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Abstract: Vibration wall control is an important active flow control technique studied by many
researchers. Although current researches have shown that the control performance is greatly affected
by the frequency and amplitude of the vibration wall, the mechanism hiding behind the phenomena
is still not clear, due to the complex interaction between the vibration wall and flow separation. To
reveal the control mechanism of vibration walls, we propose a simplified model to help us understand
the interaction between the forced excitation (from the vibration wall) and self-excitation (from flow
instability). The simplified model can explain vibration wall flow control behaviors obtained by
numerical simulation, which show that the control performance will be optimized at a certain reduced
vibration frequency or amplitude. Also, it is shown by the analysis of maximal Lyapunov exponents
that the vibration wall is able to change the flow field from a disordered one into an ordered one.
Consistent with these phenomena and bringing more physical insight, the simplified model implies
that the tuned vibration frequency and amplitude will lock in the unsteady flow separation, promote
momentum transfer from the main stream to the separation zone, and make the flow field more
orderly and less chaotic, resulting in a reduction of flow loss.

Keywords: unsteady flow control; flow separation; vibration wall; model-based analysis

1. Introduction

Flow separation is generally accepted to be the breakaway or detachment of fluid
from a solid surface [1]. It often leads to liftor total pressure efficiency decreases of wings or
diffusers. Thus, researchers from all over the world are seeking the way to avoid or suppress
flow separation. Furthermore, it is widely accepted that unsteady flow control techniques
need less energy input than steady ones to achieve the same control performance [2].
Typical existing active control methods include acoustic excitation [3], synthetic jet [4],
pulsed jet [5], plasma actuation [6], and vibration wall [7]. Among them, vibration wall
is becoming popular because it has a simple structure and does not change the surface
shape when not working (better than most passive flow control methods which may
cause additional losses under an off-design point). Regarding the vibration wall, Wu [7]
studied the effect of wall vibration on flow separation and raised the concept of “streaming
effect” which is used to evaluate the control performance. Sinha [8] introduced the active
flexible wall (AFW) and showed a that proper vibration frequency can optimize the velocity
profile of the boundary layer and delay flow separation. Yang [9] studies the effect of wall
vibration frequency on a low-pressure turbine cascade. It is found that a certain frequency
range will lead to a minimum cascade loss and then low-energy fluid is confined near the
suction surface by energy exchange between the free flow and near-wall flow. Moreover,
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Kang [10] used wall vibration to control flow separation on an airfoil and also found a
certain frequency range of lift enhancement accompanied by frequency synchronization.

Although the previous studies have shown the relationship between the parameters of
vibration walls and control performance, the mechanism that how these parameters func-
tion is still not clear. In some other unsteady flow control methods, detailed experimental
and numerical results imply and reveal some mechanisms hidden behind the unique phe-
nomena, which vibration wall control may share. For example, in pulsed jet flow control,
when the frequency of the pulsed jet is equal to the dominant frequency of the shedding
vortex, the control performance reaches its peak [2,11]. This kind of frequency-dependent
phenomenon also exists in Yang and Kang’s work [9,10] as mentioned before. As it is
known, tuned external excitation can stimulate large-scale coherent structures in separated
flows via flow instability [12]. Also, some works indicate that effective excitation tends to
change a chaotic flow field into a relatively ordered one [11]. This implies the interaction
between external periodic excitation and unsteady flow separation may fall in the category
of chaos control, which may also apply to vibration wall control.

With the known clues discussed before, we are thinking of a way to analyze the
mechanism of vibration wall control in a clearer way. It is accepted that complex phe-
nomenon doesn’t always mean complex mechanisms, and the misunderstanding often
occurs because of taking a part for the whole. Simplified models are very helpful for
us to understand the simple mechanism hidden behind the complex phenomena. For
example, in computational fluid dynamics, some simple equations (toy models) are studied
in priority and compatible schemes can be developed to solve complex formula then. Based
on the same train of thought, in this paper, we employ a simplified model to help us under-
stand the mechanism and phenomena in vibration wall control. Because flow instability
is the basis of unsteady flow control, the flow instability theory is of great importance
as references for vibration wall control. The flow instability theory includes two typical
models, the O-S (Orr–Sommerfeld) equation and the S-L (Stuart–Landau) equation. The
O-S equation [13] is based on the linear perturbation theory and used to describe flow
stability in parallel flows. Although the linear perturbation theory is relatively mature and
agrees with many experimental results, it only applies to the initial phase of flow instability,
after which the nonlinear effect plays the leading role. Then, as a weak nonlinear flow
instability theory, the S-L equation [14] can be used to deal with flow stability problems
with weak nonlinearity. However, all these simplified models for linear or weak nonlinear
applications, are not suitable for describing unsteady flow control with strong nonlinearity,
especially with chaos. Therefore, in this paper, we introduce a simplified model to describe
the interaction between the forced excitation (from vibration wall) and self-excitation (from
flow instability), and analyze the phenomena and mechanism of vibration wall flow control
based on this model.

