87 µg/kg DM to 3.31 µg/kg DM. The significant effect of
sewage sludge treatment on Hg accumulation in roots and shoots was observed.
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3.4. Bioconcentration (BCF) and Translocation (TF) Factors and Their Relationship with
Soil Properties

Figure 6 presents the results of the mean of BCF and TF calculated for Cd, Cr, Cu, Mo,
Ni, Pb, Zn, and Hg. The obtained test results indicate that the factors depended on the
analyzed metal, sediment dose, sampling date, and location. The lowest values of BCF
were obtained for Ni, Cr, and Pb and they ranged from 0.02 to 0.50, while the highest for
Mo, Cd, Cu, and Zn (from 0.25 to 1.97). BCF coefficients greater than 1 were recorded for



Energies 2021, 14, 1584 13 of 20

Mo (all treatments), Cd (G2), Cu (T2), and Zn (T2, L1). As demonstrated in the presented
results, the BCF calculated for all metals except Pb differed significantly depending on
the year of the study. In the case of Cd, Ni in T2 there was a decrease in this parameter,
and an increase for Mo, Cr, Cu, and Zn. The effect of the sludge application and its dose
on the BCF coefficient was observed for Cd (T1, L1), Cu, and Zn, but the obtained effect
was not statistically significant. The TF factors were the lowest values for Cr, Ni, and Pb
when the highest for Mo, Cd, Cu, and Zn. Statistical analysis indicated that sewage sludge
influenced on the migration of Ni from roots to shoots.
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Pearson’s correlation analysis showed that positive significant correlations occurred
between the bioconcentration factor calculated for Zn, Cd, Ni, and DHA activity in the
soil, and between CAT activity and BCF calculated for Cd, Cu, and Zn (Table 3). Moreover,
a positive correlation was found between soil pH and OM content and BCF (Zn), BCF (Mo).
Negative significant correlations were found for the BCF calculated for most tested metals
and their presence in the soil in the F4 fraction. Moreover, negative significant relationships
were demonstrated for the BCF coefficient calculated for Cd and Ni and their presence in
the F2 fraction. Significant positive correlations were found for the presence of Cd, Cu,
and Zn in the F1 fraction and BCF calculated for Cd, Cu, and Zn. Different relationships
were found for the TF. Significant positive correlations were noted between soil enzyme
activity (DHA, CAT) and TF calculated for Ni, Pb, and Zn. The significant correlations
were also between TF(Zn) and TF(Cu) and their bounding in the F1 and F3 fractions (Zn).
However, significant negative correlations between OM and TF evaluated for Cr and Ni
were observed.

Table 3. This the Pearson’s correlation coefficients (r, p < 0.05) for BCF and TF of analyzed HMs and selected soil properties.

HMs pH OM clay DHA CAT F1 F2 F3 F4

BCF

Cd −0.5 0.6 ns 0.6 0.5 0.7 −0.5 0.4 −0.4
Cr −0.4 ns ns ns ns ns ns ns −0.6
Cu −0.5 ns ns ns 0.6 0.7 0.5 −0.8 −0.8
Mo 0.6 0.5 ns ns ns ns ns 0.5 ns
Ni ns ns ns 0.5 ns ns −0.8 0.3 −0.6
Pb ns ns ns ns ns ns 0.5 ns −0.6
Zn 0.6 0.5 ns 0.6 0.5 0.8 ns 0.7 −0.4
Hg ns 0.4 ns ns ns ns ns ns ns

TF

Cd ns ns ns ns ns ns ns ns ns
Cr ns −0.6 ns ns ns ns ns 0.4 ns
Cu ns ns ns ns ns 0.6 ns ns ns
Mo ns ns ns ns ns ns ns ns ns
Ni ns −0.7 ns ns 0.4 ns ns ns ns
Pb ns ns ns 0.4 0.6 ns ns ns ns
Zn ns ns ns 0.5 ns 0.4 0.5 0.7 ns
Hg ns ns ns ns ns ns ns ns ns

Explanations: HM—heavy metal, BCF—bioconcentration factor, TF—translocation factor, OM—organic matter, DHA—soil dehydrogenases
activity, CAT—soil catalase activity, F1, F2, F3, F4—respectively acid-soluble, reducible, oxidizable, and residual fractions of tested heavy
metals, ns—non-significant differences.

