State-of-the-Art of Strategies to Reduce Exhaust Emissions from Diesel Engine Vehicles
Abstract
:1. Introduction
- Pre-combustion engine configuration modifications
- In-combustion fuel modification
- Post-combustion treatment techniques
2. Diesel Engine Emission Standards
3. Pre-Combustion Engine Design Considerations
4. In-Combustion Fuel Modification
4.1. Biodiesel as a Diesel Substitute
4.2. Addition of Additives to the Fuel
4.2.1. Effect of Additives on Fuel Properties
4.2.2. Effect of Additives on Engine Performance and Emission
5. Post-Combustion Treatment Considerations
6. Conclusions
- Retardation of injection timing can reduce NOX emissions, whereas advancement reduces EGT, BSFC, HC, and CO emissions, and smoke opacity. However, the advancement of injection timing results in an increase in NOX emission. Contrary, some researchers reported an increase in PM emission and BSFC and reduced BTE when injection timing is advanced and an increase of NOX emission when injection timing is retarded. Furthermore, some study reported that any change of injection timing, advanced or retarded, results in an increase of BSFC and reduction of BTE.
- Increasing the injection pressure improves BTE and reduces BSFC. However, some researchers had reported an increase of BSFC when the injection pressure was reduced or increased. An increase in injection pressure reduces CO, HC emission and particulate number concentration. Contrary, some researchers reported an increase in NOX and CO emission with an increase in injection pressure.
- An increase in compression ratio reduces BSFC, EGT, CO emission, and smoke opacity and improves BTE; however, it increases NOX and HC emission.
- LTC techniques and EGR can reduce NOX and PM emission simultaneously; however, they generally increase HC and CO emission.
- Multiple or split injection strategies also reduce PM and NOX emission but increases BSFC.
- Biodiesel can be used with diesel fuel, as it has better lubricity, higher flash point, emits less CO, HC, and PM emission. However, they reduce efficiency and increases fuel consumption and also emit higher NOX compared to diesel fuel. Biodiesel lacks oxidation stability. If stored for a prolonged time, stability deteriorates rapidly. Furthermore, biodiesel production cost is still higher.
- The oxidation stability of biodiesel can be improved by using antioxidant but will result in an increase in CO and HC emission.
- Algal biodiesel can solve some of the problems of first-generation biodiesels, such as the food vs. fuel debate. There are a lot of researches going on which aims to find an economical production process.
- Metal-based additives improve fuel economy; reduce HC, CO, and smoke emission, on the other hand, increase NOX emission.
- Oxygenated additives improve combustion by increasing oxygen contents. The use of additives increases the maximum heat release rate and in-cylinder pressure. In contrast, these additives have some disadvantages: the high heat of vapourisation, low cetane number, high auto-ignition temperature, an increase of NOX emission, and inadequate lubricating behaviours.
- Cetane improvers reduce NOX emission significantly; however, from the literature reviewed, there is a lack of studies, which focused on the effect of these additives on PM emission.
- DOC can reduce HC, CO emissions, and SOF. However, it has little/no effect on NOX emission and sometimes can increase PM emission by producing more sulphates.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
ARTEMIS | Assessment and Reliability of Transport Emission Models and Inventory Systems cycle |
BHA | Butylated hydroxyanisole |
BHT | Butylated hydroxytoluene |
BMEP | Brake Mean Effective Pressure |
BSFC | Brake Specific Fuel Consumption |
BTE | Brake Thermal Efficiency |
EHN | Cyclohexyl nitrate |
CHR | Cumulative heat release rate |
CI | Compression ignition |
DEE | Diethyl Ether |
DI | Direct Ignition |
DOC | Diesel oxidation catalyst |
DPF | Diesel Particulate Filter |
DPPD | N,N′-diphenyl-p-phenylenediamine |
DTBP | Di-tert-butyl peroxide |
EGR | Exhaust gas recirculation |
EGT | Exhaust Gas Temperature |
EHN | 2-ethylhexyl nitrate |
FAME | Fatty acid methyl ester |
HC | Hydrocarbon |
HCCI | Homogenous charge compression ignition |
IDI | Indirect injection |
IP | Induction period |
IPCC | Intergovernmental Panel on Climate Change |
LTC | Low temperature combustion |
MEE | 2-methoxyethyl ether |
NEDC | New European Driving Cycle |
NOX | Oxides of Nitrogen |
ODA | Octylated/butylated diphenylamine |
PAH | Polycyclic aromatic hydrocarbons |
PCCI | Premixed charge compression ignition |
PCI | Premixed compression ignition |
PM | Particulate matter |
RCCI | Reactivity controlled compression ignition |
SCR | Selective Catalytic Reduction |
SOF | Soluble Organic Fraction |
TBHQ | tert-Butylhydroquinone |
TDC | top dead centre |
TDI | Turbocharged direct injection |
References
- Knecht, W. Diesel engine development in view of reduced emission standards. Energy 2008, 33, 264–271. [Google Scholar] [CrossRef]
- IPCC. The IPCC Special Report on Emissions Scenarios; IPCC: Geneva, Switzerland, 2000. [Google Scholar]
- Rahman, S.M.A.; Masjuki, H.H.; Kalam, M.A.; Abedin, M.J.; Sanjid, A.; Sajjad, H. Impact of idling on fuel consumption and exhaust emissions and available idle-reduction technologies for diesel vehicles—A review. Energy Convers. Manag. 2013, 74, 171–182. [Google Scholar] [CrossRef]
- Faiz, A.; Sinha, K.; Walsh, M.; Varma, A. Automotive Air Pollution: Issues and Options for Developing Countries; The World Bank: Washington, DC, USA, 1990; Volume 492. [Google Scholar]
- Rashedul, H.K.; Masjuki, H.H.; Kalam, M.A.; Ashraful, A.M.; Rahman, S.M.; Shahir, S.A. The effect of additives on properties, performance and emission of biodiesel fuelled compression ignition engine. Energy Convers. Manag. 2014, 88, 348–364. [Google Scholar] [CrossRef]
- Department of the Environment and Heritage, A.G. Air Quality Factsheets. Available online: http://www.environment.gov.au/protection/publications/factsheet-carbon-monoxide-co (accessed on 15 March 2021).
- Chou, C.H.; Lai, C.H.; Liou, S.H.; Loh, C.H. Carbon monoxide: An old poison with a new way of poisoning. J. Formos. Med. Assoc. 2012, 111, 452–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palash, S.M.; Kalam, M.A.; Masjuki, H.H.; Arbab, M.I.; Masum, B.M.; Sanjid, A. Impacts of NOx reducing antioxidant additive on performance and emissions of a multi-cylinder diesel engine fueled with Jatropha biodiesel blends. Energy Convers. Manag. 2014, 77, 577–585. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G. Guideline on Speciated Particulate Monitoring; Report Prepared for US Environmental Protection Agency, Research Triangle Park, NC; Desert Research Institute: Reno, NV, USA, 1998. [Google Scholar]
- Zhang, Q.; Gangupomu, R.H.; Ramirez, D.; Zhu, Y. Measurement of ultrafine particles and other air pollutants emitted by cooking activities. Int. J. Environ. Res. Public Health 2010, 7, 1744–1759. [Google Scholar] [CrossRef]
- Kim, K.H.; Jahan, S.A.; Kabir, E.; Brown, R.J.C. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 2013, 60, 71–80. [Google Scholar] [CrossRef]
- Unwin, J.; Cocker, J.; Scobbie, E.; Chambers, H. An assessment of occupational exposure to polycyclic aromatic hydrocarbons in the UK. Ann. Occup. Hyg. 2006, 50, 395–403. [Google Scholar]
- Bach, P.B.; Kelley, M.J.; Tate, R.C.; McCrory, D.C. Screening for lung cancer: A review of the current literature. Chest J. 2003, 123, 72S–82S. [Google Scholar] [CrossRef] [Green Version]
- Diggs, D.L.; Huderson, A.C.; Harris, K.L.; Myers, J.N.; Banks, L.D.; Rekhadevi, P.V.; Niaz, M.S.; Ramesh, A. Polycyclic aromatic hydrocarbons and digestive tract cancers: A perspective. J. Environ. Sci. Health C 2011, 29, 324–357. [Google Scholar] [CrossRef] [Green Version]
- Brodsky, A.P.J.B.; Cohen, E.N. Adverse effects of nitrous oxide. Med. Toxicol. 1986, 1, 362–374. [Google Scholar] [CrossRef]
- The World Health Organization (WHO). Exposure to Benzene: A Major Public Health Concern; WHO Document Production Services: Geneva, Switzerland, 2010.
- Kang, S.K.; Rohlman, D.S.; Lee, M.Y.; Lee, H.S.; Chung, S.Y.; Anger, W.K. Neurobehavioral performance in workers exposed to toluene. Environ. Toxicol. Pharmacol. 2005, 19, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.K.; Das, L. Biodiesel development and characterization for use as a fuel in compression ignition engines. J. Eng. Gas. Turbines Power 2001, 123, 440–447. [Google Scholar] [CrossRef]
- Murugesan, A.; Umarani, C.; Subramanian, R.; Nedunchezhian, N. Bio-diesel as an alternative fuel for diesel engines—A review. Renew. Sustain. Energy Rev. 2009, 13, 653–662. [Google Scholar] [CrossRef]
- Lindqvist, K. Airclim Factshee. Available online: https://www.airclim.org/sites/default/files/documents/Factsheet-emission-standards.pdf (accessed on 15 March 2021).
- DieselNet. Emission Standards Australia: On-Road Vehicles and Engines. Available online: https://www.dieselnet.com/standards/au/ (accessed on 15 March 2021).