2. A Nonlinear Simplified Model for Flow Separation Control by a Vibration Wall

In this section, we establish a nonlinear simplified model to describe the effect of
a vibration wall on unsteady flow separation. Considering the 2D incompressible N-S
Equation:

d
→
V

dt
= −1

ρ
∇p + ν∇2

→
V (1)

To reduce the order of this formula, only y-direction (basically perpendicular to the
main flow direction) movement is considered. Therefore, Equation (1) is restated as:

∂2y(ξ, η, t)
∂t2 = −1

ρ

∂

∂y
p(x, y, t) + ν(

∂2

∂x2 +
∂2

∂y2 )Vy(x, y, t) (2)
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where ξ, η are Lagrange variables used to distinguish the fluid particles. For a particular
fluid particle denoted by ξ0 and η0:

d2y(ξ0,η0,t)
dt2 =

[
− 1

ρ
∂

∂y p(x, y, t) + ν( ∂2

∂x2 +
∂2

∂y2 )Vy(x, y, t)
]∣∣∣x=x(ξ0,η0,t),y=y(ξ0,η0,t)

≈
[
− 1

ρ
∂

∂y p(x, y, t) + ν( ∂2

∂x2 +
∂2

∂y2 )Vy(x, y, t) + f (t)
]∣∣∣x=x(ξ0,η0,t),y=y(ξ0,η0,t)

(3)

where a means the time-averaged function a. In Equation (3), − 1
ρ

∂
∂y p(x, y, t) is a time-

averaged pressure gradient term, ν( ∂2

∂x2 +
∂2

∂y2 )Vy(x, y, t) is a time-averaged dissipation
term, and f (t) is a time-dependent term defined as:

f (t) = −1
ρ

[
∂

∂y
p(x, y, t)− ∂

∂y
p(x, y, t)

]
+ ν

[
(

∂2

∂x2 +
∂2

∂y2 )Vy(x, y, t)− (
∂2

∂x2 +
∂2

∂y2 )Vy(x, y, t)

]
(4)

and it is easy to deduce that f (t) = 0. So, in the following passage, we aim at modeling
these three terms (the time-averaged pressure gradient term, the time-averaged dissipation
term and the time-dependent term), separately.

2.1. Time-Averaged Pressure Gradient Based on the Concentrated Vortex Model

In this section, we build a simplified model for the time-averaged pressure gradient
term − 1

ρ
∂

∂y p(x, y, t) in Equation (3) based on a concentrated vortex model. When the
separation vortex reaches its saturation stage (when its scale and strength do not change
a lot), it can be modeled as a vortex row consisting of identical concentrated vortices,
as shown in Figure 1. In addition, we make the x-axis pass through the vortex cores of
separation vortices and assume all small-scale vortices are symmetric with respect to the
x-axis. It is known the pressure gradient in a concentrated vortex is:

1
ρ

∂p
∂r

=
Vθ

2

r
(5)

where Vθ is the circumferential velocity. Here, we introduce Oseen vortex model [15],
which is a kind of symmetry isolated vortex and an accurate solution of the incompressible
N-S equation. The Oseen vortex is a circular vortex and it is more physical than other vortex
models such as point vortex, rigid body vortex and Rankine vortex. Its circumferential
velocity distribution can be described as:

Vθ =
Γ0

2πr
(1− e−r2/(4νt)) (6)

where, Γ0 is vortex strength. If we define the vortex core radius as: r0 = 2
√

νt. Then, on one
hand, when r/r0 � 1, Vθ ≈ Γ0r/(8πνt), so the velocity distribution in the vortex core zone
is similar to that of a rigid body vortex. On the other hand, when r/r0 � 1, Vθ ≈ Γ0/(2πr),
the velocity distribution outside the vortex core zone is similar to that of a point vortex.

