Positive Correlations between Short-Term and Average Long-Term Fluctuations in Wind Power Output
Abstract
:1. Introduction
2. Historical Data of Wind Power Outputs
3. Methods
3.1. Separation Method for LTFs, STFs, and VSTFs in Wind Power Outputs
3.2. Basic Properties of LTFs, STFs, and VSTFs
4. Results
4.1. Statistical Properties of STFs
4.2. Distributions of STFs and LTFs
4.3. Seasonality of STFs
4.4. Relationship between STFs and Average LTFs
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BA | Balancing area |
CMA | Centered moving average |
FY | Fiscal year |
LTF | Long-term fluctuation |
OCCTO | Organization for Cross-regional Coordination of Transmission Operators, Japan |
SD | Standard deviation |
STF | Short-term fluctuation |
VRE | Variable renewable energy |
VSTF | Very short-term fluctuation |
WPP | Wind power plant |
Appendix A. Missing Data List
Balancing Area | Fiscal Year | Missing Data | Rate of Loss |
---|---|---|---|
Hokkaido | 2012 | 2013-01-14 9:28:12–2013-01-24 14:02:03 | 12.5% |
2013-02-11 9:26:06–2013-03-18 23:56:57 | |||
Tohoku | 2010 | 2011-03-11 14:47:10–2011-03-12 17:16:10 | 0.3% |
Tohoku | 2011 | 2011-04-07 23:34:00–2011-04-08 8:51:40 | 0.1% |
Tohoku | 2012 | NA | 0.0% |
Kyushu | 2012 | NA | 0.0% |
References
- INDCs as Communicated by Parties. Available online: http://www4.unfccc.int/submissions/indc/Submission%20Pages/submissions.aspx (accessed on 28 January 2021).
- International Energy Agency (IEA); International Renewable Energy Agency (IRENA). Perspectives for the Energy Transition; IEA Publications and IRENA Publications: Footscray, Australia, 2017. [Google Scholar]
- Renewables 2017 Global Status Reports. Available online: http://www.ren21.net/wp-content/uploads/2017/06/17-8399_GSR_2017_Full_Report_0621_Opt.pdf (accessed on 26 January 2018).
- Installed Capacity of Wind Power in Japan (Flash Report at the End of 2019). Available online: http://jwpa.jp/pdf/dounyuujisseki2019graph.pdf (accessed on 28 January 2021). (In Japanese).
- Long-Term Energy Supply and Demand Outlook. Available online: http://www.enecho.meti.go.jp/category/others/basic_plan (accessed on 28 January 2021). (In Japanese).
- Vision (Mid/Long-Term Installation Goals). Available online: http://jwpa.jp/englishsite/jwpa/vision.html (accessed on 28 January 2021).
- Denny, E.; O’Malley, M. Quantifying the total net benefits of grid integrated wind. IEEE Trans. Power Syst. 2007, 22, 605–615. [Google Scholar] [CrossRef] [Green Version]
- Albadi, M.H.; El-Saadany, E.F. Overview of wind power intermittency impacts on power systems. Electr. Power Syst. Res. 2010, 80, 627–632. [Google Scholar] [CrossRef]
- Göransson, L.; Johnsson, F. Large scale integration of wind power: moderating thermal power plant cycling. Wind Energy 2011, 14, 91–105. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Next Generation Wind and Solar Power; IEA Publications and IRENA Publications: Footscray, Australia, 2016. [Google Scholar]
- International Energy Agency (IEA). Status of Power System Transformation 2017; IEA Publications and IRENA Publications: Footscray, Australia, 2017. [Google Scholar]
- International Energy Agency (IEA). Getting Wind and Sun onto the Grid; IEA Publications and IRENA Publications: Footscray, Australia, 2017. [Google Scholar]
- Committee for Assessment of Flexibility and Supply Demand Balance. Available online: https://www.occto.or.jp/iinkai/chouseiryoku/index.html (accessed on 28 January 2021). (In Japanese).
