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Abstract: Based on the general theory of fractional order derivatives and integrals, application of the
Caputo–Fabrizio operator is analyzed to improve a mathematical model of a two-mass system with
a long shaft and concentrated parameters. Thus, the real transmission of complex electric drives,
which consist of long shafts with a sufficient degree of adequacy, is presented as a two-mass system.
Such a system is described by ordinary fractional order differential equations. In addition, it is well
known that an elastic mechanical wave, propagating along a drive transmission with a long stiff shaft,
creates a retardation effect on distribution of the time–space angular velocity, the rotation angle of the
shaft, and its elastic moment. The approach proposed in the current work helps to take in account the
moving elastic wave along the shaft of electric drive mechanism. On this basis, it is demonstrated that
the use of the fractional order integrator in the model for the elastic moment enables it to reproduce
real transient processes in the joint coordinates of the system. It also provides an accuracy equivalent
to the model with distributed parameters. The distance between the traditional model and the model
in which the fractional integral is used for the elastic moment modelling in a two-mass system, with
a long shaft, is analyzed.

Keywords: electric drive; fractional calculus; two-mass system; Caputo-Fabrizio operator; mathe-
matical model; synthesis of control system; full state vector control

1. Introduction

Electric drives occupy a leading position in modern industry [1,2]. In recent years,
electric machines with frequency converter supply are widely used as torque sources in
control systems [3,4]. Such devices often include complex mechanical transmissions and
cannot always be considered rigid. In addition, the operation of such industrial equipment
as rolling mills, textile, or paper machines [5] is based on elastic connections, and a two-
mass model of the system is traditionally used for their analysis. At the same time, in
powerful systems with significant moments of inertia of both the electric machine and the
load, lightweight shafts are used to increase efficiency. Under such conditions, the model
of the device can no longer be considered as a system with a stiff shaft.

Fractional calculus is applicable to virtually every scientific discipline and branch of
industry [6] applies a model of fractional-order controller that includes time delay. The
controller is implemented to servomotors and compared with other controllers. Fractional-
order theory is also used in control systems of drug concentration and supply that use
limited control of semilinear systems [7]. An optimum design of a fractional-order con-
troller is employed in the method of direct synthesis developed for a fractional-order
model [8].

In addition, many industrial systems (ship rowing mechanisms, power generation
systems) are characterized by a long shaft connection. In both the cases, the systems have
bound nonlinear mechanical vibrations and torsional oscillations, which are described
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by a two-mass system model [9,10]. The latter does not always adequately describe real
processes in an object. It should be noted that, in the case of industrial mechanisms with
elastic connection, rolls are connected with a drive by means of a long shaft. This system
combines the systems shown in Figures 1 and 2.

Figure 1. Two-mass system with elasticity.

Figure 2. Two-mass system with a stiff shaft.

The parameters in Figures 1 and 2: J1, J2—moment of inertia; M1, M2—torque; r1
and r2 are the roller radii; K, D—coefficient of elasticity and the damping constant of
belt material; F—tension force; ω1 and ω2—angular velocity of the first and second mass;
M—electromagnetic torque; Mc—load moment.

Mechanical vibrations and torsional oscillations not only strongly affect the operation
of drive systems, but also significantly complicate the synthesis of a control system [11–17].
The problem is especially complicated in resonant and inclined resonant states. The task
of a control system, in this case, is not only to ensure achievement and maintenance
at a given speed level of the drive mechanism under various perturbations, but also to
avoid mechanical oscillations in transients, which can lead to the deterioration of control
characteristics. Thus, the identification of the mechanical system state in electric drives is
becoming an increasingly important problem [18–20].

To describe processes in electric drives with long shafts, which contain complex
control devices, the application of shaft models with concentrated mechanical parameters
has become widespread. Creation of such models is quite fully described, for example,
in [21–23]. The shaft is divided into several absolutely rigid inertial links interconnected
by means of flexible links. Such a mechanical object is described by ordinary Lagrange
differential equations of the second type and is considered a holonomic system with a finite
number of degrees of freedom.