- Kim, M.-H.; Chung, W.-I.; Chyun, I.-B. Three-Dimensional Flow Characteristics and Engine Performance for the Geometry Modification of Intake Manifold in Multi-Cylinder Diesel Engine; SAE Technical Paper 2000-05-0020; Seoul 2000 FISITA World Automotive Congress, Seoul, Korea; SAE International: Warrendale, PA, USA, 2000. [Google Scholar]
- Barroso, P.M.; Dominguez, J.; Pita, M., Sr.; Ribas, X. Performance and Emissions of a HD Diesel Engine Converted for Alternative Fuel Use; SAE Technical Paper 2014-01-2685; SAE International: Warrendale, PA, USA, 2014. [Google Scholar] [CrossRef]
- Montajir, R.M.; Tsunemoto, H.; Ishitani, H.; Minami, T. Fuel Spray Behavior in a Small DI Diesel Engine: Effect of Combustion Chamber Geometry; SAE Technical Paper 2000-01-0946; SAE International: Warrendale, PA, USA, 2000. [Google Scholar] [CrossRef]
- Payri, F.; Desantes, J.M.; Benajes, J. Compression Ignition Engines: State-of-the-Art and Current Technologies. Future Trends and Developments. In Handbook of Clean Energy Systems; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 1–35. [Google Scholar] [CrossRef]
- Gulzar, M.; Masjuki, H.H.; Kalam, M.A.; Varman, M.; Fattah, I.M. Oil filter modification for biodiesel–fueled engine: A pathway to lubricant sustainability and exhaust emissions reduction. Energy Convers. Manag. 2015, 91, 168–175. [Google Scholar] [CrossRef]
- Park, S.H.; Youn, I.M.; Lee, C.S. Influence of ethanol blends on the combustion performance and exhaust emission characteristics of a four-cylinder diesel engine at various engine loads and injection timings. Fuel 2011, 90, 748–755. [Google Scholar] [CrossRef]
- Sayin, C.; Uslu, K.; Canakci, M. Influence of injection timing on the exhaust emissions of a dual-fuel CI engine. Renew. Energy 2008, 33, 1314–1323. [Google Scholar] [CrossRef]
- Muralidharan, K.; Govindarajan, P. Influence of Injection Timing on the Performance and Emission Characteristics of DI Diesel Engine using Pongamia Pinnata Methyl Ester. Eur. J. Sci. Res. 2011, 59, 417–431. [Google Scholar]
- Ganapathy, T.; Gakkhar, R.P.; Murugesan, K. Influence of injection timing on performance, combustion and emission characteristics of Jatropha biodiesel engine. Appl. Energy 2011, 88, 4376–4386. [Google Scholar] [CrossRef]
- Kumar, S.; Srinivas, P.; Shrinivasa, R. Influence of injection timings on performance and emissions of a biodiesel engine operated on blends of Honge methyl ester and prediction using artificial neural network. J. Mech. Eng. Res. 2013, 5, 5–20. [Google Scholar] [CrossRef] [Green Version]
- Zeng, K.; Huang, Z.; Liu, B.; Liu, L.; Jiang, D.; Ren, Y.; Wang, J. Combustion characteristics of a direct-injection natural gas engine under various fuel injection timings. Appl.Therm. Eng. 2006, 26, 806–813. [Google Scholar] [CrossRef]
- Nwafor, O.M.I. Effect of advanced injection timing on emission characteristics of a diesel engine running on biofuel. Int. J. Ambient Energy 2004, 25, 115–122. [Google Scholar] [CrossRef]
- Zhu, R.; Miao, H.; Wang, X.; Huang, Z. Effects of fuel constituents and injection timing on combustion and emission characteristics of a compression-ignition engine fueled with diesel-DMM blends. Proc. Combust. Inst. 2013, 34, 3013–3020. [Google Scholar] [CrossRef]
- Sayin, C.; Ilhan, M.; Canakci, M.; Gumus, M. Effect of injection timing on the exhaust emissions of a diesel engine using diesel–methanol blends. Renew. Energy 2009, 34, 1261–1269. [Google Scholar] [CrossRef]
- Sayin, C.; Ertunc, H.M.; Hosoz, M.; Kilicaslan, I.; Canakci, M. Performance and exhaust emissions of a gasoline engine using artificial neural network. Appl. Therm. Eng. 2007, 27, 46–54. [Google Scholar] [CrossRef]
- Alla, G.; Soliman, H.; Badr, O.; Rabbo, M. Effect of injection timing on the performance of a dual fuel engine. Energy Convers. Manag. 2002, 43, 269–277. [Google Scholar] [CrossRef]
- Pulkrabek, W.W. Engineering Fundamentals of the Internal Combustion Engine, 2nd ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2004; Volume 2. [Google Scholar]
- Robert Bosch GmbH. Bosch Automotive Handbook, 10th ed.; Wiley: Chichester, UK, 2018. [Google Scholar]
- Bari, S.; Yu, C.W.; Lim, T.H. Effect of fuel injection timing with waste cooking oil as a fuel in a direct injection diesel engine. Proc. Inst. Mech. Eng. Part. D J. Automob. Eng. 2004, 218, 93–104. [Google Scholar] [CrossRef]
- Raheman, H.; Ghadge, S.V. Performance of diesel engine with biodiesel at varying compression ratio and ignition timing. Fuel 2008, 87, 2659–2666. [Google Scholar] [CrossRef]
- Hariram, V.; Mohan Kumar., G. The Effect of Injection Timing on Combustion, Performance and Emission Parameters with AOME Blends as a Fuel for Compression Ignition Engine. Eur. J. Sci. Res. 2012, 79, 653–665. [Google Scholar]
- Aldhaidhawi, M.; Chiriac, R.; Badescu, V. Ignition delay, combustion and emission characteristics of Diesel engine fueled with rapeseed biodiesel—A literature review. Renew. Sustain. Energy Rev. 2017, 73, 178–186. [Google Scholar] [CrossRef]
- Canakci, M.; Sayin, C.; Ozsezen, A.N.; Turkcan, A. Effect of injection pressure on the combustion, performance, and emission characteristics of a diesel engine fueled with methanol-blended diesel fuel. Energy Fuels 2009, 23, 2908–2920. [Google Scholar] [CrossRef]
- Agarwal, A.K.; Srivastava, D.K.; Dhar, A.; Maurya, R.K.; Shukla, P.C.; Singh, A.P. Effect of fuel injection timing and pressure on combustion, emissions and performance characteristics of a single cylinder diesel engine. Fuel 2013, 111, 374–383. [Google Scholar] [CrossRef]
- Jaichandar, S.; Annamalai, K. Combined impact of injection pressure and combustion chamber geometry on the performance of a biodiesel fueled diesel engine. Energy 2013, 55, 330–339. [Google Scholar] [CrossRef]
- Sayin, C.; Gumus, M.; Canakci, M. Effect of fuel injection pressure on the injection, combustion and performance characteristics of a DI diesel engine fueled with canola oil methyl esters-diesel fuel blends. Biomass Bioenergy 2012, 46, 435–446. [Google Scholar] [CrossRef]
- Kumar, M.D.; Ramudu, M.V.; Reddy, K.V.K. Effect of Injection Pressure on the Performance and Emission Charactaristics of DI Diesel Engine Running on Nelli Oil and Diesel Fuel Blend. Int. J. Mech. Eng. Robot. Res. 2014, 3, 130–137. [Google Scholar]
- Jindal, S.; Nandwana, B.P.; Rathore, N.S.; Vashistha, V. Experimental investigation of the effect of compression ratio and injection pressure in a direct injection diesel engine running on Jatropha methyl ester. Appl. Eng. 2010, 30, 442–448. [Google Scholar] [CrossRef]
- Reddy, C.; Reddy, C.; Reddy, K. Effect of fuel injection pressures on the performance and emission characteristics of D.I. Diesel engine with biodiesel blends cotton seed oil methyl ester. Int. J. Res. Rev. Appl. Sci. 2012, 13, 139–149. [Google Scholar]
- Purushothaman, K.; Nagarajan, G. Effect of injection pressure on heat release rate and emissions in CI engine using orange skin powder diesel solution. Energy Convers. Manag. 2009, 50, 962–969. [Google Scholar] [CrossRef]
- Belagur, K.V.; Chitimini, R.V. Effect of injector opening pressures on the performance, emission and combustion characteristics of DI diesel engine running on honne oil and diesel fuel blend. Therm. Sci. 2010, 14, 1051–1061. [Google Scholar] [CrossRef]
- Imtenan, S.; Ashrafur Rahman, S.M.; Masjuki, H.H.; Varman, M.; Kalam, M.A. Effect of dynamic injection pressure on performance, emission and combustion characteristics of a compression ignition engine. Renew. Sustain. Energy Rev. 2015, 52, 1205–1211. [Google Scholar] [CrossRef]
- Gumus, M.; Sayin, C.; Canakci, M. The impact of fuel injection pressure on the exhaust emissions of a direct injection diesel engine fueled with biodiesel–diesel fuel blends. Fuel 2012, 95, 486–494. [Google Scholar] [CrossRef]
- Ajav, E.; Singh, B.; Bhattacharya, T. Experimental study of some performance parameters of a constant speed stationary diesel engine using ethanol–diesel blends as fuel. Biomass Bioenergy 1999, 17, 357–365. [Google Scholar] [CrossRef]
- Hwang, J.; Qi, D.; Jung, Y.; Bae, C. Effect of injection parameters on the combustion and emission characteristics in a common-rail direct injection diesel engine fueled with waste cooking oil biodiesel. Renew. Energy 2014, 63, 9–17. [Google Scholar] [CrossRef]