4. Discussion
4.1. Sewage Sludge Effect on Heavy Metals Content in Soil

An increased concentration of HMs in the environment is a global problem. It is
related to their toxicity, high persistence in the environment, and ability to bioaccumulate.
Moreover, the excessive level of HMs in soils in urban areas may pose a threat to urban
residents’ health due to their easy migration with dust particles into the respiratory tract
and on the skin surface [1,21]. According to the present study, the addition of sewage sludge
to urban soil did not cause any significant changes in HMs content. Wołejko et al. [18] state
that the geochemical background of soil in northeastern Poland is for Cd, <0.05 ppm; Cr,
5–10 ppm; Cu, 20–40 ppm; Ni, <5 ppm; Pb, 12.5–100 ppm; Zn, <400 ppm; and for Hg,
<0.8 ppm. In our study, higher Cr and Ni contents were found in T1 and T2. Comparing
the obtained results with maximum permissible limits of tested HMs in the soil where
sewage sludge is used to light soil according to National Regulation (Table S1), it was
found that Zn content was exceeded in the soil in T1 from L1 and L2. However, comparing
obtained results with the Directive 86/278/EEC [32], no exceedances of the examined HMs
were found. An increase in Zn content in the soil in an urban area could be caused by
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the persistent exposition of soils to communication transport, which was described by
Padmavathiamma and Li [33].

The conducted experiments allowed us to determine the following descending series:
Zn > Pb > Cu > Cr > Ni > Mo > Cd > Hg of the average HMs content in T1 and T2. As it
was suggested by Shrivastava and Banerjee [10], the series representing HMs content in soil
with sewage sludge depended on the location of the soils, and as in our study, Cd exhibited
the lowest content in soils, followed by Pb. Eid et al. [23] conducted a pot experiment in
which, after the application of sewage sludge (50 g/kg dose) to the soil, the descending
series of metal contents were determined as Zn > Cr > Ni > Cu > Pb > Cd. In the present
study, a higher content of Pb in comparison with other metals is related to the location of the
research objects. In urban soil along transportation routes, the source of Pb is Pb-containing
dust from the combustion of gasoline with lead tetraethyl [34].

Xia et al. [35] reported that the content of HMs in urbanized areas depends on traffic
intensity. In our study, different contents of some HMs in soil were obtained from the sites
located at L1 and L2. Transport was the main source of metal contamination of soils in
urban areas (Cd, Cr, and Zn). The plots in the studied localization were characterized by
different traffic intensities. According to Padmavathiamma and Li [33], the sources of Cu
and Zn in the environment along traffic routes can be exhaust emissions, tires (Zn), engine,
and brake pad wear (Cu). In addition, our study indicated that higher Cu contents in soil
were recorded at location L2, where traffic volume was higher than at L1. In addition,
the penetration of pollutants may also be influenced by the planting of other plants (e.g.,
trees and shrubs) that were present at L2.