A comparison of descriptions of concentrated and distributed parameter systems
leads to the conclusion that the description of the distributed parameter systems provides
a greater accuracy of modelling and, thus, improves adequacy of temporal and spatial
temporal behavior of the functions studied. The question then arises, why not analyze
transient states in susceptible motion transmission of electric drives that include long elastic
elements by means of boundary or mixed problems? The point is, there is one important
requirement in automated electric drives, other than a high model adequacy, namely the
relative simplicity of a model, since the solving of boundary problems is quite burdensome.

Fractional-order derivatives and integers are increasingly applied to state-of-the-
art approaches to the modelling of processes and electric drives [6,7], which commonly
improves model adequacy, or substantially simplifies it, compared to a traditional integral-
order model. These approaches are increasingly used in drive control systems [8].

A mathematical model of electric drive, containing a long shaft in its simplified two-
mass interpretation, is developed in this paper. To ensure accuracy of the model, the theory
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of fractional-order calculus is utilized; for instance, the Caputo–Fabrizio operator serves to
describe long shaft elastic torque.

The paper additionally shows that the application of such high-accuracy models to
synthesis of control systems for industrial electric drives is reasonable when mechanisms
requiring high accuracy are studied.

A completely different situation concerns the representation of the object (shaft) as a
system with distributed parameters [24,25]; see Figure 3, i.e., with an infinite number of
degrees of freedom.

Figure 3. Long shaft model.

In Figure 3, a diagram of a long shaft with distributed parameters is presented. Let us
describe oscillating processes in the long shaft using equations with partial Euler–Poisson
derivatives, which, in mathematical terms, is a mixed problem with Dirichlet, Neumann,
and Newton’s boundary conditions.

An electromagnetic moment is applied to the left end of the shaft M and to the right
load moment Mc. Additional inertial links are also fixed at both ends of the shaft, JEM,
JN. Ignoring the external viscous friction, the equation of the long shaft (Figure 3) will be
as follows:

∂2 ϕ

∂t2 =
G
ρ
· ∂2 ϕ

∂x2 +
ξ

ρ · Jρ
· ∂3 ϕ

∂x2∂t
(1)

where ϕ—shaft rotation angle; ρ—density of the shaft material; Jp—polar moment of the
shaft’s inertia; G—modulus of elasticity of the second type (shear modulus); ξ—coefficient
of internal viscous friction.

Boundary conditions for Equation (1) are found on the basis of the d’Alemberta
method for two ends of the shaft: equality of driving moments, on the one hand, and
dynamic, elastic and dissipative moments, on the other.

JEM
∂2 ϕ

∂t2

∣∣∣∣
x=0
− G · Jρ

∂ϕ

∂t

∣∣∣∣
x=0
− ξ

∂2 ϕ

∂x∂t

∣∣∣∣
x=0

= M (2)

JN
∂2 ϕ

∂t2

∣∣∣∣
x=l

+ G · Jρ
∂ϕ

∂t

∣∣∣∣
x=l

+ ξ
∂2 ϕ

∂x∂t

∣∣∣∣
x=l

= Mc. (3)

Discretizing the system of Equations (1)–(3) with the method of lines produces what
is seen in Figure 3:

dω∗1
dt =

2·(∆x·M−Jρ ·G·(ϕ1−ϕ2)−ξ·(ω1−ω2))
∆x·(Jρ ·ρ·∆x+2·JEM)

dω∗j
dt = G

ρ ·
ϕj−1−2·ϕj+ϕj+1

∆x2 + ξ
Jρ ·ρ ·

ωj−1−2·ωj+ωj+1
∆x2 , j = 2 . . . N − 1

dω∗N
dt =

2·(∆x·Mc+Jρ ·G·(ϕN−1−ϕN)+ξ·(ωN−1−ωN))
∆x·(Jρ ·ρ·∆x+2·JN)

dϕj
dt = ωj, j = 1 . . . N

(4)

where N—the discretization nodes number of Equation (1); ∆x—discrete of spatial deriva-
tives; j = 0 and j = N + 1—the first and last nodes of spatial derivatives; ω*j—angular speed
of j-th section of the shaft; ϕj—rotation angle of j-th section of the shaft.