- Ryu, K. Effects of pilot injection pressure on the combustion and emissions characteristics in a diesel engine using biodiesel–CNG dual fuel. Energy Convers. Manag. 2013, 76, 506–516. [Google Scholar] [CrossRef]
- Mohan, B.; Yang, W.; Raman, V.; Sivasankaralingam, V.; Chou, S.K. Optimization of biodiesel fueled engine to meet emission standards through varying nozzle opening pressure and static injection timing. Appl. Energy 2014, 130, 450–457. [Google Scholar] [CrossRef]
- Kannan, K.; Udayakumar, M. Experimental study of the effect of fuel injection pressure on diesel engine performance and emission. Arpn. J. Eng. Appl. Sci. 2010, 5, 42–45. [Google Scholar]
- Can, Ö.; Çelikten, I.; Usta, N. Effects of ethanol addition on performance and emissions of a turbocharged indirect injection Diesel engine running at different injection pressures. Energy Convers. Manag. 2004, 45, 2429–2440. [Google Scholar] [CrossRef]
- Pandian, M.; Sivapirakasam, S.P.; Udayakumar, M. Investigation on the effect of injection system parameters on performance and emission characteristics of a twin cylinder compression ignition direct injection engine fuelled with pongamia biodiesel–diesel blend using response surface methodology. Appl. Energy 2011, 88, 2663–2676. [Google Scholar] [CrossRef]
- Muralidharan, K.; Vasudevan, D. Performance, emission and combustion characteristics of a variable compression ratio engine using methyl esters of waste cooking oil and diesel blends. Appl. Energy 2011, 88, 3959–3968. [Google Scholar] [CrossRef]
- Sayin, C.; Gumus, M. Impact of compression ratio and injection parameters on the performance and emissions of a DI diesel engine fueled with biodiesel-blended diesel fuel. Appl. Therm. Eng. 2011, 31, 3182–3188. [Google Scholar] [CrossRef]
- Tung, S.C.; McMillan, M.L. Automotive tribology overview of current advances and challenges for the future. Tribol. Int. 2004, 37, 517–536. [Google Scholar] [CrossRef]
- Pearce, J.M.; Hanlon, J.T. Energy conservation from systematic tire pressure regulation. Energy Policy 2007, 35, 2673–2677. [Google Scholar] [CrossRef] [Green Version]
- National Research Council. Assessment of Fuel Economy Technologies for Light-Duty Vehicles; The National Academies Press: Washington, DC, USA, 2011. [Google Scholar] [CrossRef]
- Vedharaj, S.; Vallinayagam, R.; Yang, W.M.; Saravanan, C.G.; Lee, P.S. Optimization of combustion bowl geometry for the operation of kapok biodiesel–Diesel blends in a stationary diesel engine. Fuel 2015, 139, 561–567. [Google Scholar] [CrossRef]
- Jaichandar, S.; Kumar, P.; Annamalai, K. Combined effect of injection timing and combustion chamber geometry on the performance of a biodiesel fueled diesel engine. Energy 2012, 47, 388–394. [Google Scholar] [CrossRef]
- Jaichandar, S.; Annamalai, K. Influences of re-entrant combustion chamber geometry on the performance of Pongamia biodiesel in a DI diesel engine. Energy 2012, 44, 633–640. [Google Scholar] [CrossRef]
- Zheng, M.; Reader, G.T.; Hawley, J.G. Diesel engine exhaust gas recirculation––a review on advanced and novel concepts. Energy Convers. Manag. 2004, 45, 883–900. [Google Scholar] [CrossRef]
- Maiboom, A.; Tauzia, X.; Hétet, J.-F. Experimental study of various effects of exhaust gas recirculation (EGR) on combustion and emissions of an automotive direct injection diesel engine. Energy 2008, 33, 22–34. [Google Scholar] [CrossRef]
- Millo, F.; Giacominetto, P.F.; Bernardi, M.G. Analysis of different exhaust gas recirculation architectures for passenger car Diesel engines. Appl. Energy 2012, 98, 79–91. [Google Scholar] [CrossRef]
- Asad, U.; Zheng, M. Exhaust gas recirculation for advanced diesel combustion cycles. Appl. Energy 2014, 123, 242–252. [Google Scholar] [CrossRef]
- Agarwal, D.; Singh, S.K.; Agarwal, A.K. Effect of Exhaust Gas Recirculation (EGR) on performance, emissions, deposits and durability of a constant speed compression ignition engine. Appl. Energy 2011, 88, 2900–2907. [Google Scholar] [CrossRef]
- Abd-Alla, G. Using exhaust gas recirculation in internal combustion engines: A review. Energy Convers. Manag. 2002, 43, 1027–1042. [Google Scholar] [CrossRef]
- Ogawa, H.; Li, T.; Miyamoto, N. Characteristics of low temperature and low oxygen diesel combustion with ultra-high exhaust gas recirculation. Int. J. Engine Res. 2007, 8, 365–378. [Google Scholar] [CrossRef]
- Chadwell, C.J.; Dingle, P.J. Effect of Diesel and Water Co-Injection with Real-Time Control on Diesel Engine Performance and Emissions; SAE Technical Paper 2008-01-1190; SAE International: Warrendale, PA, USA, 2008. [Google Scholar] [CrossRef]
- Gomaa, M.; Alimin, A.; Kamarudin, K. The effect of EGR rates on NOx and smoke emissions of an IDI diesel engine fuelled with Jatropha biodiesel blends. Int. J. Energy Environ. 2011, 2, 477–490. [Google Scholar]
- Pidol, L.; Lecointe, B.; Starck, L.; Jeuland, N. Ethanol–biodiesel–diesel fuel blends: Performances and emissions in conventional diesel and advanced low temperature combustions. Fuel 2012, 93, 329–338. [Google Scholar] [CrossRef]
- Shahir, V.K.; Jawahar, C.P.; Suresh, P.R. Comparative study of diesel and biodiesel on CI engine with emphasis to emissions—A review. Renew. Sustain. Energy Rev. 2015, 45, 686–697. [Google Scholar] [CrossRef]
- Hoekman, S.K.; Robbins, C. Review of the effects of biodiesel on NOx emissions. Fuel Process. Technol. 2012, 96, 237–249. [Google Scholar] [CrossRef]
- Bose, P.K.; Maji, D. An experimental investigation on engine performance and emissions of a single cylinder diesel engine using hydrogen as inducted fuel and diesel as injected fuel with exhaust gas recirculation. Int. J. Hydrog. Energy 2009, 34, 4847–4854. [Google Scholar] [CrossRef]
- Fathi, M.; Saray, R.K.; Checkel, M.D. The influence of Exhaust Gas Recirculation (EGR) on combustion and emissions of n-heptane/natural gas fueled Homogeneous Charge Compression Ignition (HCCI) engines. Appl. Energy 2011, 88, 4719–4724. [Google Scholar] [CrossRef]
- Montgomery, D.; Reitz, R.D. Six-Mode Cycle Evaluation of the Effect of EGR and Multiple Injections on Particulate and NOx Emissions from a D.I. Diesel Engine; SAE Technical Paper 960316; SAE International: Warrendale, PA, USA, 1996. [Google Scholar] [CrossRef]
- Herfatmanesh, M.R.; Lu, P.; Attar, M.A.; Zhao, H. Experimental investigation into the effects of two-stage injection on fuel injection quantity, combustion and emissions in a high-speed optical common rail diesel engine. Fuel 2013, 109, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Dürnholz, M.; Endres, H.; Frisse, P. Preinjection A Measure to Optimize the Emission Behavior of DI-Diesel Engine; SAE Technical Paper 940674; SAE International: Warrendale, PA, USA, 1994. [Google Scholar] [CrossRef]
- Pierpont, D.; Montgomery, D.; Reitz, R.D. Reducing Particulate and NOx Using Multiple Injections and EGR in a DI Diesel; SAE Technical Paper 950217; SAE International: Warrendale, PA, USA, 1995. [Google Scholar] [CrossRef]
- Chen, S.K. Simultaneous Reduction of NOx and Particulate Emissions by Using Multiple Injections in a Small Diesel Engine; SAE Technical Paper 2000-01-3084; SAE International: Warrendale, PA, USA, 2000. [Google Scholar] [CrossRef]
- Choi, C.Y.; Reitz, R.D. An experimental study on the effects of oxygenated fuel blends and multiple injection strategies on DI diesel engine emissions. Fuel 1999, 78, 1303–1317. [Google Scholar] [CrossRef]
- Fang, T.; Chia-fon, F.L. Bio-diesel effects on combustion processes in an HSDI diesel engine using advanced injection strategies. Proc. Combust. Inst. 2009, 32, 2785–2792. [Google Scholar] [CrossRef]
- Shundoh, S.; Komori, M.; Tsujimura, K.; Kobayashi, S. NOx Reduction from Diesel Combustion Using Pilot Injection with High Pressure Fuel Injection; SAE Technical Paper 920461; SAE International: Warrendale, PA, USA, 1992. [Google Scholar] [CrossRef]
- Imtenan, S.; Varman, M.; Masjuki, H.H.; Kalam, M.A.; Sajjad, H.; Arbab, M.I.; Fattah, I.M. Impact of low temperature combustion attaining strategies on diesel engine emissions for diesel and biodiesels: A review. Energy Convers. Manag. 2014, 80, 329–356. [Google Scholar] [CrossRef]
- Shimazaki, N.; Tsurushima, T.; Nishimura, T. Dual Mode Combustion Concept With Premixed Diesel Combustion by Direct Injection Near Top Dead Center; SAE Technical Paper 2003-01-0742; SAE International: Warrendale, PA, USA, 2003. [Google Scholar] [CrossRef]