We consider a situation that a fluid particle is dominated by a separation vortex (near
the core of an Oseen vortex). The y-direction pressure gradient is:

− 1
ρ

∂p
∂y

= −1
ρ

∂p
∂r

sin θ = − Γ2
0

4π2r3 (1− e−r2/r2
0)

2
sin θ (7)

If θ ≈ π/2 and y � r0, then r ≈ y and sin θ ≈ 1. According to the Taylor expansion
approximation that ex ≈ 1 + x + x2/2, it can be deduced that:

− 1
ρ

∂p
∂y
≈ Γ2

0

4π2r4
0
(−y +

y3

r2
0
) (8)
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Figure 1. A vortex row with a pair of symmetric small-scale vortices.

Moreover, we consider a situation that a fluid particle is affected by two symmetrical
small-scale vortices (two Oseen vortices with the radius r1) at a distance of 2µr1 (as shown
in Figure 1). If the fluid particle is near the symmetric line, the y-direction pressure gradient
is considered approximately as the superposition of two isolated Oseen vortices, stated as:

− 1
ρ

∂p
∂y ≈ −

Γ2
0

4π2r3
1
[ (1−e−(y/r1−µ)2 )

2

(y/r1−µ)3 + (1−e−(y/r1+µ)2 )
2

(y/r1+µ)3 ]

≈ Γ2
0

4π2r4
1
(k1y + k3

y3

r2
1
)

(9)

where k1 and k3 are coefficients depending on µ. Then, Equation (8) can be regarded as a
particular case of Equation (9) when µ = 0 and r1 = r0. So, when µ changes, so are k1 and
k3 (Some cases are listed in Table 1).

Table 1. k1 & k3 versus µ.

µ k1 k3

0 −1 +1
0.5 −0.82 −0.02
1 +0.54 −1.01
2 +0.33 +0.1

When we track a fluid particle, k1 and k3 are not fixed (both their values and signs are
time-dependent), an approximate expression of pressure gradient is shown as:

− 1
ρ

∂

∂y
p(x, y, t) ≈ Γ2

0(t)
4π2r4

0(t)
(k1(t)y +

k3(t)
r2

0(t)
y3) (10)

Furthermore, the time-averaged pressure gradient has the expression:

− 1
ρ

∂
∂y p(x, y, t)

∣∣∣x=x(ξ0,η0,t),y=y(ξ0,η0,t)

≈ 1
4π2 k1(t)Γ2

0(t)r
−4
0 (t)y(ξ0, η0, t) + 1

4π2 k3(t)Γ2
0(t)r

−6
0 (t)y3(ξ0, η0, t)

= −ay− cy3

(11)
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So, in Equation (3), if we only take the pressure gradient into account, then:

d2y
dt2 = −1

ρ

∂

∂y
p(x, y, t) ≈ −ay− cy3 (12)

This is a typical conservative Duffing equation [16]. When the signs of a and c change,
so is the type of the Duffing equation and its nonlinear characteristics (See Table 2).

Table 2. Types of the Duffing equation (data from Ref. [16]).

sgn(a) sgn(c) Types of the Duffing Equation

+ − softening nonlinearity
+ + hardening nonlinearity
− + Negative linear positive cubic stiffness nonlinearity
− − Negative linear negative cubic stiffness nonlinearity

So, according to Equations (11) and (12), the strength, scale and formation of separation
vortices and small-scale vortices affect the time-averaged pressure gradient and the type of
the Duffing equation. Furthermore, different types of the Duffing equation present totally
different characteristics. For example, the Duffing equation with negative linear positive
cubic stiffness nonlinearity has chaotic solutions. This type is focused on in this paper
because chaos is a crucial feature in unsteady flow separation.