As shown in [25], this model adequately reflects the processes in the system and can
be used as a reference model in research.
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However, taking into account the complexity of the long shaft model with distributed
parameters, the model of a two-mass system (with concentrated parameters), such as (5),
is traditionally used for the purpose of control system synthesis for electromechanical
systems with a long shaft:

dω1
dt = 1

J1
·
(

M−M12 − β · (ω1 −ω2)− a f 1 ·ω1

)
dM12

dt = c12 · (ω1 −ω2)
dω2
dt = 1

J2
·
(

M12 + β · (ω1 −ω2)− a f 2 ·ω2 −Mc

) , (5)

where c12 = G · Jρ/L —shaft stiffness factor; β = ξ/L—coefficient of internal viscous
friction; af1 and af2—external viscous friction factors; J1 = JEM + 0.5 · ρ · Jρ · L and J2 =
JN + 0.5 · ρ · Jρ · L—moments of inertia of the first and second mass, respectively; L—shaft
length; M—electromagnetic torque; Mc—moment of the load; M12—elastic moment.

2. Model of a Two-Mass System with Concentrated Parameters

A block diagram of the model of two-mass systems with concentrated parameters is
shown in Figure 4. The system equation in the form of state variables

.
x = A · x + B · u will

become (6):
dω1
dt

dM12
dt

dω2
dt

 =

 −
β+a f 1

J1
− 1

J1

β
J1

c12 0 −c12
β
J2

1
J2

− β+a f 2
J2

 ·
 ω1

M12
ω2

+


1
J1

0
0 0
0 − 1

J2

 · [ M
Mc

]
, (6)

Figure 4. Block diagram of a two-mass system.

After applying the Laplace transformation, the equations for determining the state
variables are as follows:

 ω1(s)
M12(s)
ω2(s)

 =

 s +
β+a f 1

J1
1
J1

− β
J1

−c12 s c12

− β
J2

− 1
J2

s +
β+a f 2

J2


−1

·


1
J1

0
0 0
0 − 1

J2

 · [ M(s)
Mc(s)

]
=

=


M·(c12+(β+a f 2)·s+J2·s2)−Mc ·(c12+β·s)

H(s)
M·c12·(a f 2+J2·s)+Mc ·c12·(a f 1+J1·s)

H(s)
M·(c12+β·s)−Mc ·(c12+(β+a f 1)·s+J1·s2)

H(s)


(7)

where

H(s) = J1 · J2 · s3 +
(

J1 · a f 2 + J2 · a f 1 + β · (J1 + J2)
)
· s2 +

(
c12 · (J1 + J2) + β ·

(
a f 1 + a f 2

)
+ a f 1 · a f 2

)
· s

+c ·
(

a f 1 + a f 2

)
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In case, when J1 = J2 = J, af1 = af2 = 0 and M = Mc, equations for determining state
variables were rewritten as:  ω1(s)

M12(s)
ω2(s)

 =


M·s

J·s2+2·β·s+c12
2·M·c12

J·s2+2·β·s+c12
−M·s

J·s2+2·β·s+c12

 (8)

and, applying the inverse Laplace transformation, when M = const, we obtain the follow-
ing system:

ω1(t) = M√
2·J·c12−β2

· exp
(
−β

J t
)
· sin

(√
2·J·c12−β2

J2 · t
)

M12(t) = M−M · exp
(
−β

J t
)
· cos

(√
2·J·c12−β2

J2 t
)
− M√

2·J·c12−β2
· exp

(
−β

J t
)
· sin

(√
2·J·c12−β2

J2 t
)

ω2(t) = −M√
2·J·c12−β2

· exp
(
−β

J t
)
· sin

(√
2·J·c12−β2

J2 · t
) (9)