- Okude, K.; Mori, K.; Shiino, S.; Moriya, T. Premixed Compression Ignition (PCI) Combustion for Simultaneous Reduction of NOx and Soot in Diesel Engine; SAE Technical Paper 2004-01-1907; SAE International: Warrendale, PA, USA, 2004. [Google Scholar] [CrossRef]
- Musculus, M.P.; Singh, S.; Reitz, R.D. Gradient effects on two-color soot optical pyrometry in a heavy-duty DI diesel engine. Combust. Flame 2008, 153, 216–227. [Google Scholar] [CrossRef]
- Srinivasan, K.; Krishnan, S.; Qi, Y.; MIDKIFF∗, K.; Yang, H. Analysis of diesel pilot-ignited natural gas low-temperature combustion with hot exhaust gas recirculation. Combust. Sci. Technol. 2007, 179, 1737–1776. [Google Scholar] [CrossRef]
- Kook, S.; Bae, C.; Miles, P.C.; Choi, D.; Pickett, L.M. The Influence of Charge Dilution and Injection Timing on Low-Temperature Diesel Combustion and Emissions; SAE Technical Paper 2005-01-3837; SAE International: Warrendale, PA, USA, 2005. [Google Scholar] [CrossRef] [Green Version]
- Alriksson, M.; Denbratt, I. Low Temperature Combustion in a Heavy Duty Diesel Engine Using High Levels of EGR; SAE Technical Paper 2006-01-0075; SAE International: Warrendale, PA, USA, 2006. [Google Scholar] [CrossRef]
- Noehre, C.; Andersson, M.; Johansson, B.; Hultqvist, A. Characterization of Partially Premixed Combustion. In Proceedings of the Powertrain & Fluid SAystems Conference and Exhibitechioni, Toronto, ON, Calnada, 16–19 October 2006. [Google Scholar]
- Keene, P.; Browne, B. Effective Preservation Strategies for Ultra Low Sulfur Diesel, Biodiesel and Unleaded Gasoline. In Proceedings of the Eighth International Fuels Colloquium, Technische Akademie Esslingen, Ostfildern, Germany, 19–20 January 2011. [Google Scholar]
- Mahlia, T.M.I.; Syazmi, Z.; Mofijur, M.; Abas, A.E.P.; Bilad, M.R.; Ong, H.C.; Silitonga, A.S. Patent landscape review on biodiesel production: Technology updates. Renew. Sustain. Energy Rev. 2020, 118. [Google Scholar] [CrossRef]
- Huang, G.; Chen, F.; Wei, D.; Zhang, X.; Chen, G. Biodiesel production by microalgal biotechnology. Appl. Energy 2010, 87, 38–46. [Google Scholar] [CrossRef]
- Habibullah, M.; Rizwanul Fattah, I.M.; Masjuki, H.H.; Kalam, M.A. Effects of Palm–Coconut Biodiesel Blends on the Performance and Emission of a Single-Cylinder Diesel Engine. Energy Fuels 2015, 29, 734–743. [Google Scholar] [CrossRef]
- Lin, L.; Cunshan, Z.; Vittayapadung, S.; Xiangqian, S.; Mingdong, D. Opportunities and challenges for biodiesel fuel. Appl. Energy 2011, 88, 1020–1031. [Google Scholar] [CrossRef]
- Fattah, I.M.R.; Ong, H.C.; Mahlia, T.M.I.; Mofijur, M.; Silitonga, A.S.; Rahman, S.M.A.; Ahmad, A. State of the Art of Catalysts for Biodiesel Production. Front. Energy Res. 2020, 8. [Google Scholar] [CrossRef]
- Ong, H.C.; Tiong, Y.W.; Goh, B.H.H.; Gan, Y.Y.; Mofijur, M.; Fattah, I.M.R.; Chong, C.T.; Alam, M.A.; Lee, H.V.; Silitonga, A.S.; et al. Recent advances in biodiesel production from agricultural products and microalgae using ionic liquids: Opportunities and challenges. Energy Convers. Manag. 2021, 228. [Google Scholar] [CrossRef]
- Lee, H.V.; Taufiq-Yap, Y.H.; Hussein, M.Z.; Yunus, R. Transesterification of jatropha oil with methanol over Mg–Zn mixed metal oxide catalysts. Energy 2013, 49, 12–18. [Google Scholar] [CrossRef]
- Kafuku, G.; Mbarawa, M. Biodiesel production from Croton megalocarpus oil and its process optimization. Fuel 2010, 89, 2556–2560. [Google Scholar] [CrossRef]
- Demirbas, A. Importance of biodiesel as transportation fuel. Energy Policy 2007, 35, 4661–4670. [Google Scholar] [CrossRef]
- Fattah, I.M.R.; Masjuki, H.H.; Liaquat, A.M.; Ramli, R.; Kalam, M.A.; Riazuddin, V.N. Impact of various biodiesel fuels obtained from edible and non-edible oils on engine exhaust gas and noise emissions. Renew. Sustain. Energy Rev. 2013, 18, 552–567. [Google Scholar] [CrossRef]
- Jain, S.; Sharma, M.P. Oxidation stability of blends of Jatropha biodiesel with diesel. Fuel 2011, 90, 3014–3020. [Google Scholar] [CrossRef]
- Balat, M.; Balat, H. Progress in biodiesel processing. Appl. Energy 2010, 87, 1815–1835. [Google Scholar] [CrossRef]
- Atadashi, I.; Aroua, M.; Aziz, A.A. High quality biodiesel and its diesel engine application: A review. Renew. Sustain. Energy Rev. 2010, 14, 1999–2008. [Google Scholar] [CrossRef]
- Jena, P.C.; Raheman, H.; Kumar, G.; Machavaram, R. Biodiesel production from mixture of mahua and simarouba oils with high free fatty acids. Biomass Bioenergy 2010, 34, 1108–1116. [Google Scholar] [CrossRef]
- Devan, P.; Mahalakshmi, N. Study of the performance, emission and combustion characteristics of a diesel engine using poon oil-based fuels. Fuel Process. Technol. 2009, 90, 513–519. [Google Scholar] [CrossRef]
- Ulusoy, Y.; Tekìn, Y.; Çetinkaya, M.; Karaosmanoglu, F. The engine tests of biodiesel from used frying oil. Energy Sources 2004, 26, 927–932. [Google Scholar] [CrossRef]
- Porte, A.F.; Schneider, R.d.C.d.S.; Kaercher, J.A.; Klamt, R.A.; Schmatz, W.L.; Da Silva, W.L.T.; Filho, W.A.S. Sunflower biodiesel production and application in family farms in Brazil. Fuel 2010, 89, 3718–3724. [Google Scholar] [CrossRef]
- Bozbas, K. Biodiesel as an alternative motor fuel: Production and policies in the European Union. Renew. Sustain. Energy Rev. 2008, 12, 542–552. [Google Scholar] [CrossRef]
- Moser, B.R.; Vaughn, S.F. Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel. Bioresour. Technol. 2010, 101, 646–653. [Google Scholar] [CrossRef]
- Demirbas, A. Progress and recent trends in biodiesel fuels. Energy Convers. Manag. 2009, 50, 14–34. [Google Scholar] [CrossRef]
- Shahid, E.M.; Jamal, Y. Production of biodiesel: A technical review. Renew. Sustain. Energy Rev. 2011, 15, 4732–4745. [Google Scholar] [CrossRef]
- Gerpen, J.V. Biodiesel processing and production. Fuel Process. Technol. 2005, 86, 1097–1107. [Google Scholar] [CrossRef]
- Ong, H.C.; Milano, J.; Silitonga, A.S.; Hassan, M.H.; Shamsuddin, A.H.; Wang, C.T.; Mahlia, T.M.I.; Siswantoro, J.; Kusumo, F.; Sutrisno, J. Biodiesel production from Calophyllum inophyllum-Ceiba pentandra oil mixture: Optimization and characterization. J. Clean. Prod. 2019, 219, 183–198. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y.; Dong, S.; Chen, Y.; Cao, F.; Chai, F.; Wang, X. Biodiesel production from Eruca Sativa Gars vegetable oil and motor, emissions properties. Renew. Energy 2009, 34, 1871–1876. [Google Scholar] [CrossRef]
- Murugesan, A.; Umarani, C.; Chinnusamy, T.; Krishnan, M.; Subramanian, R.; Neduzchezhain, N. Production and analysis of bio-diesel from non-edible oils—A review. Renew. Sustain. Energy Rev. 2009, 13, 825–834. [Google Scholar] [CrossRef]
- Jain, S.; Sharma, M. Biodiesel production from Jatropha curcas oil. Renew. Sustain. Energy Rev. 2010, 14, 3140–3147. [Google Scholar] [CrossRef]
- Palash, S.M.; Kalam, M.A.; Masjuki, H.H.; Masum, B.M.; Fattah, I.M.; Mofijur, M. Impacts of biodiesel combustion on NOx emissions and their reduction approaches. Renew. Sustain. Energy Rev. 2013, 23, 473–490. [Google Scholar] [CrossRef]
- Baiju, B.; Naik, M.; Das, L. A comparative evaluation of compression ignition engine characteristics using methyl and ethyl esters of Karanja oil. Renew. Energy 2009, 34, 1616–1621. [Google Scholar] [CrossRef]
- Hasib, Z.M.; Hossain, J.; Biswas, S.; Islam, A. Bio-diesel from mustard oil: A renewable alternative fuel for small diesel engines. Mod. Mech. Eng. 2011, 1, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Arbab, M.I.; Masjuki, H.H.; Varman, M.; Kalam, M.A.; Imtenan, S.; Sajjad, H. Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel. Renew. Sustain. Energy Rev. 2013, 22, 133–147. [Google Scholar] [CrossRef]
- Anbumani, K.; Singh, A.P. Performance of mustard and neem oil blends with diesel fuel in CI engine. ARPN J. Eng. Appl. Sci. 2006, 5, 14–20. [Google Scholar]
- Bannikov, M. Combustion and emission characteristics of Mustard biodiesel. In Proceedings of the 6th International Advanced Technologies Symposium (IATS’11), Elzag, Turkey, 16–18 May 2011; pp. 1–5. [Google Scholar]
- Bannikov, M.; Vasilev, I. Combustion characteristics of the mustard methyl esters. Key Eng. Mater. 2012, 510–511, 406–412. [Google Scholar] [CrossRef]
- Mohanty, C.; Jaiswal, A.; Meda, V.S.; Behera, P.; Murugan, S. An Experimental Investigation on the Combustion, Performance and Emissions of a Diesel Engine Using Vegetable Oil-Diesel Fuel Blends; SAE Technical Paper 2011-01-1187; SAE International: Warrendale, PA, USA, 2011. [Google Scholar] [CrossRef]