2.2. Time-Averaged Dissipation Term

In this section, we model the time-averaged dissipation term ν( ∂2

∂x2 +
∂2

∂y2 )Vy(x, y, t) in
Equation (3). We know that small-scale vortices rather than large-scale vortices contribute
to the dissipation of mechanical energy mostly in an unsteady flow field. So, we first
inspect the dissipation in a small-scale vortex. Using the central difference scheme, we
know that:

∂2

∂x2 Vy(x, y, t) = lim
r1→0

Vy(x + 2r1, y, t) + Vy(x− 2r1, y, t)− 2Vy(x, y, t)
4r2

1
(13)

where r1 is the vortex core radius of a small-scale vortex. As shown in Figure 2, for a small-
scale vortex, its y-direction velocity (Vy = 0 for the mainstream) decays rapidly outside its
vortex core. So, Vy(x + 2r1, y, t) ≈ 0 and Vy(x− 2r1, y, t) ≈ 0. Also, for a small-scale vortex,
r1 is very small and thus:

∂2

∂x2 Vy(x, y, t) ≈
−Vy(x, y, t)

2r2
1

(14)

Using the same technique for ∂2

∂y2 Vy(x, y, t), we can deduce that:

(
∂2

∂x2 +
∂2

∂y2 )Vy(x, y, t) ≈
−Vy(x, y, t)

r2
1

(15)

So:

ν( ∂2

∂x2 +
∂2

∂y2 )Vy(x, y, t)
∣∣∣x=x(ξ0,η0,t),y=y(ξ0,η0,t) ≈ −ν

Vy(x,y,t)
r2

1(t)

∣∣∣x=x(ξ0,η0,t),y=y(ξ0,η0,t)

= −ν
Vy(ξ0,η0,t)

r2
1(t)

= −ν 1
r2

1(t)
dy
dt

(16)

The right part of this equation is a time-dependent damping term with a time-dependent
damping coefficient −νr−2

1 (t), where r1(t) describes the radius of small-scale vortices a
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fluid particle encounters. Because the radius of the large-scale separation vortex is r0
(r0 > r1(t)), the time-averaged dissipation term scaled by r0 can be restated as:

ν(
∂2

∂x2 +
∂2

∂y2 )Vy(x, y, t)
∣∣∣x=x(ξ0,η0,t),y=y(ξ0,η0,t) = −ν + νT

r2
0

dy
dt

= −e
dy
dt

(17)

where, νT is the added eddy viscosity due to small-scale vortices during the scaling and
time-averaged procedure, and the damping term is then a time-independent constant (the
damping coefficient is e), which is much easier for subsequent treatment. Now, we have
completed the modeling of the time-averaged dissipation term in Equation (3).

Figure 2. Diagram for modeling the dissipation term inside a small-scale vortex.

2.3. Time-Dependent Term Based on the Self-Excitation and External Excitation Model

In this section, we aim to model the time-dependent term f (t). The modeling based on
its complex definition (Equation (4)) is very difficult, however, another way for modeling
is based on its physical meaning. We know the unsteadiness in unsteady flow separation
control come from two sources. One is the self-excitation due to internal flow instability
which is responsible for the large-scale vortical structures of flow separation, and another
is the external periodic excitation produced by unsteady flow control.

Figure 3 shows the evolutionary process of a vortex sheet rolling into a concentrated
vortex row due to K-H instability, which is interpreted by Batchelor [15]. If we follow a
fluid particle, it will experience vortex induced motion, and its time-dependent acceleration
can be approximately described as:

f (t) = A(t) sin(ω0t) (18)

where ω0 is the angular frequency which is related to the natural frequency in flow separa-
tion; A(t) is the amplitude of acceleration. According to Figure 3, A(t) evolves larger over
time and saturates due to nonlinearity when a concentrated vortex row has formed. This
process can be described well by the S–L theory [17], shown as:

dA(t)
dt

= σA(t)− lA3(t) (19)
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where, l is the Landau constant. Then, combined with Equation (19), Equation (18) is an
approximate solution of a van der Pol equation shown as:

d2 f
dt2 = −ω2

0 f + 2(σ− 4l f 2)
d f
dt

(20)

Figure 3. Evolutionary process from a vortex sheet to a concentrated vortex row due to K-H Instability.

The van der Pol equation can describe self-excited behavior such as the flow instability
in flow separation. Furthermore, we model the external excitation from unsteady flow
control as a forced term Ae sin(ωet) and insert it into Equation (20), which is shown as:

d2 f
dt2 = −ω2

0 f + 2(σ− 4l f 2)
d f
dt

+ Ae sin(ωet) (21)

where, Ae and ωe are the intensity and angular frequency of the external periodic excitation.
Now, we have completed the modeling of the time-dependent term in Equation (9) based
on the physical meaning of self-excitation and external excitation in unsteady flow control.