We use a system with the following parameters: ρ = 7850 kg/m3; = 8.1 × 1010 Nm;
ξ = 0.5 Nm2; L = 4.5 m; D = 0.05 m; JEM = JN = 20 Nm2; ∆x = 0.05 m. A comparative
analysis of dependences of change in the velocity of the first mass (Figure 5) as a function
of time, obtained using models with distributed and concentrated parameters, suggests
that the model with concentrated parameters does not adequately reflect the processes in
the system with an elastic shaft. The model with concentrated parameters inadequately
addresses the velocity of the mechanical wave, which leads to inaccuracies in determining
the actual parameters of the system. In particular, the calculation results in a delay angle δ,
which reflects the difference between the real system and its prototype, obtained on the
basis of a model with concentrated parameters.

Figure 5. Speed dependencies: __ model with distributed parameters; __ traditional model of a
two-mass system.

Ref. [26] shows that the elastic moment changing in time, in the case of elastic shafts,
should be described using fractional derivatives. The value of the fractional order derivative
provides modeling of the shaft material properties. When we apply the Caputo–Fabrizio
operator to describe the fractional order derivative [27], the equation of the elastic mo-
ment is: CFDα M12(t) = 1

(1−α)
·
∫ t

0 exp
(
−α·(t−τ)

1−α

)
·

.
M12(τ)dτ, after Laplace transformation

L(CFDα M12(t)) = 1/(1−α)
s+(α/(1−α))

· (s ·M12(s)−M12(0)) and if M12(0) equals zero, it will
become (10):

M12(s) =
α · c12

s
· (ω1(s)−ω2(s)) + (1− α) · c12 · (ω1(s)−ω2(s)) (10)

Based on (10), the block diagram of the two-mass system will have the form shown in
Figure 6.
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Figure 6. Block diagram of the two-mass system model when using a fractional order derivative to
describe the elastic moment.

Thus, the use of a fractional order derivative to describe the elastic moment, as
described in [28], is equivalent to a change (decrease) in stiffness of the shaft c∗12 = α · c12
and an increase in the coefficient of internal viscous friction β* = β + (1 + α)c12 in the classic
two-mass system model. An equivalent model for determining state variables will take the
following form (11).

 ω1(s)
M∗12(s)

ω2(s)

 =

 s +
β+(1−α)·c12+a f 1

J1
1
J1

− β+(1−α)·c12
J1

−α · c12 s α · c12

− β+(1−α)·c12
J2

− 1
J2

s +
β+(1−α)·c12+a f 2

J2


−1

·


1
J1

0
0 0
0 − 1

J2

 · [ M(s)
Mc(s)

]
(11)

In case J1 = J2 = J, af1 = af2 = 0 and M = Mc, equations for determining state variables
will become (12).  ω1(s)

M12(s)
ω2(s)

 =


M·s

J·s2+2·(β+(1−α)·c12)·s+α·c12
2·M·α·c12

J·s2+2·(β+(1−α)·c12)·s+α·c12
−M·s

J·s2+2·(β+(1−α)·c12)·s+α·c12

 (12)

and, after applying the inverse Laplace transformation, for M = const, we obtain the
following equation for the velocity of the first mass:

ω1(t) =
M
√

µ
· exp

(
−(β + (1− α) · c12)

J
· t
)
· sin

(√
µ

J2 · t
)

(13)

where µ = 2 · J · α · c12 − (β + (1− α) · c12)
2.

Therefore, use of the Caputo–Fabrizio operator to describe the fractional order deriva-
tive in the elastic moment model, which is traditionally used to describe electromechanical

systems, reduces the oscillation frequency

√
2·J·α·c12−(β+(1−α)·c12)

2

J2 <

√
2·J·c12−β2

J2 and in-

creases its rate of damping (β+(1−α)·c12)
J > β

J (Figure 7) and, therefore, will inadequately
reflect real processes in the system.
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Figure 7. Speed dependencies: __ model with distributed parameters; __ traditional model of a
two-mass system; __ model of a two-mass system using the Caputo–Fabrizio operator to describe of
the fractional order derivative in the model of the elastic moment at α = 0.995.

