Improvement in Torque Density by Ferrofluid Injection into Magnet Tolerance of Interior Permanent Magnet Synchronous Motor †
Abstract
:1. Introduction
2. Magnetic Circuit through Ferrofluid Injection
3. Basic Design of Proposed Model
3.1. Rotor Design through Ferrofluid Injection
3.2. Selection of Rotor Variable and Proposed Model
4. Detailed Design of the Rotor to Reduce Cogging Torque
4.1. Target Specification of IPMSM for the 4WD Hydraulic Control System
4.2. Variable of Rotor to Reduce Cogging Torque
4.3. Analysis of Target Function
4.4. Selection of the Final Model
4.5. Structural FEA
5. Test and Verification
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, T.H.; Kim, J.-H.; Seo, S. Facile and rapid method for fabricating liquid metal electrodes with highly precise patterns via one-step coating. J. Adv. Funct. Mater. 2020, 30, 2003694. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Han, J.; Huang, J.; Sun, J.; Wang, Z.L.; Seo, S.; Sun, Q. Stretchable energy-harvesting tactile interactive interface with liquid-metal-nanoparticle-based electrodes. J. Adv. Funct. Mater. 2020, 30, 1909652. [Google Scholar] [CrossRef]
- Kim, J.H.; Seo, S. Fabrication of an imperceptible liquid metal electrode for triboelectric nanogenerator based on gallium alloys by contact printing. J. Appl. Surf. Sci. 2020, 509, 145353. [Google Scholar] [CrossRef]
- Cho, H.; Kim, J.; Suga, K.; Ishigami, T.; Park, H.; Bang, J.W.; Seo, S.; Choi, M.; Chang, P.-S.; Umakoshi, H.; et al. Microfluidic platforms with monolithically integrated hierarchical apertures for the facile and rapid formation of cargo-carrying vesicles. J. R. Soc. Chem. 2015, 15, 373–377. [Google Scholar] [CrossRef]
- Kwon, U.; Kim, B.-G.; Nguyen, D.C.; Park, J.-H.; Ha, N.Y.; Kim, S.-J.; Ko, S.H.; Lee, S.; Lee, D.; Park, H.J. Solution-processible crystalline NiO nanoparticles for high-performance planar perovskite photovoltaic cells. J. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.; Paeng, D.; Park, H.K.; Grigoropoulos, C.P. Vacuum-free, maskless patterning of Ni electrodes by laser reductive sintering of NiO nanoparticle ink and its application to transparent conductors. J. ACS Nano 2014, 8, 9807–9814. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.-D.; Biswas, P.; Kim, J.-W.; Kim, Y.C.; Lee, T.I.; Myoung, J.-M. Low-temperature facile synthesis of Sb-doped p-type ZnO nanodisks and its application in homojunction light-emitting diode. J. ACS Appl. Mater. Interfaces 2016, 8, 13018–13026. [Google Scholar] [CrossRef]
- Kim, J.-W.; Lee, S.J.; Biswas, P.; Lee, T.I.; Myoung, J.-M. Solution-processed n-ZnO nanorod/p-Co3O4 nanoplate heterojunction light-emitting diode. J. Appl. Surf. Sci. 2017, 406, 192–198. [Google Scholar] [CrossRef]
- Islam, S.; Zubair, M.; Tassaddiq, A.; Shah, Z.; Alrabaiah, H.; Kumam, P.; Khan, W. Unsteady Ferrofluid Slip Flow in the Presence of Magnetic Dipole with Convective Boundary Conditions. IEEE Access 2020, 8, 138551–138562. [Google Scholar] [CrossRef]
- Ivanov, A.O.; Kuznetsova, O.B. Magnetic properties of dense ferrofluids. J. Magn. Magn. Mater. 2002, 252, 135–137. [Google Scholar] [CrossRef]
- Gautam, N.; Thirupathi, G.; Singh, R. Magnetoviscosity of paraffin-based barium ferrite ferrofluid. IEEE Trans. Magn. 2016, 52, 1–4. [Google Scholar] [CrossRef]
- Thirupathi, G.; Singh, R. Study of magnetoviscosity of ferromagnetic MnZn-ferrite ferrofluid. IEEE Trans. Magn. 2015, 51, 3–6. [Google Scholar] [CrossRef]
- Clark, N.A. Ferromagnetic ferrofluids. Nature 2013, 504, 229–230. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Quinones, D.I.; Raj, K.; Rinaldi, C. A comparison of the magnetorheology of two ferrofluids with different magnetic field-dependent chaining behavior. Rheol. Acta. 2013, 52, 719–726. [Google Scholar] [CrossRef]
- Klokkenburg, M.; Erné, B.H. Comparison of reversible and irreversible dipolar assemblies in a ferrofluid. J. Magn. Magn. Mater. 2006, 306, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.-F.; Sheu, J.-J.; Lee, M.-Z.; Lin, Y.-Q. Linear birefringence and dichroism measurements for silica coated iron oxide ferrofluids. IEEE Trans. Magn. 2014, 50, 18–21. [Google Scholar] [CrossRef]
- Yang, I.-J.; Lee, S.-H.; Kim, D.-H.; Kim, K.-S.; Jang, I.-S.; Kim, W.-H. Improvement in torque density by ferrofluid Injection into interior permanent magnet synchronous motor. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 11–15 October 2020; pp. 1364–1370. [Google Scholar]
- Nethe, A.; Scholz, T.; Stahlmann, H.D.; Filtz, M. Ferrofluids in electric motors—A numerical process model. IEEE Trans. Magn. 2002, 38, 1177–1180. [Google Scholar] [CrossRef]