The availability of HMs for plants depends on the form of their occurrence in soil.
Determination of metal content in fractions allows for concluding about the possibility of
migration of metals in soil–plant and soil–groundwater systems. A sequential analysis
of the investigated HMs revealed differences in their occurrence in individual fractions,
which depended on the year of study and, to a lesser extent, on the location of the plots
and sewage sludge dose. The majority of the studied HMs were bound in a form of an
unavailable fraction (F4), and in some cases, they were bound with organic matter (F3)
fraction. The exception was Zn, whose contribution to the easily available fraction (F1)
was up to 40% of the total content in T1. In addition, metals such as Cd, Cu, and Pb
showed high proportions in the potentially bioavailable F2 fraction. It was also conducted
that increasing sludge dosage probably caused an increase in the proportion of Mo, Zn,
and Ni in the F3 fraction. Gadepalle et al. [36] studied the effect of compost produced
from sewage sludge and green waste on Cd fraction content and its uptake by Lolium
perenne. The authors observed that Cd was mainly bound in the organic fraction and with
increasing compost dose, the proportion of Cd in F2 and F1 fractions increased. Similar
results were obtained in our study in which the highest amount of Cd in soil was bound
in the F2 fraction. In T1, its proportion increased slightly with the applied sediment dose.
The results obtained in our study regarding Cr were similar to the results obtained by
Legret [37] after the application of a sludge dose of 10 t/ha/year, in which the series of Cr
contribution to individual fractions in soils was as follows: residual fraction > oxidizable
fraction > reducible fraction > carbonate fraction > exchangeable fraction. On the basis of
obtained results, we conclude that, in T2, the share of Cr in the fractions formed the following
series: residual fraction > oxidizable fraction > reducible fraction > acid-soluble fraction.

According to Kabata-Pendias [38], in areas with a low level of industrialization,
the total Cu content ranged from 1 ppm to 100 ppm, which is in accordance with our
results. Moreover, Cu may occur also in the fraction with iron and manganese oxides and
in the residual fraction [39]. Similar results were obtained in our research in T2. It was
found that mostly Cu was bound in F2 and F4 fractions. The addition of sewage sludge to
soils may cause Cu binding in the oxidizable fraction (bound to organic matter). This is
confirmed by the results obtained in T1 and T2.

Zn is another metal important in the area of plant nutrition. In unpolluted soil in
Poland, its content was about 40 ppm [38]. It is one of the elements whose above-normal
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contents are observed in soils in urban areas located in close proximity to communication
routes. Moreover, Zn belongs to the most mobile metals in soils. Wiater and Łukowski [40]
studies on the quality of cultivated soil showed that a large part of Zn in soils was bound
in the fraction with iron and manganese oxides, while the least Zn was in the residual
fraction. It was also observed that with increasing organic matter in soils, the proportion
of Zn content in the F3 fraction increased. A similar relation was obtained in our study.
The application of increasing doses of sewage sludge to soils resulted in an increase in the
proportion of Zn in the F3 fraction.

4.2. Sewage Sludge Effect on Plant Yield and Its Ability to Promote HMs Accumulation

As it was reported by Zhao et al. [41], the productivity of lawns is an important
measurement used for assessing the functioning of natural areas in urban zones, where
there should be a balance between the amount of biomass produced and the ability to
capture pollutants from the air, neutralize toxic substances from the soil, produce oxygen
and fix carbon dioxide, or increase air humidity and perform an aesthetic function. More-
over, the amount of produced plant biomass determines the fertility of soils. In our study,
in T1 the average total yield for the control was 2.56 t DM/ha. The addition of sewage
sludge to the soil at the rate of 14.5 t DM/ha and 29 t DM/ha resulted in an increase in
yield to 4.26 t DM/ha and 4.91 t DM/ha, respectively. In T2, the obtained yield was similar.
The grass yields obtained were higher than in experiments conducted by other authors.
Smith and Tibbett [42] conducted a pot study in which they added sewage sludge at three
doses (4 t/ha, 8 t/ha, and 16 t/ha) to sandy loam soils on which Lolium perenne was sown.
Two harvestings (after 35 days and 70 days after sowing) from the soil treated with sludge
gave the total yield for doses of 4 t/ha, 8 t/ha, and 16 t/ha, respectively, 1.68 t DM/ha,
2.04 t DM/ha, and 2.46 t DM/ha, and for the control, 1.27 t DM/ha. In this case, the yield
was lower than that obtained in our study.