On the other hand, the elastic moment can be defined as

M12(t) = c12 · (ϕ1(t)− ϕ2(t)) = c12 ·
∫
(ω1(t)−ω2(t)) · dt (14)

To describe the application of the fractional order integral Caputo–Fabrizio opera-

tor [29], CF Iαg(t) = 1
α ·
∫ t

0 e
−(1−α)·(t−τ)

α · g(τ)dτ the equation of the elastic moment after
Laplace transformation can be rewritten as

sM12(s) =
c12

α
· (ω1(s)−ω2(s))−

1− α

α
·M12(s) (15)

Based on the expression for the elastic moment (14), the following block diagram of
the two-mass system is shown in Figure 8.

Figure 8. Block diagram of a two-mass system model when using a fractional integral to describe the
elastic moment.

Therefore, the use of a fractional order integral to describe the elastic moment is
equivalent to a change (increase) in the shaft’s stiffness c∗12 = c12/α and coverage of the
integrator in the elastic moment equation by negative feedback with the gain (1 − α)/α in
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comparison with the classical model of a two-mass system. An equivalent system model
for determining state variables will take the form:

 ω1(s)
M12(s)
ω2(s)

 =

 s +
β+a f 1

J1
1
J1

− β
J1

− c12
α s + 1−α

α
c12
α

− β
J2

− 1
J2

s +
β+a f 2

J2


−1

·


1
J1

0
0 0
0 − 1

J2

 · [ M(s)
Mc(s)

]
(16)

and, applying the inverse Laplace transformation, when M = const, pointed

γ = 4 · J ·
(

2 · c12

α
+ 2 · β · 1− α

α

)
−
(

2 · β + J · 1− α

α

)2
, λ = 2 · β + J · 1− α

α
(17)

we obtained:

ω1(t) = 2·M√
γ · exp

(
− λ

2·J · t
)
· sin

(√
γ

2·J · t
)
+

M· 1−α
α

2· c12
α +2·β· 1−α

α

·

·
(

1− λ√
γ · exp

(
− λ

2·J · t
)

sin
(√

γ
2·J · t

)
− exp

(
− λ

2·J · t
)

cos
(√

γ
2·J · t

)) (18)

When the value of α ε (0.9; 1), given that

M · 1−α
α

2 · c12
α + 2 · β · 1−α

α

� 2 ·M√
4 · J ·

(
2 · c12

α + 2 · β · 1−α
α

)
−
(

2 · β + J · 1−α
α

)2
, (19)

We obtained (20):

ω∗1 (t) ∼=
2 ·M√

γ
· exp

(
− λ

(2 · J) · t
)
· sin

( √
γ

(2 · J) · t
)

(20)

From (20), use of the Caputo–Fabrizio operator to describe the fractional order integral
of the elastic moment in the model leads to an increase in the frequency of oscillations:√√√√4 · J ·

(
2 · c12

α + 2 · β · 1−α
α

)
−
(

2 · β + J · 1−α
α

)2

4 · J2 >

√
2 · J · c12 − β2

J2 (21)

with a practically unchanged rate of damping

(
2·β+J (1−α)

α

)
2·J ≈ β

J .
As shown in Figure 9, at α = 0.984, the lumped parameters model using integral

fractional order to describe the elastic moment provides dependences of the first mass
velocity variations, obtained for the reference model with distributed parameters, and
therefore adequately describes the processes in the system. α is derived from the equation
for the natural frequency of the system when given parameters and experimental results in
the application of models with distributed parameters.
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Figure 9. Speed dependencies: __ model with distributed parameters; ooo model of a two-mass
system using the Caputo–Fabrizio operator to describe the fractional order derivative in the model of
the elastic moment at α = 0.984; xxx—speed calculation, according to the (12) when α = 0.984.