- Ndayishimiye, P.; Tazerout, M. Use of palm oil-based biofuel in the internal combustion engines: Performance and emissions characteristics. Energy 2011, 36, 1790–1796. [Google Scholar] [CrossRef]
- Yusaf, T.; Yousif, B.; Elawad, M. Crude palm oil fuel for diesel-engines: Experimental and ANN simulation approaches. Energy 2011, 36, 4871–4878. [Google Scholar] [CrossRef]
- Sgroi, M.; Bollito, G.; Saracco, G.; Specchia, S. BIOFEAT: Biodiesel fuel processor for a vehicle fuel cell auxiliary power unit: Study of the feed system. J. Power Sources 2005, 149, 8–14. [Google Scholar] [CrossRef]
- Tsuchiya, T.; Shiotani, H.; Goto, S.; Sugiyama, G.; Maeda, A. Japanese Standards for Diesel Fuel Containing 5% FAME: Investigation of Acid Generation in FAME Blended Diesel Fuels and Its Impact on Corrosion; SAE Technical Paper 2006-01-3303; SAE International: Warrendale, PA, USA, 2006. [Google Scholar] [CrossRef]
- Jain, S.; Sharma, M. Stability of biodiesel and its blends: A review. Renew. Sustain. Energy Rev. 2010, 14, 667–678. [Google Scholar] [CrossRef]
- Leung, D.Y.; Wu, X.; Leung, M. A review on biodiesel production using catalyzed transesterification. Appl. Energy 2010, 87, 1083–1095. [Google Scholar] [CrossRef]
- Gui, M.M.; Lee, K.; Bhatia, S. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 2008, 33, 1646–1653. [Google Scholar] [CrossRef]
- Silitonga, A.; Shamsuddin, A.; Mahlia, T.; Milano, J.; Kusumo, F.; Siswantoro, J.; Dharma, S.; Sebayang, A.; Masjuki, H.; Ong, H.C. Biodiesel synthesis from Ceiba pentandra oil by microwave irradiation-assisted transesterification: ELM modeling and optimization. Renew. Energy 2020, 146, 1278–1291. [Google Scholar] [CrossRef]
- Kousoulidou, M.; Fontaras, G.; Ntziachristos, L.; Samaras, Z. Evaluation of Biodiesel Blends on the Performance and Emissions of a Common-Rail Light-Duty Engine and Vehicle; SAE Technical Paper 2009-01-0692; SAE International: Warrendale, PA, USA, 2009. [Google Scholar] [CrossRef]
- Monirul, I.M.; Masjuki, H.H.; Kalam, M.A.; Mosarof, M.H.; Zulkifli, N.W.M.; Teoh, Y.H.; How, H.G. Assessment of performance, emission and combustion characteristics of palm, jatropha and Calophyllum inophyllum biodiesel blends. Fuel 2016, 181, 985–995. [Google Scholar] [CrossRef]
- Gad, M.S.; El-Shafay, A.S.; Abu Hashish, H.M. Assessment of diesel engine performance, emissions and combustion characteristics burning biodiesel blends from jatropha seeds. Process. Saf. Environ. Prot. 2021, 147, 518–526. [Google Scholar] [CrossRef]
- Mofijur, M.; Masjuki, H.H.; Kalam, M.A.; Atabani, A.E. Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective. Energy 2013, 55, 879–887. [Google Scholar] [CrossRef]
- Madiwale, S.; Karthikeyan, A.; Bhojwani, V. Properties investigation and performance analysis of a diesel engine fuelled with Jatropha, Soybean, Palm and Cottonseed biodiesel using Ethanol as an additive. Mater. Today: Proc. 2018, 5, 657–664. [Google Scholar] [CrossRef]
- Al_Dawody, M.F.; Bhatti, S.K. Experimental and Computational Investigations for Combustion, Performance and Emission Parameters of a Diesel Engine Fueled with Soybean Biodiesel-Diesel Blends. Energy Procedia 2014, 52, 421–430. [Google Scholar] [CrossRef] [Green Version]
- Can, Ö.; Öztürk, E.; Yücesu, H.S. Combustion and exhaust emissions of canola biodiesel blends in a single cylinder DI diesel engine. Renew. Energy 2017, 109, 73–82. [Google Scholar] [CrossRef]
- Efe, Ş.; Ceviz, M.A.; Temur, H. Comparative engine characteristics of biodiesels from hazelnut, corn, soybean, canola and sunflower oils on DI diesel engine. Renew. Energy 2018, 119, 142–151. [Google Scholar] [CrossRef]
- Abed, K.A.; El Morsi, A.K.; Sayed, M.M.; Shaib, A.A.E.; Gad, M.S. Effect of waste cooking-oil biodiesel on performance and exhaust emissions of a diesel engine. Egypt. J. Pet. 2018, 27, 985–989. [Google Scholar] [CrossRef]
- Patel, C.; Chandra, K.; Hwang, J.; Agarwal, R.A.; Gupta, N.; Bae, C.; Gupta, T.; Agarwal, A.K. Comparative compression ignition engine performance, combustion, and emission characteristics, and trace metals in particulates from Waste cooking oil, Jatropha and Karanja oil derived biodiesels. Fuel 2019, 236, 1366–1376. [Google Scholar] [CrossRef]
- Shahir, S.A.; Masjuki, H.H.; Kalam, M.A.; Imran, A.; Fattah, I.M.; Sanjid, A. Feasibility of diesel–biodiesel–ethanol/bioethanol blend as existing CI engine fuel: An assessment of properties, material compatibility, safety and combustion. Renew. Sustain. Energy Rev. 2014, 32, 379–395. [Google Scholar] [CrossRef]
- Fattah, I.M.R.; Masjuki, H.; Kalam, M.; Hazrat, M.; Masum, B.; Imtenan, S.; Ashraful, A. Effect of antioxidants on oxidation stability of biodiesel derived from vegetable and animal based feedstocks. Renew. Sustain. Energy Rev. 2014, 30, 356–370. [Google Scholar] [CrossRef]
- Imtenan, S.; Masjuki, H.H.; Varman, M.; Arbab, M.I.; Sajjad, H.; Fattah, I.M.; Abedin, M.J.; Hasib, A.S.M. Emission and Performance Improvement Analysis of Biodiesel-diesel Blends with Additives. Procedia Eng. 2014, 90, 472–477. [Google Scholar] [CrossRef] [Green Version]
- Çaynak, S.; Gürü, M.; Biçer, A.; Keskin, A.; İçingür, Y. Biodiesel production from pomace oil and improvement of its properties with synthetic manganese additive. Fuel 2009, 88, 534–538. [Google Scholar] [CrossRef]
- Keskin, A.; Gürü, M.; Altıparmak, D. Biodiesel production from tall oil with synthesized Mn and Ni based additives: Effects of the additives on fuel consumption and emissions. Fuel 2007, 86, 1139–1143. [Google Scholar] [CrossRef]
- Gürü, M.; Karakaya, U.; Altıparmak, D.; Alıcılar, A. Improvement of diesel fuel properties by using additives. Energy Convers. Manag. 2002, 43, 1021–1025. [Google Scholar] [CrossRef]
- Kannan, G.; Karvembu, R.; Anand, R. Effect of metal based additive on performance emission and combustion characteristics of diesel engine fuelled with biodiesel. Appl. Energy 2011, 88, 3694–3703. [Google Scholar] [CrossRef]
- Yasin, M.M.; Yusaf, T.; Mamat, R.; Yusop, A.F. Characterization of a diesel engine operating with a small proportion of methanol as a fuel additive in biodiesel blend. Appl. Energy 2014, 114, 865–873. [Google Scholar] [CrossRef]
- Patil, K.R.; Thipse, S.; Warke, A. Effect of Oxygenate and Cetane Improver on Performance and Emissions of Diesel Engine Fuelled with Diethyl Ether-Diesel Blends; SAE Technical Paper 2015-26-0057; SAE International: Warrendale, PA, USA, 2015. [Google Scholar] [CrossRef]
- İİleri, E.; Koçar, G. Effects of antioxidant additives on engine performance and exhaust emissions of a diesel engine fueled with canola oil methyl ester–diesel blend. Energy Convers. Manag. 2013, 76, 145–154. [Google Scholar] [CrossRef]
- Li, R.; Wang, Z.; Ni, P.; Zhao, Y.; Li, M.; Li, L. Effects of cetane number improvers on the performance of diesel engine fuelled with methanol/biodiesel blend. Fuel 2014, 128, 180–187. [Google Scholar] [CrossRef]
- D’Silva, R.; Binu, K.G.; Bhat, T. Performance and Emission Characteristics of a C.I. Engine Fuelled with Diesel and TiO2 Nanoparticles as Fuel Additive. Mater. Today: Proc. 2015, 2, 3728–3735. [Google Scholar] [CrossRef]
- Vairamuthua, G.; Kailasanathana, S.S.C.; Thangagiric, B. Investigation on the Effects of Nanocerium Oxide on the Performance of CalophyllumInophyllum (punnai) Biodiesel in a DI Diesel Engine. J. Chem. Pharm. Sci. 2015. Available online: https://www.academia.edu/download/37983463/Journal_of_Chemical_and_Pharmaceutical_Sciences.pdf (accessed on 15 March 2021).
- Fattah, I.M.R.; Masjuki, H.H.; Kalam, M.A.; Wakil, M.A.; Ashraful, A.M.; Shahir, S.A. Experimental investigation of performance and regulated emissions of a diesel engine with Calophyllum inophyllum biodiesel blends accompanied by oxidation inhibitors. Energy Convers. Manag. 2014, 83, 232–240. [Google Scholar] [CrossRef]
- Fattah, I.M.R.; Masjuki, H.H.; Kalam, M.A.; Wakil, M.A.; Rashedul, H.K.; Abedin, M.J. Performance and emission characteristics of a CI engine fueled with Cocos nucifera and Jatropha curcas B20 blends accompanying antioxidants. Ind. Crop. Prod. 2014, 57, 132–140. [Google Scholar] [CrossRef]
- Imtenan, S.; Masjuki, H.H.; Varman, M.; Kalam, M.A.; Arbab, M.I.; Sajjad, H.; Rahman, S.M. Impact of oxygenated additives to palm and jatropha biodiesel blends in the context of performance and emissions characteristics of a light-duty diesel engine. Energy Convers. Manag. 2014, 83, 149–158. [Google Scholar] [CrossRef]
