Supporting Information

Crystal engineering approach for fabrication of inverted perovskite solar cell in ambient conditions

Inga Ermanova ¹, Narges Yaghoobi Nia ^{2,*}, Enrico Lamanna ², Elisabetta Di Bartolomeo ³, Evgeny Kolesnikov ⁴, Lev Luchnikov ¹ and Aldo Di Carlo ^{1,2,*}

- ¹ LASE Laboratory of Advanced Solar Energy, National University of Science and Technology "MISiS", Leninsky prospect 4, 119049, Moscow, Russia ; ermanova.io@misis.ru(I.E.) ; luchnikov.lo@misis.ru(L.L.)
- ² CHOSE Centre for Hybrid and Organic Solar Energy, University of Rome "Tor Vergata", via del Politecnico 1, Rome 00133, Italy ; YAGHOOBI.NIA@ing.uniroma2.it (N.Y.N.); enrico.lamanna91@gmail.com (E.L.)
- ³ Department of Chemical Science and Technologies in University of Rome Tor Vergata (Via della Ricerca Scientifica 1, 00133 Rome, Italy) ; dibartolomeo@uniroma2.it(E.D.B)
- ⁴ Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology "MISiS", Leninsky prospect 4, 119049, Moscow, Russia; kea.misis@gmail.com(E.K.)
 - * Correspondence: YAGHOOBI.NIA@ing.uniroma2.it,aldo.dicarlo@uniroma2.it (A.D.C.)

Figure S1. Statistical photovoltaic parameters of the of MAPbI₃ perovskite applying PCBM and BCP outside and inside glovebox(GB): a) – PCE, b) – JSC c) – Fill Factor, and d) – VOC

Table S1. The best parameters and average values of MAPIbI₃ perovskite applying PCBM and BCP outside and inside glovebox: a) – PCE, b) – JSC c) – Fill Factor, and d) – VOC

MAPbI ₃ PSCs	Voc (V)	Jsc (mA/cm²)	FF (%)	PCE (%) max(average)
PCBM/BCP inside glove-box	1.04 (1.03 ±0.01)	22.393 (21.78 ±1.48)	55.34 (55.97 ±2.31)	12.9 (12.56 ±0.38)
PCBM/BCP outside glove-box (air)	1.04 (1.07 ±0.02)	18.779 (18.54 ±0.22)	57.52 (58.71 ±1.34)	11.7 (11.61 ±0.05)

MAPbI₃

Mulitication perovskite

Figure S2. Pb and PbX_2 layer, perovskite layers

PbI2 layers on TCO/NiOx

MAPbI₃ formation (under dipping process)

Figure S3. Pb layer, perovskite formation under dipping process

Figure S4 (a) – Absorbance of multication perovskite films (different dipping time), (b) – PL of multication films on NiOX/FTO (different dipping time)

4

Figure S5. a) Multication perovskite: JSC dependence on dipping time in multication solution; b),c),d),e) – Electrical parameter statistics for the investigated multication perovskite-based device acquired at 1 Sun irradiation. The cell active area is 0.16 cm².

Figure S6. J-V-plots of two-step a) Multication and b) pure MAPbI3 perovskite solar cells