2.4. Complete Form of the Simplified Model and Its Evaluation Index

Combining Equations (3), (12), (17) and (21), we obtain the complete form of the
simplified model: 

d2y
dt2 = −ay− cy3 − e dy

dt + f
d2 f
dt2 = −ω2

0 f + 2(σ− 4l f 2) d f
dt + Ae sin(ωet)

(22)

We pick a set of parameters to reflect unsteady flow separation, and observe the effect
of external excitation on the characteristics of Equation (22). A premise is put forward that
the selected parameters will create chaotic motion described by Equation (22), because
chaos occurs in actual flow separation. Then, we find that: a = −1, c = 4, e = 0.154,
ω0 = 1.1, σ = 0.05, l = 10.

Moreover, an index is also needed for the evaluation of flow control performance
in this model. As discussed in the introduction, the momentum transfer via large-scale
vortical structures is essential for unsteady flow control performance. So, we define the
entrainment degree σe as:

σe = lim
T→∞

∫ T
0 |dy/dt|dt

T
(23)
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This index reflects the time-averaged distance a fluid particle experienced. High
value of σe means the fluid particle will bring more momentum from the high-momentum
mainstream to the low-momentum separation zone. And in the following passage, this
index is calculated by solving Equation (22) using MATLAB software, in order to evaluate
the flow control performance by adjusting Ae and ωe.

3. CFD Method of Flow Separation Control by a Vibration Wall in a Curved Diffuser
3.1. Introduction of the Numerical Method

Vibration wall control is used for a curved diffuser (as shown in Figure 4) with
typical flow separation in this paper. The diffuser includes an inlet, a curved part and an
outlet. The inlet width, outlet width and chord length of the curved part are 34.3 mm,
55 mm and 80 mm, respectively. Large eddy simulation (LES) with Smagorinsky–Lilly
sub-grid model is chosen by us for the numerical simulation. The inlet Mach number,
determined by the inlet total pressure and exit static pressure, is set as 0.1 in all cases, to
avoid potential compressible effect which functions when the Mach number exceeds 0.3.
Dual-time stepping is used to solve the unsteady process and the physical time step is set as
10−5 s. After the grid-independent study [18] (as shown in Figure 5), the grid number used
is about 8 × 104 considering of both computational accuracy and economy. More details of
the numerical method and some of the numerical results can be found in Ref. [19].

Figure 4. Curved Diffuser and the vibration wall.

Figure 5. Grid-independent study (loss coefficient vs. grid number) [18].
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The vibration wall is realized in the simulation by the dynamic mesh technique with
a spring-based smoothing model. The function of the vibration wall is described as a
stationary wave realized by a user defined function (UDF), shown as:

y(x, t) = y0(x) + Ae sin(2π fet) sin(π
x− x0

L
) x0 < x < x0 + L (24)

where y0(x) is used to describe the lower surface of the diffuser geometry and x0 is the
starting position of the vibration wall; while Ae, fe and L are the amplitude, frequency and
length of the vibration wall. Ae and fe are adjustable because excitation frequency and
intensity have shown great impact on control performance in previous works of unsteady
flow control by others, while other parameters are fixed (L = 30 mm) in this study.

3.2. Nondimensional Parameters of the Vibration Wall

Before exploring the characteristics of flow control by a vibration wall, we firstly
define some nondimensional parameters for describing the vibration wall control. The
nondimensional vibration frequency is defined as:

F+ = fe/ f0 (25)

where fe is the vibration frequency and f0 is the dominant vortex frequency in the uncon-
trolled flow field. f0 is 360 Hz in this case via fast Fourier transform (FFT) analysis.

Another parameter to describe the vibration wall is the nondimensional vibration
amplitude, which is defined as:

A+ = Ae/L0 (26)

where Ae is the vibration amplitude and L0 is the estimated vortex radius (about 0.01 m in
this case) in the uncontrolled flow field.