- Imtenan, S.; Masjuki, H.H.; Varman, M.; Fattah, I.M.; Sajjad, H.; Arbab, M.I. Effect of n-butanol and diethyl ether as oxygenated additives on combustion–emission-performance characteristics of a multiple cylinder diesel engine fuelled with diesel–jatropha biodiesel blend. Energy Convers. Manag. 2015, 94, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Jawre, S.S.; Lawankar, S.M. Experimental Analysis of Performance of Diesel Engine Using Kusum Methyl Ester With Diethyl Ether as Additive. Int. J. Eng. Res. Appl. 2014, 4, 106–111. [Google Scholar]
- Keskin, A.; Gürü, M.; Altıparmak, D. Influence of metallic based fuel additives on performance and exhaust emissions of diesel engine. Energy Convers. Manag. 2011, 52, 60–65. [Google Scholar] [CrossRef]
- Razzaq, L.; Mujtaba, M.A.; Soudagar, M.E.M.; Ahmed, W.; Fayaz, H.; Bashir, S.; Fattah, I.M.R.; Ong, H.C.; Shahapurkar, K.; Afzal, A.; et al. Engine performance and emission characteristics of palm biodiesel blends with graphene oxide nanoplatelets and dimethyl carbonate additives. J. Environ. Manag. 2021, 282, 111917. [Google Scholar] [CrossRef]
- Aalam, C.S.; Saravanan, C.; Premanand, B. Influence of Iron (II, III) Oxide NanoparticlesFuel Additive on Exhaust Emissions andCombustion Characteristics of CRDI SystemAssisted Diesel Engine. Int. J. Adv. Eng. Res. Sci. (Ijaers) 2015, 2, 23–28. [Google Scholar]
- Shaafi, T.; Velraj, R. Influence of alumina nanoparticles, ethanol and isopropanol blend as additive with diesel–soybean biodiesel blend fuel: Combustion, engine performance and emissions. Renew. Energy 2015, 80, 655–663. [Google Scholar] [CrossRef]
- Fattah, I.M.R.; Masjuki, H.H.; Kalam, M.A.; Mofijur, M.; Abedin, M.J. Effect of antioxidant on the performance and emission characteristics of a diesel engine fueled with palm biodiesel blends. Energy Convers. Manag. 2014, 79, 265–272. [Google Scholar] [CrossRef]
- Ali, O.M.; Mamat, R.; Masjuki, H.H.; Abdullah, A.A. Analysis of blended fuel properties and cycle-to-cycle variation in a diesel engine with a diethyl ether additive. Energy Convers. Manag. 2016, 108, 511–519. [Google Scholar] [CrossRef]
- Fernandes, D.M.; Serqueira, D.S.; Portela, F.M.; Assunção, R.M.; Munoz, R.A.; Terrones, M.G. Preparation and characterization of methylic and ethylic biodiesel from cottonseed oil and effect of tert-butylhydroquinone on its oxidative stability. Fuel 2012, 97, 658–661. [Google Scholar] [CrossRef] [Green Version]
- Sathiyamoorthi, R.; Sankaranarayanan, G. Effect of antioxidant additives on the performance and emission characteristics of a DICI engine using neat lemongrass oil–diesel blend. Fuel 2016, 174, 89–96. [Google Scholar] [CrossRef]
- Hajjari, M.; Ardjmand, M.; Tabatabaei, M. Experimental investigation of the effect of cerium oxide nanoparticles as a combustion-improving additive on biodiesel oxidative stability: Mechanism. Rsc Adv. 2014, 4, 14352–14356. [Google Scholar] [CrossRef]
- Fattah, I.M.R.; Hassan, M.H.; Kalam, M.A.; Atabani, A.E.; Abedin, M.J. Synthetic phenolic antioxidants to biodiesel: Path toward NOx reduction of an unmodified indirect injection diesel engine. J. Clean. Prod. 2014, 79, 82–90. [Google Scholar] [CrossRef]
- Kwanchareon, P.; Luengnaruemitchai, A.; Jai-In, S. Solubility of a diesel–biodiesel–ethanol blend, its fuel properties, and its emission characteristics from diesel engine. Fuel 2007, 86, 1053–1061. [Google Scholar] [CrossRef]
- Shi, X.; Pang, X.; Mu, Y.; He, H.; Shuai, S.; Wang, J.; Chen, H.; Li, R. Emission reduction potential of using ethanol–biodiesel–diesel fuel blend on a heavy-duty diesel engine. Atmospheric. Environ. 2006, 40, 2567–2574. [Google Scholar] [CrossRef]
- Vedaraman, N.; Puhan, S.; Nagarajan, G.; Velappan, K. Preparation of palm oil biodiesel and effect of various additives on NOx emission reduction in B20: An experimental study. Int. J. Green Energy 2011, 8, 383–397. [Google Scholar] [CrossRef]
- Rakopoulos, D. Combustion and emissions of cottonseed oil and its bio-diesel in blends with either n-butanol or diethyl ether in HSDI diesel engine. Fuel 2013, 105, 603–613. [Google Scholar] [CrossRef]
- Qi, D.; Chen, H.; Geng, L.; Bian, Y. Effect of diethyl ether and ethanol additives on the combustion and emission characteristics of biodiesel-diesel blended fuel engine. Renew. Energy 2011, 36, 1252–1258. [Google Scholar] [CrossRef]
- Nagdeote, D.; Deshmukh, M. Experimental Study of Diethyl Ether and Ethanol Additives with Biodiesel-Diesel Blended Fuel Engine. Int. J. Emerg. Technol. Adv. Eng. 2012, 2, 195–199. [Google Scholar]
- Dincer, K. Lower emissions from biodiesel combustion. Energy Sourcespart A: Recover. Util. Environ. Eff. 2008, 30, 963–968. [Google Scholar] [CrossRef]
- Sahoo, P.; Das, L.; Babu, M.; Naik, S. Biodiesel development from high acid value polanga seed oil and performance evaluation in a CI engine. Fuel 2007, 86, 448–454. [Google Scholar] [CrossRef]
- Ribeiro, N.M.; Pinto, A.C.; Quintella, C.M.; Da Rocha, G.O.; Teixeira, L.S.; Guarieiro, L.L.; Rangel, M.; Veloso, M.C.; Rezende, M.J.; Da Cruz, R. The role of additives for diesel and diesel blended (ethanol or biodiesel) fuels: A review. Energy Fuels 2007, 21, 2433–2445. [Google Scholar] [CrossRef]
- Kitamura, T.; Ito, T.; Senda, J.; Fujimoto, H. Extraction of the suppression effects of oxygenated fuels on soot formation using a detailed chemical kinetic model. Jsae Rev. 2001, 22, 139–145. [Google Scholar] [CrossRef]
- Lapuerta, M.; Armas, O.; Rodriguez-Fernandez, J. Effect of biodiesel fuels on diesel engine emissions. Prog. Energy Combust. Sci. 2008, 34, 198–223. [Google Scholar] [CrossRef]
- Sharma, Y.; Singh, B.; Upadhyay, S. Advancements in development and characterization of biodiesel: A review. Fuel 2008, 87, 2355–2373. [Google Scholar] [CrossRef]
- Basha, S.A.; Gopal, K.R.; Jebaraj, S. A review on biodiesel production, combustion, emissions and performance. Renew. Sustain. Energy Rev. 2009, 13, 1628–1634. [Google Scholar] [CrossRef]
- Broukhiyan, E.; Lestz, S. Ethanol Fumigation of a Light Duty Automotive Diesel Engine; SAE Technical Paper 811209; SAE International: Warrendale, PA, USA, 1981. [Google Scholar] [CrossRef]
- An, H.; Yang, W.; Li, J. Effects of ethanol addition on biodiesel combustion: A modeling study. Appl. Energy 2015, 143, 176–188. [Google Scholar] [CrossRef]
- Chen, H.; Shi-Jin, S.; Jian-Xin, W. Study on combustion characteristics and PM emission of diesel engines using ester–ethanol–diesel blended fuels. Proc. Combust. Inst. 2007, 31, 2981–2989. [Google Scholar] [CrossRef]
- Rashed, M.; Kalam, M.; Masjuki, H.; Rashedul, H.; Ashraful, A.; Shancita, I.; Ruhul, A. Stability of biodiesel, its improvement and the effect of antioxidant treated blends on engine performance and emission. Rsc Adv. 2015, 5, 36240–36261. [Google Scholar] [CrossRef]
- Kivevele, T.; Mbarawa, M.; Bereczky, A.; Laza, T.; Madarasz, J. Impact of antioxidant additives on the oxidation stability of biodiesel produced from Croton Megalocarpus oil. Fuel Process. Technol. 2011, 92, 1244–1248. [Google Scholar] [CrossRef]
- Ryu, K. The characteristics of performance and exhaust emissions of a diesel engine using a biodiesel with antioxidants. Bioresour. Technol. 2010, 101, S78–S82. [Google Scholar] [CrossRef]
- Tang, H.; Wang, A.; Salley, S.O.; Ng, K.S. The effect of natural and synthetic antioxidants on the oxidative stability of biodiesel. J. Am. Oil Chem. Soc. 2008, 85, 373–382. [Google Scholar] [CrossRef]
- Fattah, I.M.R.; Masjuki, H.H.; Kalam, M.A.; Masum, B.M. Effect of synthetic antioxidants on storage stability of Calophyllum inophyllum biodiesel. Mater. Res. Innov. 2014, 18, S6-90–S6-94. [Google Scholar] [CrossRef]
- Varatharajan, K.; Cheralathan, M.; Velraj, R. Mitigation of NOx emissions from a jatropha biodiesel fuelled DI diesel engine using antioxidant additives. Fuel 2011, 90, 2721–2725. [Google Scholar] [CrossRef]
- Valentine, J.M.; Peter-Hoblyn, J.D.; Acres, G. Emissions Reduction and Improved Fuel Economy Performance from a Bimetallic Platinum/Cerium Diesel Fuel Additive at Ultra-Low Dose Rates; SAE Technical Paper 2000-01-1934; SAE International: Warrendale, PA, USA, 2000. [Google Scholar] [CrossRef]
- May, W.; Hirs, E. Catalyst for Improving the Combustion Efficiency of Petroleum Fuels in Diesel Engines. In Proceedings of the 11th Diesel Engine Emissions Reduction Conference, Chicago, IL, USA, 21–25 August 2005; pp. 21–25. [Google Scholar]