This article analyzes two types of mathematical long shaft models in their two-mass
interpretations that address the theory of fractional calculus. The first type is based on a
differential representation of shaft elastic torque using the Caputo–Fabrizio operator to
describe the fractional-order derivative. The results of a computer simulation are shown
in Figure 7. The other type presents elastic torque in an integral format using the same
operator to describe the fractional-order integral. The results of a computer simulation are
shown in Figure 9. A comparative analysis of the two model types has demonstrated an
undoubted superiority of the second-type model, which can be clearly seen in Figure 9,
where a virtual convergence of the simulation results in the distributed parameter model
and the integral Caputo–Fabrizio model can be noted.

3. Analysis of the Two-Mass System Model

In general, in case of neglecting viscous af1 = af2 = 0, the velocity transfer functions of
the first and second mass electromagnetic torque and moment load will be:

ω1(s)
M(s) =

J2·s2+(J2· 1−α
α +β)·s+ c12

α + 1−α
α ·β

J1·J2·s3+(J1·J2· 1−α
α +β·(J1+J2))·s2+(β·(J1+J2)· 1−α

α +
c12
α ·(J1+J2))·s

ω1(s)
Mc(s)

=
−(β·s+ c12

α + 1−α
α ·β)

J1·J2·s3+(J1·J2· 1−α
α +β·(J1+J2))·s2+(β·(J1+J2)· 1−α

α +
c12
α ·(J1+J2))·s

ω2(s)
M(s) =

β·s+ c12
α + 1−α

α ·β
J1·J2·s3+(J1·J2· 1−α

α +β·(J1+J2))·s2+(β·(J1+J2)· 1−α
α +

c12
α ·(J1+J2))·s

ω2(s)
Mc(s)

=
−(J1·s2+(J1· 1−α

α +β)·s+ c12
α + 1−α

α ·β)
J1·J2·s3+(J1·J2· 1−α

α +β·(J1+J2))·s2+(β·(J1+J2)· 1−α
α +

c12
α ·(J1+J2))·s

(22)

To determine the influence of the parameter α on the system model, we use the
measure of the distance between the transfer functions [30]:

Ψ(GA, GB) =
|GA(jω)− GB(jω)|√

1 + |GA(jω)|2 ·
√

1 + |GB(jω)|2
(23)

where

GA(jω) =
ω2(jω)
M(jω)

∣∣∣
α<1

=
β·(jω)+

c12
α + 1−α

α ·β
J1·J2·(jω)3+(J1·J2· 1−α

α +β·(J1+J2))·(jω)2+(β·(J1+J2)· 1−α
α +

c12
α ·(J1+J2))·(jω)

= β
J1·J2
×

×
(jω)+

c12
β + 1−α

α ·
(

1+ c12
β

)
(jω)3+

(
1−α

α +β· (J1+J2)
J1 ·J2

)
·(jω)2+

((
β· (J1+J2)

J1 ·J2
+c12·

(J1+J2)
J1 ·J2

)
· 1−α

α +c12·
(J1+J2)

J1 ·J2

)
·(jω)

GB(jω) =
ω2(jω)
M(jω)

∣∣∣
α=1

= β
J1·J2
·

(jω)+
c12
β

(jω)3+β· (J1+J2)
J1 ·J2

·(jω)2+c12·
(J1+J2)

J1 ·J2
·(jω)

(24)

The distance value obtained for the case J1 = J2, between the traditional two-mass
model of the system and the model in which the Caputo–Fabrizio operator is used to
describe the fractional order integral in the elastic moment equations shows a slight
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difference between these models. Such a small distance between the models of the system
allows for the assumption that choice of a model for the control system parameters synthesis
will not have a decisive influence.