3.3. Evaluation Indexes

To evaluate the control performance, we define a nondimensional index called the
relative saving of the total pressure loss. The total pressure loss coefficient ω is widely used
and defined as:

ω =
P∗1 − P∗2
0.5ρV2

1
(27)

where P∗1 is the inlet total pressure, P∗
2

is the outlet total pressure, ρ is the density, and V1 is
the inlet velocity. Then, the relative saving of the total pressure loss ω̃ is defined as:

ω̃ =
ωn −ωc

ωn
(28)

where ωn and ωc are the total pressure loss coefficients of the curved diffuser with no
control and with vibration wall control, respectively. This index reflects the control perfor-
mance in terms of mechanical energy saving.

Moreover, degree of order is of importance in nonlinear dynamics and effective
external excitation seems to have the ability to change the degree of order of a flow field [20].
A classic index to evaluate the degree of order is the maximal Lyapunov exponent. In a
discrete or continuous dynamic system, two phase points will diverge or converge in the
iterative or evolutionary process, and Lyapunov exponent is an indicator to quantitatively
describe this process. There are n Lyapunov exponents in a n-dimensional dynamic system.
When one positive Lyapunov exponent exists, the system tends to be chaotic, while when
all of the Lyapunov exponents are negative, the system tends to be orderly. So, the maximal
Lyapunov exponent is an effective index to evaluate the degree of order of a dynamic
system. The ith Lyapunov exponent λi is defined as:

λi = lim
t→∞

lim
ε(0)→0

1
t

ln
∣∣∣∣ εi(t)

ε(0)

∣∣∣∣ (29)



Energies 2021, 14, 1781 10 of 16

where ε(0) is the radius of an n-dimensional infinitesimal sphere, which evolves into an
n-dimensional ellipsoid over time, of which εi(t) is the ith dimension semimajor axis [21].
When λi is sorted by value (from largest to smallest), λ1 is the largest and referred as the
maximal Lyapunov exponent. The maximal Lyapunov exponent is calculated based on the
time series of monitoring points from the simulation. To be exact, the C-C algorithm and
Wolf method are used for the reconstruction of the phase space and then the calculation of
λ1 (See Ref. [21] for more details).

4. Comparison of Model-Based and CFD Results
4.1. Vibration Frequency Analysis

As shown in Figure 6, when the vibration wall is off, a time-averaged flow separation
zone occurs on the suction side of the curved diffuser. The vibration wall is designed
near the separation point, because the separation vortex is easier to change at its growing
stage. Then, we study the effect of vibration frequency on the control performance. In
the CFD simulation, the nondimensional vibration amplitude A+ maintains 0.1 and the
nondimensional vibration frequency F+ (defined in Equation (25)) is variable. Meanwhile,
in the model, the external excitation intensity Ae maintains 0.05 and the nondimensional
excitation frequency ωe

+ is variable and defined as:

ωe
+ = ωe/ω0 (30)

Figure 6. Time-averaged flow field of the curved diffuser when the vibration wall is off.

The control performance of the vibration wall under different nondimensional exci-
tation frequencies is shown in Figure 7, containing both the CFD and model results. It is
obvious that when the nondimensional excitation or vibration frequency is around 1, the
control performance reaches its maximum (the relative saving of the total pressure loss is
about 18%). This frequency-dependent phenomenon is also reported in other’s works [2].
To be explicit, in the CFD results, high relative saving of the total pressure loss means
much of the energy loss due to flow separation is restored by the vibration wall, while
in the model-based results, high entrainment degree means much momentum from the
mainstream is transferred to the separation zone due to external excitation. It should be
noted that the natural frequency of separation vortex is the most unstable frequency of the
flow field. So, the control performance optimization when the vibration wall frequency
equals the dominant frequency of separation vortex (F+ = 1) must be related to flow
instability. Combining the CFD and model results, we can infer that the separation vortex
is promoted and serves as a medium for momentum transfer when the vibration wall
frequency is tuned.
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Figure 7. Control performance of the vibration wall vs. nondimensional excitation frequency
(CFD [19] and Model results).

4.2. Vibration Amplitude Analysis

In this section, we study the effect of the vibration amplitude on the control perfor-
mance. Figure 8 shows both the CFD and Model results by changing the nondimensional
vibration amplitude A+ and the external excitation intensity Ae (F+ and ωe

+ maintain 1).
As illustrated in Figure 8, the CFD results show that as the nondimensional vibration
amplitude increases, the relative saving of the total pressure firstly increases and then
decreases, implying an optimal nondimensional amplitude about 0.1. Meanwhile, in the
model-based results, as the excitation amplitude increases, the entrainment degree also
increases firstly but then does not change a lot when Ae > 0.0125. So, according to the
model, the momentum transferred by the separation vortex increases with the vibration
amplitude firstly, but it is restricted then. As the model indicates, when the vibration am-
plitude exceeds a threshold, no more momentum will be transferred through the unsteady
separation vortex. However, as the CFD results show, an excessive vibration amplitude will
result in more energy losses, which may be caused by unnecessary y-direction disturbance
on the mainstream.