- Stein, Y.; Yetter, R.; Dryer, F.; Aradi, A. The Autoignition Behavior of Surrogate Diesel Fuel Mixtures and the Chemical Effects of 2-Ethylhexyl Nitrate (2-EHN) Cetane Improver; SAE Technical Paper 1999-01-1504; SAE International: Warrendale, PA, USA, 1999. [Google Scholar] [CrossRef]
- Altıparmak, D.; Keskin, A.; Koca, A.; Gürü, M. Alternative fuel properties of tall oil fatty acid methyl ester–diesel fuel blends. Bioresour. Technol. 2007, 98, 241–246. [Google Scholar] [CrossRef]
- Tat, M.E. Cetane number effect on the energetic and exergetic efficiency of a diesel engine fuelled with biodiesel. Fuel Process. Technol. 2011, 92, 1311–1321. [Google Scholar] [CrossRef]
- Kidoguchi, Y.; Yang, C.; Kato, R.; Miwa, K. Effects of fuel cetane number and aromatics on combustion process and emissions of a direct-injection diesel engine. JSAE Rev. 2000, 21, 469–475. [Google Scholar] [CrossRef]
- Vallinayagam, R.; Vedharaj, S.; Yang, W.; Saravanan, C.; Lee, P.; Chua, K.; Chou, S. Impact of ignition promoting additives on the characteristics of a diesel engine powered by pine oil–diesel blend. Fuel 2014, 117, 278–285. [Google Scholar] [CrossRef]
- Chłopek, Z.; Darkowski, A.; Piaseczny, L. The influence of metalloorganic fuel additives on CI engine emission. Pol. J. Env. Stud. 2005, 14, 559–567. [Google Scholar]
- Sajith, V.; Sobhan, C.; Peterson, G. Experimental investigations on the effects of cerium oxide nanoparticle fuel additives on biodiesel. Adv. Mech. Eng. 2010, 2, 581407. [Google Scholar] [CrossRef]
- Zhu, M.; Ma, Y.; Zhang, D. An experimental study of the effect of a homogeneous combustion catalyst on fuel consumption and smoke emission in a diesel engine. Energy 2011, 36, 6004–6009. [Google Scholar] [CrossRef]
- Barrios, C.C.; Martín, C.; Domínguez-Sáez, A.; Álvarez, P.; Pujadas, M.; Casanova, J. Effects of the addition of oxygenated fuels as additives on combustion characteristics and particle number and size distribution emissions of a TDI diesel engine. Fuel 2014, 132, 93–100. [Google Scholar] [CrossRef]
- Subbaiah, G.; Gopal, K. An experimental investigation on the performance and emission characteristics of a diesel engine fuelled with rice bran biodiesel and ethanol blends. Int. J. Green Energy 2011, 8, 197–208. [Google Scholar] [CrossRef]
- Rakopoulos, D.C.; Rakopoulos, C.D.; Giakoumis, E.G.; Dimaratos, A.M. Characteristics of performance and emissions in high-speed direct injection diesel engine fueled with diethyl ether/diesel fuel blends. Energy 2012, 43, 214–224. [Google Scholar] [CrossRef]
- Akshatha, M.; Kumarappa, S. Performance Evaluation Of Neem Biodiesel On Ci Engine With Diethyl Ether As Additive. Int. J. Innov. Res. Sci. Eng. Technol. 2013, 2. [Google Scholar] [CrossRef]
- Swaminathan, C.; Sarangan, J. Performance and exhaust emission characteristics of a CI engine fueled with biodiesel (fish oil) with DEE as additive. Biomass-Bioenergy 2012, 39, 168–174. [Google Scholar] [CrossRef]
- Rakopoulos, D.C.; Rakopoulos, C.D.; Giakoumis, E.G. Impact of properties of vegetable oil, bio-diesel, ethanol and n-butanol on the combustion and emissions of turbocharged HDDI diesel engine operating under steady and transient conditions. Fuel 2015, 156, 1–19. [Google Scholar] [CrossRef]
- Zhang, Z.-H.; Chua, S.-M.; Balasubramanian, R. Comparative evaluation of the effect of butanol–diesel and pentanol–diesel blends on carbonaceous particulate composition and particle number emissions from a diesel engine. Fuel 2016, 176. [Google Scholar] [CrossRef]
- Žaglinskis, J.; Lukács, K.; Bereczky, Á. Comparison of properties of a compression ignition engine operating on diesel–biodiesel blend with methanol additive. Fuel 2016, 170, 245–253. [Google Scholar] [CrossRef]
- Masjuki, H.; Kalam, M.; Syazly, M.; Mahlia, T.; Rahman, A.; Redzuan, M.; Varman, M.; Saidur, R.; Yau, Y. Experimental Evaluation of an Unmodified Diesel Engine Using Biodiesel with Fuel Additive. In Proceedings of the Strategic Technology, The 1st International Forum on Strategic Technology “e-Vehicle Technology”, IFOST, Ulsan, Korea, 18–20 October 2006; pp. 96–99. [Google Scholar]
- Senthil, R.; Silambarasan, R. Environmental effect of antioxidant additives on exhaust emission reduction in compression ignition engine fuelled with Annona methyl ester. Environ. Technol. 2015, 36, 2079–2085. [Google Scholar] [CrossRef]
- Patel, N.; Singh, R. Optimization of NOx Emission from Soya Biodiesel Fuelled Diesel Engine using Cetane Improver (DTBP). Jordan J. Mech. Ind. Eng. 2014, 8, 213–217. [Google Scholar]
- Narasimha, C.; Rajesh, M. Performance and emissions characteristics of diesel engine fuelled with rice bran oil. Int. J. Eng. Technol. 2013, 4, 4574–4578. [Google Scholar]
- Lu, J.H.; Ku, Y.Y.; Liao, C.F. The Effects of Biodiesel on the Performance and the Durability of Diesel Engine Active-DPF; SAE Technical Paper 2012-01-1089; SAE International: Warrendale, PA, USA, 2012. [Google Scholar]
- Zhang, Z.H.; Cheung, C.S.; Chan, T.L.; Yao, C.D. Emission reduction from diesel engine using fumigation methanol and diesel oxidation catalyst. Sci. Total Env. 2009, 407, 4497–4505. [Google Scholar] [CrossRef]
- Zhu, L.; Cheung, C.S.; Zhang, W.G.; Fang, J.H.; Huang, Z. Effects of ethanol–biodiesel blends and diesel oxidation catalyst (DOC) on particulate and unregulated emissions. Fuel 2013, 113, 690–696. [Google Scholar] [CrossRef]
- Shah, S.D.; Cocker, D.R.; Johnson, K.C.; Lee, J.M.; Soriano, B.L.; Miller, J.W. Reduction of particulate matter emissions from diesel backup generators equipped with four different exhaust aftertreatment devices. Environ. Sci. Technol. 2007, 41, 5070–5076. [Google Scholar] [CrossRef] [PubMed]
- Mogi, H.; Tajima, K.; Hosoya, M.; Shimoda, M. The Reduction of Diesel Engine Emissions by Using the Oxidation Catalysts of Japan Diesel 13 Mode Cycle; SAE Technical Paper 1999-01-0471; SAE International: Warrendale, PA, USA, 1999. [Google Scholar] [CrossRef]
- Loganathan, K.; Chandrasekaran, M. Investigation on Emission Characteristics of CI Engine Using Vegetable Oil With SCR Technique. Int. J. Renew. Energy Res. (IJRER) 2013, 3, 969–975. [Google Scholar]
Euro Standards | Passenger Car | |||
Nitrogen oxides (NOX) | Total hydrocarbon +NOx) THC+NOX | Particulate Matter (PM) | Particle Number (PN) | |
mg/km | mg/km | mg/km | #/km | |
Euro 1 | - | 970 | 140 | - |
Euro 2 | - | 700 | 80–100 | - |
Euro 3 | 500 | 560 | 50 | - |
Euro 4 | 250 | 300 | 25 | - |
Euro 5a | 180 | 230 | 5 | - |
Euro 5b | 180 | 230 | 5 | 6 × 1011 |
Euro 6 | 80 | 170 | 5 | 6 × 1011 |
Euro Standards | Heavy-Duty Vehicles | |||
NOX | THC | PM | PN | |
g/kWh | g/kWh | mg/kWh | #/kWh | |
Euro 1 | 8 | 1.23 | 360 | - |
Euro 2a | 7 | 1.1 | 250 | - |
Euro 2b | 7 | 1.1 | 150 | - |
Euro 3 | 5 | 0.66 | 100 | - |
Euro 4 | 3.5 | 0.46 | 20 | - |
Euro 5 | 2 | 0.46 | 20 | - |
Euro 6 | 0.4 | 0.13 | 10 | 6 × 1011 |
Category | Gross Vehicle Mass | 2002/03 | 2006/07 | 2007/08 | 2010/11 | 2013/16 | 2017/18 |
---|---|---|---|---|---|---|---|
Passenger Vehicles | |||||||
≤3.5 t | Euro 2 | Euro 4 | Euro 5 | Euro 6 | |||
>3.5 t | Euro 3 | Euro 4 | |||||
Buses | |||||||
Light | ≤3.5 t | Euro 2 | Euro 4 | Euro 5 | Euro 6 | ||
3.5–5 t | Euro 3 | Euro 4 | Euro 5 | ||||
Heavy | >5 t | Euro 3 | Euro 4 | Euro 5 | |||
Goods Vehicles (trucks) | |||||||
Light | ≤3.5 t | Euro 2 | Euro 4 | Euro 5 | Euro 6 | ||
Medium | 3.5–12 t | Euro 3 | Euro 4 | Euro 5 | |||
Heavy | >12 t | Euro 3 | Euro 4 | Euro 5 |
Biodiesel Feedstock | Ref. | Fuel Blends Used | Test Conditions | Combustion Characteristics | Performance Characteristics | Emission Characteristics | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pressure | Heat Release Rate | BSFC | BTE | NOX | HC | CO | Smoke/PM | ||||
Palm | [143] | B10 | 15 operating points in engine map from NEDC and ARTEMIS cycle | −1% to +3% (pmax) | −5% to +7% | - | - | −6% to +4% | - | - | −50% to +70% (smoke) |
[144] | B10, B20 | 1000 rpm to 2400 rpm at full-load condition | - | - | +3.81% to +7.13% | −3.04% to −5.9% | +4.81% to +8.03% | −10.23% to −13.27% | −2.45% to −4.79% | −26.34% to −27.45% (smoke opacity) | |
Jatropha | [145] | B20, B40, B60, B80 and B100 | At 75% of engine load and different speeds | −10% to −27% (BMEP) | −4% to −11% | - | −10% to −33% | +10% to +47% | - | +2% to +16% | −4% to −22% (smoke) |
[146] | B10, B20 | 1200 rpm to 2400 rpm at 100% load | - | - | +1.81% to +3.1% | - | +3% to +6% | −3.84% and −10.25% | −16% to −25% | - | |