4. Synthesis of the Control System

In the case of two-mass systems, full-state control is traditionally used. Information
about coordinates that cannot be measured directly is obtained from the system state

observer. When control as u = −
n
∑

i=1
k∗i · xi, the feedback coefficients for the state variables

that provide zero compensation system and the desired placement of the roots, as shown
in [31], can be found by feedback linearization, synthesized as (25):

K∗ =
[

k∗1 k∗2 · · · k∗n−1 k∗n
]
=

C · Aρ + k0 · C + k1 · C · A + · · ·+ kρ−1 · C · Aρ−1

C · Aρ−1 · B1
(25)

where A is the matrix of the system; B1 = (1/J1; 0; 0)T—vector of control influence; C = (0;
0; 1)—a vector that determines the generalized coordinate in the feedback linearization
method; ρ—relative degree of the system;

[
k0 k1 · · · kρ−1

]
is a vector of coefficient

that determines the desired location of the roots of a characteristic polynomial.
A two-mass system is characterized, except a control channel u, by the presence of a

perturbation channel. In order to compensate for the influence of perturbation, the system
should also provide a compensatory effect. The perturbation feedback coefficient at Mc =
const is defined [31]:

kM =
C · Aρ−1 · B2

C · Aρ−1 · B1
+

kρ−1 · C · Aρ−2 · B2

C · Aρ−1 · B1
(26)

where B2 = (0; 0; −1/J2)T—vector of control influence. In the traditional model, equations
of the feedback coefficients for state variables were described as:

k11 = J1 ·
(

c12
β + a11 ·ω01

)
− β · (J1+J2)

J2

k12 = J1 ·
(

1
β · a11 ·ω01 − J1+J2

J1·J2

)
k13 = J1·J2

β · a01 ·ω01
2 − k11

(27)

When using a system model with the fractional order integral to describe the elastic
moment, the equation for the required coefficients will be as follows:

k11 = J1 ·
(

c12
β·α + a11 ·ω01

)
− β · (J1+J2)

J2
,

k12 = J1 ·
(

1
β · a11 ·ω01 − J1+J2

J1·J2
− 1−a

β·α

)
k13 = J1·J2

β · a01 ·ω01
2 − k11

(28)

In the case of a two-mass system model with the fractional order integral in the model
of the elastic moment, the closed system transfer functions for full control of the state vector
will be as follows:

ω2(s)
M(s)

=
β

J1 · J2
·

s + 1−α
a + c

α·β
H1(s)

(29)

where

H1(s) = s3 +

(
a11 ·ω0 +

1− α

a
+

c
α · β −

c · (1− α)

α · β

)
· s2 +

(
a01 ·ω0

2 + a11 ·ω0 ·
(

1− α

a
+

c
α · β

)
+

c · (1− α)

α · β

)
· s + ω0

2 ·
(

1− α

a
+

c
α · β

)
,
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for the coefficients obtained based on the traditional model, and:

ω2(s)
M(s)

=
β

J1 · J2
·

s + 1−α
a + c

α·β
H2(s)

(30)

where

H2(s) = s3 +

(
a11 ·ω0 +

1− α

a
+

c
α · β

)
· s2 +

(
a01 ·ω0

2 + a11 ·ω0 ·
(

1− α

a
+

c
α · β

))
· s + ω0

2 ·
(

1− α

a
+

c
α · β

)
when applying feedback coefficients for state variables obtained using an improved model.

Taking into account that

H2(s) =
(

s +
1− α

a
+

c
α · β

)
·
(

s2 + a11 ·ω0 · s + a01 ·ω0
2
)

(31)

The transfer function of a closed system in this case can be rewritten as (32):

ω2(s)
M(s)

=
β

J1 · J2
· 1

s2 + a11 ·ω0 · s + a01 ·ω02 (32)

The perturbation control factor at Mc = const is equal to kM = J1/β · (a11 ·ω0 − β/J2)
and the transfer function of the perturbation system will be as (33):

ω2(s)
Mc(s)

=
−1
J2
· s

s2 + a11 ·ω0 · s + a01 ·ω02 (33)

Our studies concern a model whose parameters are introduced in [31]. Given these
parameters, the distance between the transmittances computed from (23) is quite small,
as seen in Figure 10. Therefore, the transient characteristics in Figure 11 are quite similar.
When precision systems are analyzed, on the other hand, these parameters may differ,
which will, in the end, give rise to a difference between the transient characteristics.