- Engelmann, S.; Nethe, A.; Scholz, T.; Stahlmann, H.D. Concept of a new type of electric machines using ferrofluids. J. Magn. Magn. Mater. 2005, 293, 685–689. [Google Scholar] [CrossRef]
- Engelmann, S.; Nethe, A.; Scholz, T.; Stahlmann, H.D. Force enhancement on a ferrofluid-driven linear stepping motor model. J. Magn. Magn. Mater. 2004, 272–276, 2345–2347. [Google Scholar] [CrossRef]
- Zeng, G.; Xiang-yu, Y.; Yin, H.; Zhao, S.; Cao, J.; Qiu, L. Asynchronous machine with ferrofluid in gap: Modeling, simulation, and analysis. IEEE Trans. Magn. 2020, 56, 55–58. [Google Scholar] [CrossRef]
- Hanselman, D. Brushless Permanent Magnet Motor Design, 2nd ed.; E-Man Press LLC: Orono, ME, USA, 2006; pp. 133–139. [Google Scholar]
- Li, T.; Slemon, G. Reduction of cogging torque in permanent magnet motors. IEEE Trans. Magn. 1988, 24, 2901–2903. [Google Scholar]
- Keyhani, A.; Studer, C.; Sebastian, T.; Murthy, S.K. Study of cogging torque in permanent magnet machines. Electr. Mach. Power Syst. 1999, 27, 665–678. [Google Scholar] [CrossRef]
- Dosiek, L.; Pillay, P. Cogging torque reduction in permanent magnet machines. IEEE Trans. Ind. Appl. 2007, 43, 1565–1571. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.Q.; Howe, D. Influence of design parameters on cogging torque in permanent magnet machines. IEEE Trans. Energy Convers. 2000, 15, 407–412. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.-H.; Lim, M.-S.; Yoon, M.-H.; Jeong, J.-S.; Hong, J.-P. Torque ripple reduction of IPMSM applying asymmetric rotor shape under certain load condition. IEEE Trans. Energy Convers. 2018, 33, 333–340. [Google Scholar] [CrossRef]
- Jung, Y.-H.; Park, M.-R.; Lim, M.-S. Asymmetric rotor design of IPMSM for vibration reduction under certain load condition. IEEE Trans. Energy Convers. 2020, 35, 928–937. [Google Scholar] [CrossRef]
- Evans, S.A. Salient pole shoe shapes of interior permanent magnet synchronous machines. In Proceedings of the 19th International Conference on Electrical Machines, Rome, Italy, 6–8 September 2010. [Google Scholar]
- Jang, I.-S.; Kim, W.-H. Study on Electromagnetic Vibration Analysis Process for PM Motors. IEEE Trans. Appl. Supercond. 2020, 30. [Google Scholar] [CrossRef]
Parameter | Value | Unit |
---|---|---|
Number of poles | 6 | - |
Number of slots | 9 | - |
Current | 50 | Apeak |
Rotating speed | 4000 | rpm |
Stator outer/inner diameter | 56/30 | mm |
Rotor outer/inner diameter | 29/9.28 | mm |
Stator and rotor material | 50PN470 | - |
Airgap length | 0.5 | mm |
Stack length | 38 | mm |
Magnet tolerance | 0.2 | mm |
Magnet length and width | 9.1/2 | mm |
Magnet material | N40SH | - |
Number of turns | 6 | - |
Parameter | Conventional Model | Proposed Model | Target Value | Unit |
---|---|---|---|---|
Torque (avg) | 706.11 | 797.33 | Max | mN∙m |
Cogging torque (pk2pk) | 3.37 | 8.82 | 3 | mN∙m |
No-load line Voltage THD | 13.71 | 15.15 | 5 | % |
Efficiency | 75.09 | 77.38 | 77.5 | % |
Torque ripple | 14.88 | 16.57 | 5 | % |
Parameter | Conventional Model | Proposed Model | Final Model | Unit |
---|---|---|---|---|
Torque (avg) | 706.11 | 797.33 | 740.58 | mN∙m |
Cogging torque (pk2pk) | 3.37 | 8.82 | 2.15 | mN∙m |
No-load line voltage THD | 13.71 | 15.15 | 4.32 | % |
Efficiency | 75.09 | 77.38 | 77.96 | % |
Torque ripple | 14.88 | 16.57 | 4.99 | % |
Parameter | Value | Unit |
---|---|---|
Volume of rotor | 100,399 | mm3 |
Volume of permanent magnet | 4145 | mm3 |
Capacity of ferrofluid | 0.812 | mL |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, I.-J.; Song, S.-W.; Kim, D.-H.; Kim, K.-S.; Kim, W.-H. Improvement in Torque Density by Ferrofluid Injection into Magnet Tolerance of Interior Permanent Magnet Synchronous Motor. Energies 2021, 14, 1736. https://doi.org/10.3390/en14061736
Yang I-J, Song S-W, Kim D-H, Kim K-S, Kim W-H. Improvement in Torque Density by Ferrofluid Injection into Magnet Tolerance of Interior Permanent Magnet Synchronous Motor. Energies. 2021; 14(6):1736. https://doi.org/10.3390/en14061736
Chicago/Turabian StyleYang, In-Jun, Si-Woo Song, Dong-Ho Kim, Kwang-Soo Kim, and Won-Ho Kim. 2021. "Improvement in Torque Density by Ferrofluid Injection into Magnet Tolerance of Interior Permanent Magnet Synchronous Motor" Energies 14, no. 6: 1736. https://doi.org/10.3390/en14061736
APA StyleYang, I. -J., Song, S. -W., Kim, D. -H., Kim, K. -S., & Kim, W. -H. (2021). Improvement in Torque Density by Ferrofluid Injection into Magnet Tolerance of Interior Permanent Magnet Synchronous Motor. Energies, 14(6), 1736. https://doi.org/10.3390/en14061736