The uptake of HMs by plants depends on soil properties, sewage sludge origin and
its properties and dose, plant species, plant physiology, and chemical forms of metals [23].
In the present study, the content of HMs and their accumulation in grass mixtures depended
mainly on the metal and the year of study, and to a lesser extent, on the location and dose
of sludge. In T1, at the plots fertilized with sludge the average BCF of individual HMs
in the above-ground parts of lawn grasses mixture was as follows: Mo > Cd > Cu > Zn
> Ni > Cr > Pb > Hg. In T2, the descending series of mean BCF values in the soil with
sediments were as follows: Mo > Zn > Cu > Cd > Cr > Ni > Pb > Hg. On the basis of
the conducted research, it can be concluded that the grass mixture used showed potential
for extraction of Zn, Cu, and Cd, which was evidenced by BCF > 1.0 and TF > 1 values
obtained in T1 (Cd) and T2 (Zn and Cu). Higher bioconcentration of Zn in the mixture
of lawn grasses may be related to the high proportion of Zn in the soil occurring in the
easily available fraction (F1), which is confirmed by the positive significant correlation
coefficient (r = 0.8). It may be supposed that high uptake of Cd and Cu by grass mixtures
is connected with their combination in the F2 fraction (Cu and Cd) and F3 fraction (Cu),
which under suitable conditions are potentially available to plants. Under the influence of
organic matter inputs such as sewage sludge, Cd may form soluble and mobile chelates
with organic matter in the soil. In the presence of phosphorus, of which bio-waste may
also be a source, it may convert to oxide-bound forms (Fe, Mn) and, to a small extent,
to organic forms. However, higher bioavailability of Cu for plants may also be related to
the occurrence of this metal in combinations with low molecular weight organic matter,
released during the decomposition of organic matter (including bio-waste), the presence of
which increases Cu mobility. Additionally, the behavior of Cu is influenced by Fe and Mn
hydroxides and interactions with other elements [34]. This is also reflected in the significant
correlation of BCF(Cd) and BCF(Cu) with their soil content in F3 and F2 fractions.

The extraction of metals by plants and their BCF is also affected by the soil pH.
Statistical analysis showed significant negative correlations between the soil pH and BCF
calculated for Cu and positive correlation for pH and BCF conducted for Zn and Mo.
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Therefore, it can be assumed that in alkaline soils, including urban soils, the mobility and
bioavailability of Zn may increase after the sewage sludge application, while the uptake
of Cu by plants may be hindered. According to Kabata-Pendias [38], in alkaline soil,
Zn can form complex anions and organic-mineral combinations, which are characterized
by high mobility. Mo is an essential microelement important for plant and animal nutrition.
According to Kabata-Pendias [38], its solubility in soil depends on the pH and increases
with its increase. This statement is in agreement with those resulting from our study.
The obtained results show that BCF of Cd and Mo was positively correlated with the
content of organic matter in soil and with the occurrence of Cd and Mo in the F3 fraction.
In general, Cd shows mobility and phytoavailability in soils regardless of the pH and is
as easily taken up by the root system as by the shoots. It may also increase when organic
matter is added to the soil. In the case of Mo, in soils enriched with organic matter, Mo can
bind to organic polymers, from where it is released gradually [38].