Figure 10. Change of the distance between the transmittances as a function of angular velocity.
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Figure 11. Transient characteristics and reaction of the system when the load moment changes at
t = 0.35 s, by using feedback coefficients synthesized based on: __ traditional model; __ models with
a fractional order integral to describe the elastic moment.

The transient characteristics in the case of control synthesized using the traditional
and refined models of a two-mass system, when describing the system in the form of a
refined model, are shown in Figure 11.

Figure 12 shows the frequency characteristics of open and closed systems. The results
confirm the high quality of control of a two-mass system with a long shaft, regardless of
the model chosen for synthesis of the control effect.

Figure 12. Bode diagrams of: __ open system; __ closed system byω0 = 25; __ closed system byω0 = 125.

5. Conclusions

Based on a comparative analysis of two mathematical models of a long shaft, with dis-
tributed and concentrated parameters, we can conclude that the simplified representation
of the shaft in the traditional two-mass interpretation does not always fully describe the
real processes of generalized coordinates in the system. In particular, it is not possible to
take into account the propagation of a mechanical wave along the shaft, which causes the
effect of braking the speed movement and shaft rotation angle. As a result, there is a phase
shift in the system, and failure to address it leads to inaccuracies. In some cases, it leads
to an incorrect value of the time–space distribution of the studied functions, and, thus, to
incorrect values of the rotation angles of the drive motor’s rotor and the load mechanism.
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It is dangerous in precision electric drives with complex control systems, especially for
resonant and close to resonant states.

Application of the fractional order integral to the elastic moment modelling made
it possible to obtain a refined model of a two-mass system with concentrated parame-
ters. Based on this model, we obtained transient dependences of the long shaft state
coordinate variations, which completely coincided with those obtained using the reference
mathematical model of the object as a system with distributed parameters.

The frequency domain values obtained measure the distance between the two types
of two-mass systems with long shaft models, such as traditional (with integer derivatives)
and refined (with fractional derivatives), and transient response control with the full state
vector. After analyzing and comparing the synthesized state variable coefficients for both
types of models, we conclude that the use of a refined model of the long shaft may be
appropriate in complex precision objects. The use of an ordinary object shaft refined model
for the synthesis of control actions has virtually no effect on quality control.

We plan to use, in the future, the long shaft improved model for the synthesis of the
control system of electric drive for precision mechanisms, including robotic manipula-
tors. Such a model would be used in systems with long elastic links connected to rolls,
in mechanisms such as rolling mills, as well as to stabilize the frequency of ship shaft
generator drives and for the analysis of impact of drive processes on the quality of such
system controls.
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Abbreviations

parameters and variables
A matrix of the system
af1 external viscous friction factor of first mass
af2 external viscous friction factor of second mass
B1 vector of control influence of the first mass
B2 vector of control influence of the second mass
C a vector that determines the generalized coordinate
c12 shaft stiffness factor
D the damping constant
F tension force
G modulus of elasticity of the second type (shear modulus)
J1 moment of inertia of first mass
J2 moment of inertia of second mass
JEM inertial link of the first point of shaft
JN inertial link of the end of shaft
Jp polar moment of inertia of the shaft
K coefficient of elasticity
kM the perturbation control factor
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L shaft length
M1 torque of first mass
M2 torque of second mass
M electromagnetic torque of the motor
Mc load moment
M12 elastic moment
r1 first roller radius
r2 second roller radius
ω1 angular velocity of the first mass
ω2 angular velocity of the second mass
∆x discrete of spatial derivative
α parameter in Caputo–Fabrizio representation
β coefficient of inertial viscous friction
ϕ shaft rotation angle
ρ density of the shaft material
ξ coefficient of internal viscous friction
ρs relative degree of the system

Indices
j number of the shaft section
N the number of discretization nodes
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