Soybean | [147] | B20 | varying load (0 to 12 kg) at 1500 rpm | - | - | ↑ | ↓ | - | - | - | - |
[148] | B20, B40, B100 | varying loads in brake power (0, 1.1, 2.2, 3.3, and 4.4 kW) at 1500 rpm | - | - | +4.2% to +14.65% | −2.61% to −8.07% | +7.5% to +23.81% | −15% to −38.4% | −11.36% to −41.7% | −20.5% to −48.23% (smoke opacity) | |
Canola | [149] | B5, B10, B15 and B20 | Varying load (4.8, 3.6, 2.4, and 1.2 bar BMEP) at 2200 rpm | - | ↓ (with increase in biodiesel percentage) | Max +6.56% (for B20) | Min −4.2% (for B20) | Max +8.9% (for B20) | Max +30.3% (for B20) | Max −32% (for B20) | Max −53% (for B20) |
[150] | B20, B50, B100 | At seven different speeds, 800 (idle speed) –1000–1200–1400–1600–1800–2000 rpm | ↓ (pmax) | - | ↑ | ↓ | - | - | - | - | |
Waste cooking oil | [151] | B10, B20, B30 | Varying load at 1500 rpm | - | - | ↑ | ↓ | ↑ | ↓ | ↓ | ↓ (smoke opacity) |
[152] | B100 | Varying loads (0–100%) at 1500 rpm | ↑(pmax) | ↑ (CHR) | ↑ | ↓ | ↓ | ↓ | ↑ | - |
Additives Type | Ref. | Additives Used | Characteristics Properties | ||||||
---|---|---|---|---|---|---|---|---|---|
Kinematic Viscosity | Density | Heating Value | Flash Point | Oxidation Stability | Cetane Number | ||||
Oxygenated | [161] | DEE | 5, 8, 10, 15, 20, and 25% | ↓49% | ↓3.7% | ↓8% | ↑35% | ||
[160] | Methanol | 5% | ↓ slight | ↓30% | ↓61% | ↑18% | |||
[168] | Ethanol | 5% | ↓9 to 10% avg | ↓slight | ↓up to 1.4% | ↓13.5% | |||
n-butanol | |||||||||
DEE | |||||||||
[169] | n-butanol | 5% | ↓12.5% | ↓ up to 1.6% | ↓1.4% | ↓26% | |||
DEE | |||||||||
[170] | DEE | 10% and 15% | ↓2.7% | ↓~1% | ↓12.8% | ||||
[176] | DEE | 2, 4, 6, and 8% | ↓26% | ↓1% | ↓2% | ↓28% | ↑4% | ||
Pentanol | 10 and 20% | ||||||||
butanol | |||||||||
Antioxidant | [167] | BHA | 2000 ppm | ↑ slight | ↑ slight | ↓ slight | ↑ 1% | ↑31% (BHA), ↑ up to 85% (BHT) | |
BHT | |||||||||
[162] | BHA | 500, 750, and 1000 ppm | ↓ up to 25% | ↓0.7% avg | 6.9 h (Base fuel), increased to 24.8, 11, 38.7, and 9.8 h, respectively | ↑up to 24% | |||
BHT | |||||||||
TBHQ | |||||||||
[8] | DPPD | 0.15% | ↑2% | ↑ slight | ↑ slight | ↑16% | |||
[166] | BHA | 2000 ppm | ↑1% | ↑1% | ↓0.5% | ↑1.3% | ↑ 64 to 110% | ||
BHT | |||||||||
TBHQ | |||||||||
[177] | TBHQ | 300, 600, and 1000 mg/kg | IP increased up to 10.2 h (initial IP was 4.9 h) | ||||||
[178] | BHA | 500, 1000, and 2000 ppm | ↑2% | ↓1.8% | ↑11% | ||||
BHT | ↑3.8% | ||||||||
Cetane Improver | [163] | EHN | 0.3% (EHN, CHN) 3% (MEE) | ↓3 to 10% | ↑8 to 40% | ||||
CHN | |||||||||
MEE | |||||||||
Metal-based | [157] | Mn | 8 & 12 μmol/L | ↓up to 18% | ↓up to 10% | ||||
Ni | |||||||||
[158] | Mn | 13.5, 27.1, 54.2, and 94.9 μmol/L | ↓5% | ↓5% | ↑5% | ||||
[179] | CeO2 | 50, 100, 200, 500 ppm | ↑ up to 38% (IP) | ||||||
[171] | Mn | 8 and 16 μmol/L | ↓ up to15% | ↓ up to 15% | |||||
Mg | |||||||||
[164] | TiO2 | 80 mg/L | ↑ 6% | ↑ slight | ↑ slight | ↑41.7% | |||
[165] | CeO2 | 20 ppm | ↓2.8% | ↓3% | ↑5.8% | ↑~1% | |||
[173] | Iron (ii, iii) Oxide nanoparticles | 25 and 50 ppm | ↑1% | ↑1.5% | ↑15% | ↑5.5% | |||
Mixed | [174] | Alumina, Ethanol and Iso-propanol | 5% | ↓9% | ↓ slight | ↓1% | ↑24% |
Additive Type | Additive Used | Engine Description | Fuel Consumption | Regulated Emission | Unregulated Emission (Smoke) | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|
CO | HC | NOX | PM | |||||||
Metal-based additives | Pt-Ce | 4–8 ppm | 5.9L, EGR equipped | ↓5 to 7% | ↓10 to 25% | [203] | ||||
Mg-based | <500 ppm | Not Given | - | ↓20% | - | ↓70% | - | [210] | ||
CeO2 | Single cylinder, naturally aspirated, water-cooled, rated speed 1500 RPM | ↓ 50% | ↓ 23.5% | ↓14.5% | [211] | |||||
20 ppm | Single cylinder, 5.2 kW, naturally aspirated, 4 stroke, water-cooled, DI, constant speed | ↓16.3% | ↓25% | [165] | ||||||
Mn-based | 8–16 µmol/L | Single cylinder, Swept Volume 395 cm3, CR 18:1, Max Speed 3600 RPM | ↓2 to 3% | ↓6 to 11% | - | ↑10% | - | ↓29% | [171] | |
Mg-based | ↓1 to 2% | ↓3 to 8% | - | - | - | ↓17% | ||||
Ferrous Picrate | 1:3200 | Single cylinder, DI, CR 19.9:1, max power 3.5 kW | ↓2% | - | - | - | - | ↓6 to 26% | [212] | |
TiO2 | 80 mg/L | Single cylinder, naturally aspirated, DI and water-cooled, Rated power 3.8 kW | ↓21% | ↓25% | ↓18% | ↑32% | [164] | |||
Iron (ii, iii) Oxide nanoparticles | 25, 50 ppm | Single cylinder, water-cooled, CR 17.5:1, Max power 5.2 kW | ↓9% | ↓48 to 52% | ↓ | ↑ | ↓ | [173] | ||
Oxygenated Additives | ETBE | 5–15% | Four cylinder, Euro 4, DI | ↓ 1 to 2% | - | - | ↑ | - | [213] | |
Diglyme | ||||||||||
Ethanol | 5% | Single cylinder, DI, CR 17.7:1, Max power 7.7 kW | - | ↓14 to 42% | - | ↓7.5 to 13% | - | - | [168] | |
n-butanol | ||||||||||
DEE | ||||||||||
n-butanol | 5–10% | Four cylinder, CR 21.1, Turbocharged, Rated power 65 kW | ↓2 to 6% | ↓11 to 30% | ↑ 28.4 to 52% | ↓8 to 12% | - | ↓17 to 38% | [169] | |
DEE | ||||||||||
Ethanol | 2.5, 5% | Single cylinder, air-cooled, Rated power 4.4 kW, CR 16.5:1 | ↓4 to 7% | ↓13 to 17% | ↓1 to 5% | ↓6 to 15% | [214] | |||
DEE | 5–25% | Single cylinder, DI, naturally aspirated, CR 18, rated power 3.7 kW | - | ↓ | ↑ | ↓ | - | ↓ | [161] | |
8, 16, 24% | Ricardo/Cussons ‘Hydra’ single cylinder, DI, naturally aspirated, CR 19.8 | ↓ | ↑ | ↓ | - | ↓ | [215] | |||
10, 15% | Single cylinder, DI | ↓ | ↓ | ↓ | [216] | |||||
1–3% | Single cylinder, DI, CR 16.5:1 | ↓33% | ↓38% | ↓80% | [217] | |||||
10, 15% | Single cylinder, 553 cc, CR 16:1, Rated Speed 1500 RPM | ↓ | [170] | |||||||
Ethanol | 5, 10% | Six cylinder, DI, Turbocharged, CR 18:1 | ↓ | ↑ | ↓ (slight) | ↓ | [218] | |||
n-butanol | 8, 16% | |||||||||
butanol | 10 and 20% | single cylinder, naturally aspirated, four-stroke, direct injection, 296cc | ↑2 to 4% | ↓ | [219] | |||||
pentanol | ↑2 to 7% | |||||||||
methanol | 10% | four cylinder 1.9 TDI CR 19.5 | ↑2 to 13% | ↓7 to 22% | ↑4 to 18% | ↑2 to 8% | ↓13 to 44.5% (soot) | [220] | ||
Antioxidant | BHA | 500–1000 ppm | DI, turbocharged, CR 19.8, Euro III standard | ↓4 to 10% | ↑20% (up to) | - | ↓1 to 5% | - | - | [162] |
BHT | ||||||||||
TBHQ | ||||||||||
BHA | 2000 ppm | Four cylinder, IDI, turbocharged, CR 21.1 | ↓marginal | - | - | ↓2 to 5% | - | - | [201] | |
BHT | ||||||||||
TBHQ | ||||||||||
DPPD | 0.15% (m) | Four cylinder, 2.5 L, CR 21.1, max power 55 kW, radiator cooling | ↓1 to 3% | ↑ | ↑ | ↓16% (maximum) | - | - | [8] | |
BHA | 2000 ppm | Four cylinder, IDI, turbocharged, CR 21.1 | ↓marginal | - | ↑10 to 22% | ↓1 to 3% | - | - | [166] | |
BHT | ||||||||||
TBHQ | ||||||||||
ODA | 1% | Four cylinder, IDI, CR 21, max power 39 kW | - | ↓ | ↓ | ↓22% | - | - | [221] | |
p-phenylenediamin | 0.025% (m) | Single cylinder, DI, CR 17.5 | - | ↑ | ↑ | ↓43% | - | - | [202] | |
L-ascorbic acid | 0.010, 0.020, 0.030 and 0.040% (m) | Single cylinder, CR 17.5:1 | ↑4% | ↓48% | ↓29.75 | ↓23% | ↓28.6% | [222] | ||
BHA | 500, 1000 and 2000 ppm | Single cylinder, 4-stroke, direct injection, air-cooled, rated power 4.4 kW, rated speed 1500 RPM | ↓1.6% | ↑15% | ↑10% | ↓11% | ↑11.8% | [178] | ||
BHT | ↓1% | 116% | ↑11% | ↓9% | ↑17.5% | |||||
Cetane Improver | DTBP | 0.5, 1, 1.5, 2, 2.5 & 3% | Single cylinder, rated speed 1500 RPM, rated power 7.5kW, CR 17.5:1 | - | ↓25% | - | ↓3 to 5% | - | - | [223] |
EHN | 0.3~3% | DI, Naturally aspirated, CR 19 | - | - | - | ↓4 to 13% | - | ↓11 to 38% (Smoke) | [163] | |
CHN | ||||||||||
MEE | ||||||||||
EHN | 10% | Single cylinder, rated speed 1500 RPM, rated power 4.4kW, CR 17.5:1 | ↓ | ↓ | ↓ | ↓ | [224] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, S.M.A.; Rizwanul Fattah, I.M.; Ong, H.C.; Zamri, M.F.M.A. State-of-the-Art of Strategies to Reduce Exhaust Emissions from Diesel Engine Vehicles. Energies 2021, 14, 1766. https://doi.org/10.3390/en14061766
Rahman SMA, Rizwanul Fattah IM, Ong HC, Zamri MFMA. State-of-the-Art of Strategies to Reduce Exhaust Emissions from Diesel Engine Vehicles. Energies. 2021; 14(6):1766. https://doi.org/10.3390/en14061766
Chicago/Turabian StyleRahman, S. M. Ashrafur, I. M. Rizwanul Fattah, Hwai Chyuan Ong, and M. F. M. A. Zamri. 2021. "State-of-the-Art of Strategies to Reduce Exhaust Emissions from Diesel Engine Vehicles" Energies 14, no. 6: 1766. https://doi.org/10.3390/en14061766
APA StyleRahman, S. M. A., Rizwanul Fattah, I. M., Ong, H. C., & Zamri, M. F. M. A. (2021). State-of-the-Art of Strategies to Reduce Exhaust Emissions from Diesel Engine Vehicles. Energies, 14(6), 1766. https://doi.org/10.3390/en14061766