Figure 8. Control performance of the vibration wall vs. excitation amplitude (CFD [19] and Model
results).
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4.3. Lock-In Analysis

One reason that external excitation such as that from a vibration wall functions is
that it can lock in the fluid system. This means the forced external periodic excitation can
interact with the intrinsic self-excited motion under certain conditions. Figure 9 shows the
relationship between the dominant system frequency and the nondimensional excitation
frequency. For the CFD results, the dominant system frequency is obtained by FFT of the
static pressure at the monitoring point (as shown in Figure 6) and the nondimensional
external excitation is F+. Moreover, for the model results, the dominant system frequency
is obtained by FFT of the dynamic system, and the nondimensional external excitation
is ωe

+. As shown in Figure 9, we can clearly see a frequency lock region. And this
region is approximately 0.65 < ωe < 1.25 in the model-based results, while approximately
0.75 < F+ < 2 in the CFD results. So, the lock-in region in the CFD results is wider than
the model predicts when on the right side of F+ = 1. According to the vibration frequency
analysis, the control performance optimizes when F+ = 1. Thus, we think lock-in may be
a precondition for effective vibration wall flow control.

Figure 9. Nondimensional system frequency vs. Nondimensional excitation frequency (CFD and
Model results).

4.4. Degree of Order Analysis

In order to evaluate the degree of order of the flow field, the maximal Lyapunov
exponents obtained by time series analysis of the pressure on the monitoring section of
the curved diffuser without control and with F+ = 1 control (as shown in Figure 6) are
illustrated in Figure 10. Also, the maximal Lyapunov exponents calculated by the model
are added to Figure 10 for comparison. So, the CFD results generally agree with the
model-based predictions, that the maximal Lyapunov exponents of the uncontrolled flow
field are positive (indicating chaotic), while the maximal Lyapunov exponents of the flow
field under effective control are negative (indicating ordered). Thus, the results show that
vibration wall with proper parameters can make the flow field evolve from a chaotic one to
a more orderly one. This can also be seen from the instantaneous flow fields in Figure 11,
as the uncontrolled flow field contains more disordered small-scale vortices, while the flow
field with effective vibration wall control is only dominated by ordered large-scale vortices.
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Figure 10. Maximal Lyapunov exponents without control and with F+ = 1 control (CFD [19] and
Model results).

Figure 11. Instantaneous vorticity contour of the flow fields in the curved diffuser: (a) no control; (b) with F+ = 1 control.

5. Discussion

In this paper, a nonlinear simplified model was established based on the 2D incom-
pressible N-S equation, Oseen vortex model, and K-H instability. The behaviors of the model
agree with what we found in vibration wall flow control. Thus, cued by both the model and
the CFD results, the mechanism of vibration wall flow control can be discussed here.

In the degree of order analysis, according to both the model and CFD results, it
implies that a vibration wall with tuned parameters is able to change the flow field from a
disordered one into an ordered one. Moreover, from the vibration frequency analysis, we
know tuned parameters of a vibration wall can also maximized momentum transfer. So, we
think the mechanism of vibration wall flow control is that it helps to reduce time-averaged
flow separation via momentum transfer, and it also helps unsteady separated vortices to
travel more efficiently (in a more orderly way). In short, vibration wall control with fine
parameters can maximize momentum transfer and make the flow field in a less chaotic and
low-loss state.

Another issue regarding vibration wall control concerns how to realize tuned parame-
ters. According to the lock-in analysis, it seems that the lock-in may be a precondition for
effective vibration wall flow control. In another word, the periodic excitation a vibration
wall produces must dominate in an unsteady separated flow field before it functions. And
this is also proven by the vibration amplitude analysis that the intensity of vibration must
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be strong enough to result in effective flow control. Also, in the vibration frequency analy-
sis, it is found that the optimum vibration frequency is around the frequency of separated
vortices. This implies the economic way (the energy cost grows larger with the increase of
vibration amplitude) to actuate the vibration wall must utilize flow instability, because the
dominant separated vortices themselves are stimulated by the most unstable mode in the
flow stability theory.