- Document 4-2-2 (Reference) on the Supply and Demand Balancing Market. Available online: https://www.occto.or.jp/iinkai/chouseiryoku/jukyuchousei/2019/2019_jukyuchousei_11_haifu.html (accessed on 28 January 2021). (In Japanese).
- Continental Europe Operation Handbook. Available online: https://www.entsoe.eu/publications/system-operations-reports/operation-handbook/Pages/default.aspx (accessed on 2 March 2017).
- Holttinen, H. Hourly wind power variations in the Nordic countries. Wind Energy 2005, 8, 173–195. [Google Scholar] [CrossRef]
- Carraretto, C. Power plant operation and management in a deregulated market. Energy 2006, 31, 1000–1016. [Google Scholar] [CrossRef]
- Sinden, G. Characteristics of the UK wind resource: Long-term patterns and relationship to electricity demand. Energy Policy 2007, 35, 112–127. [Google Scholar] [CrossRef]
- Holttinen, H.; Milligan, M.; Kirby, B.; Acker, T.; Neimane, V.; Molinski, T. Using standard deviation as a measure of increased operational reserve requirement for wind power. Wind Eng. 2008, 32, 355–378. [Google Scholar] [CrossRef]
- Hasche, B. General statistics of geographically dispersed wind power. Wind Energy 2010, 13, 773–784. [Google Scholar] [CrossRef]
- Widen, J. Correlations between large-scale solar and wind power in a future scenario for Sweden. IEEE Trans. Sustain. Energy 2011, 2, 177–184. [Google Scholar] [CrossRef]
- Louie, H. Correlation and statistical characteristics of aggregate wind power in large transcontinental systems. Wind Energy 2014, 17, 793–810. [Google Scholar] [CrossRef]
- Buttler, A.; Dinkel, F.; Franz, S.; Spliethoff, H. Variability of wind and solar power—An assessment of the current situation in the European Union based on the year 2014. Energy 2016, 106, 147–161. [Google Scholar] [CrossRef]
- Reichenberg, L.; Wojciechowski, A.; Hedenus, F.; Johnsson, F. Geographic aggregation of wind power-an optimization methodology for avoiding low outputs. Wind Energy 2017, 20, 19–32. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). System Integration of Renewables; Insights Series 2018; IEA: Paris, France, 2018. [Google Scholar]
- Ikegami, T.; Urabe, C.T.; Saitou, T.; Ogimoto, K. Numerical definitions of wind power output fluctuations for power system operations. Renew. Energy 2018, 115, 6–15. [Google Scholar] [CrossRef]
- Hu, J.; Harmsen, R.; Crijns-Graus, W.; Worrell, E. Geographical optimization of variable renewable energy capacity in China using modern portfolio theory. Appl. Energy 2019, 253. [Google Scholar] [CrossRef]
- Katzenstein, W.; Fertig, E.; Apt, J. The variability of interconnected wind plants. Energy Policy 2010, 38, 4400–4410. [Google Scholar] [CrossRef]
- Martin-Martinez, S.; Gomez-Lazaro, E.; Vigueras-Rodriguez, A.; Fuentes-Moreno, J.A.; Molina-Garcia, A. Analysis of positive ramp limitation control strategies for reducing wind power fluctuations. IET Renew. Power Gener. 2013, 7, 593–602. [Google Scholar] [CrossRef]
- Widén, J.; Carpman, N.; Castellucci, V.; Lingfors, D.; Olauson, J.; Remouit, F.; Bergkvist, M.; Grabbe, M.; Waters, R. Variability assessment and forecasting of renewables: A review for solar, wind, wave and tidal resources. Renew. Sustain. Energy Rev. 2015, 44, 356–375. [Google Scholar] [CrossRef]
- Olauson, J.; Bergkvist, M. Correlation between wind power generation in the European countries. Energy 2016, 114, 663–670. [Google Scholar] [CrossRef]