According to Yoon et al. [43], elevated soil pH and high content of organic matter in it,
as a result of adding organic substrates, including sewage sludge, may limit the availability
of metals in soils for plants, and thus lead to immobilization of HMs in the soil by forming
insoluble complexes with organic matter. Due to the adsorption processes that take place on
the surface of organic molecules, the organic substance reduces the transfer of pollutants to
groundwater [44]. In our study, the pH of the soil on which the experiment was carried was
alkaline; therefore, adding organic matter in the form of sludge could cause immobilization
of HMs in the root system. Additionally, plants from the Poaceae and Fabaceae families
(species, e.g., Lollium perenne, Festuca rubra, Poa pratensis, and Agrostis capillaris) have the
ability to bound HMs in the root system [45,46]. In the current study, the experiments were
set up with the use of lawn grass mixtures containing Lollium perenne, Festuca rubra, and Poa
pratensis, which were characterized by a suitable potential for HMs phytostabilization.
The potential ability of plants to metals immobilization in roots and in soil may also be
influenced by the BCF/TF factors, calculated for the content of a given metal in the above-
ground parts of plants to the content of this metal in the soil/root, assuming a value below
1.0. The lowest BCF and TF were obtained for Pb and Cr. Moreover, BCF < 1.0 occurred
for the most of tested metals (except for Cd from G2 plots), while in the second year for
Cd, Cr, Ni, and Pb. Furthermore, low TF we obtained for Cr, Ni, and Pb, which proves
their limited migration from the roots to the above-ground part of grasses. According to
Yoon et al. [43] and Kacprzak et al. [20], Pb is accumulated mainly in plant roots, which
may be confirmed by the obtained results in which BCF and TF coefficients values were
low. However, in the studies of Yang et al. [39] and Zhang et al. [47], Cu and Cd showed
low BCF of the tested plants (BCF < 1), and most often these metals were accumulated in
the roots in greater amounts than in the above-ground parts. Low BCF and TF factors for
Cu and Cd were obtained in T1 and T2, respectively. Cheraghi et al. [48] also obtained a
low ratio of Cu content in plants of the Poacea to the total Cu content in the soil.

The uptake and accumulation of HMs by plants may also depend on the content of
organic substances in soil, soil pH, soil particle composition, metal forms in soil, and soil
biological activity [49]. Presented research showed both positive and negative significant
correlations for the BCF and TF with the tested soil characteristics depending on the
location and year of the study, which may indicate a complex and ambiguous influence of
the application of sludge to urban soils. The obtained results were different depending on
the year of the experiment, which confirmed the observations of Padmavathiamma and
Li [46], indicating that the uptake of metals by plants shows seasonal changes.

5. Conclusions

Urban soils are continuously exposed to chemical, physical, and mechanical degra-
dation, the main sources of which are the developing industry and transport. Treatments
involving the fertilization of urban soils with sewage sludge with a low heavy metal content
will increase the green biomass produced by the soil, capable of producing oxygen, absorb-
ing a range of harmful substances contained in the air, reducing the migration of pollutants
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to groundwater, and increasing aesthetic and health values. In addition, the use of sewage
sludge in order to improve the growth conditions of grasses is an interesting alternative
use of this bio-waste. As indicated by the presented results, the ability of the applied grass
mixtures to uptake heavy metals from unpolluted soils after sewage sludge application is
not high, due to the low biomass production of the grasses, and only concerns some metals.
The application of sewage sludge to high pH urban soils may cause immobilization of HMs
in the soil with selected varieties of lawn grasses. This process is also supported by the
fact that during the experiment, most HMs in soils occurred in the residual fraction or in
potentially available fractions (reducible and oxidizable fractions). Only Zn showed a high
proportion in the easily accessible fraction. The occurrence of metals in the available and
potentially available fractions determined the higher BCF and TF values.

The paper proposes a concept for solving the problem of sludge utilization that is
innovative because it is based on multifaceted research on street lawns fertilized with dif-
ferent doses of stabilized sewage sludge under real conditions and refers to the occurrence
of multiple pollutants simultaneously. It should be emphasized that research conducted in
field conditions over a longer period of time allows for obtaining reliable results, which
reflects the natural conditions of the area during the experiment. However, the disadvan-
tage of such studies under uncontrolled conditions is the impossibility of unequivocally
determining the influence of all factors that may determine uptake or immobilization
of metals by plants. It makes it difficult to identify the factors that guarantee successful
phytoremediation. Further research should concern the chemical and biological analyses
of the root system of plants living in urban soil fertilized with sewage sludge. In particular,
they should include the study of biodiversity and the influence of microorganisms inhabit-
ing the soil environment of urban areas on the efficiency of the phytoremediation process
of sludge-fertilized soil.
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