According to this discussion, the simplified model helps us understand the behaviors
of vibration wall flow control, and guide the design and application of it. Although the
model cannot describe the behaviors of vibration wall flow control very accurately for now,
we hope to develop this model in the future and improve its accuracy. When this model is
mature enough, it will support the construction of a rapid design platform for preliminarily
designing vibration walls in flow control and save plenty of time of parameter optimization
through simulations or experiments.

6. Conclusions

The effect of vital control parameters for vibration wall in a curved diffuser is studied
by numerical simulation (CFD) and analyzed based on a nonlinear simplified model. The
outcomes of the model agree with the CFD results qualitatively, helping us to understand
the phenomena and mechanisms in vibration wall control. The main conclusions are
as follows:

1. In order to explain the phenomena and mechanisms in vibration wall control, a
simplified nonlinear model is established based on the 2D incompressible N-S equation,
Oseen vortex model and K-H instability. The complete form of the model is shown as:

d2y
dt2 = −ay− cy3 − e dy

dt + f

d2 f
dt2 = −ω2

0 f + 2(σ− 4l f 2) d f
dt + Ae sin(ωet)

. In this model, the frequency and ampli-

tude of the vibration wall are modeled as ωe and Ae, respectively. Then, the control
performance is evaluated by entrainment degree σ.

2. Both the CFD and model-based analysis shows that when the vibration frequency
is around the system frequency, the control performance optimizes, and the vibration
frequency tends to lock-in the system frequency. This infers that the lock-in may be a
precondition for effective vibration wall flow control and effective vibration frequency will
use the separation vortex as a medium to strengthen the momentum transfer from the
mainstream to the separation zone.

3. Both the CFD and model-based analyses indicate an optimum vibration amplitude.
As the excitation amplitude increases, the momentum transfer from the mainstream to
the separation zone will also increases and results in better control performance. But
momentum transfer through the separation vortex has its limitation. An excessive vibration
amplitude will bring more energy losses and relatively poor control performance.

4. By analyzing the maximal Lyapunov exponents, both the CFD and model-based
analyses imply that the vibration wall with tuned parameters is able to change the flow field
from a disordered one into an ordered one. Combining this with maximized momentum
transfer, effective vibration wall control will support the flow field in a less chaotic and
low-loss state.
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Nomenclature

A Amplitude of a K-H wave, m/s2

Ae Amplitude of the vibration wall, m
A+ Nondimensional vibration amplitude, 1
a Coefficient in Duffing equations, 1/s2

c Coefficient in Duffing equations, 1/(m2s2)
e Damping coefficient, 1/s
F+ Nondimensional frequency of vibration walls, 1
f (t) Time-dependent term, m/s2

f0 Dominant vortex frequency, Hz
fe Frequency of vibration walls, Hz
k1, k3 Coefficients in Oseen vortices, 1
L Amplitude of vibration walls, m
L0 Characteristic length, m
l Landau constant, m3/m2

P Mass flow averaged pressure, Pa
p Static pressure, Pa
r Radius, m
r0 Vortex core radius of large-scale separation vortices, m
r1 Vortex core radius of small-scale vortices, m
t Time, s
V Mass flow averaged velocity, m/s
→
V Velocity vector, m/s
Vy y-direction Velocity, m/s
Vθ Circumferential velocity, m/s
x, y Cartesian coordinates, m
Γ0 Vortex strength, m2/s
λi ith Lyapunov exponent, 1
λ1 Maximal Lyapunov exponent, 1
σ Linear growth rate of the K-H wave, 1/s
σe Entrainment degree, m/s
µ Coefficient in Oseen vortices, 1
ν Coefficient of kinetic viscosity, m2/s
νT Coefficient of small-scale eddy viscosity, m2/s
ξ, η Lagrange variables, m
ρ Density, kg/m3

ω Total pressure loss coefficient, 1
ω̃ Relative saving of the total pressure loss, 1
Subscripts
1 Diffuser inlet
2 Diffuser outlet
c with flow control
n without flow control
Superscripts
* Absolute total state
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