- Enomoto, T.; Ikegami, T.; Urabe, C.T.; Saitou, T.; K Ogimoto, K. Geographical smoothing effects on wind power output variation in Japan. Int. J. Smart Grid Clean Energy 2018, 188–194. [Google Scholar] [CrossRef]
- De Tommasi, L.; Gibescu, M.; Brand, A.J. A dynamic wind farm aggregate model for the simulation of power fluctuations due to wind turbulence. J. Comput. Sci. 2010, 1, 75–81. [Google Scholar] [CrossRef]
- Lee, S.E.; Won, D.J.; Chung, I.Y. Operation Scheme for a Wind Farm to Mitigate Output Power Variation. J. Electr. Eng. Technol. 2012, 7, 869–875. [Google Scholar] [CrossRef] [Green Version]
- Schmietendorf, K.; Peinke, J.; Kamps, O. The impact of turbulent renewable energy production on power grid stability and quality. Eur. Phys. J. B 2017, 90. [Google Scholar] [CrossRef]
- Bui, V.H.; Hussain, A.; Kim, H.M. Optimal Operation of Wind Farm for Reducing Power Deviation Considering Grid-Code Constraints and Events. IEEE Access 2019, 7, 139058–139068. [Google Scholar] [CrossRef]
- Holttinen, H. Impact of hourly wind power variations on the system operation in the Nordic countries. Wind Energy 2005, 8, 197–218. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, M.; Li, G.; Zhao, T.; Zhang, Y.; Liu, X. Interaction between balancing market design and market behaviour of wind power producers in China. Renew. Sustain. Energy Rev. 2020, 132. [Google Scholar] [CrossRef]
- Study of Potential for the Introduction of Renewable Energy (FY 2010). Available online: https://www.env.go.jp/earth/report/h23-03 (accessed on 28 January 2021). (In Japanese).
- Wan, Y. A Primer on Wind Power for Utility Applications; Technical Report Technical Report NREL/TP-500-36230; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2005. [Google Scholar]
- Frunt, J.; Kling, W.L.; Ribeiro, P.F. Wavelet decomposition for power balancing analysis. IEEE Trans. Power Deliv. 2011, 26, 1608–1614. [Google Scholar] [CrossRef]
- Yu, D.Y.; Liang, J.; Han, X.S.; Zhao, J.G. Profiling the regional wind power fluctuation in China. Energy Policy 2011, 39, 299–306. [Google Scholar] [CrossRef]
- Anvari, M.; Lohmann, G.; Wachter, M.; Milan, P.; Lorenz, E.; Heinemann, D.; Tabar, M.R.R.; Peinke, J. Short term fluctuations of wind and solar power systems. New J. Phys. 2016, 18. [Google Scholar] [CrossRef]
- Hibi no Tenkizu. Available online: http://www.data.jma.go.jp/fcd/yoho/hibiten/index.html (accessed on 1 February 2021). (In Japanese).
- Ohba, M.; Kadokura, S.; Nohara, D. Impacts of synoptic circulation patterns on wind power ramp events in East Japan. Renew. Energy 2016, 96, 591–602. [Google Scholar] [CrossRef] [Green Version]
Balancing Area | Fiscal Year | Time Resolution (s) | Capacity (kW) | Number of Wind Power Plants |
---|---|---|---|---|
Hokkaido | 2012 | 3 | 195,300 | 13 |
Tohoku | 2010 | 10 | 427,740 | 19 |
Tohoku | 2011 | 10 | 442,300 | 20 |
Tohoku | 2012 | 10 | 442,300 | 20 |
Kyushu | 2012 | 2.5 | 306,700 | 16 |
Hokkaido Area | Tohoku Area | Kyushu Area | |
---|---|---|---|
SD | 0.014 | 0.009 | 0.008 |
Min. | −0.191 | −0.174 | −0.176 |
1% | −0.042 | −0.026 | −0.022 |
10% | −0.013 | −0.009 | −0.009 |
90% | 0.013 | 0.010 | 0.009 |
99% | 0.042 | 0.026 | 0.023 |
Max. | 0.155 | 0.106 | 0.114 |
CC | 0.063 | 0.072 | 0.099 |
CC | 0.021 | 0.020 | 0.018 |
Balancing Area | 10% of STFs | 90% of STFs |
---|---|---|
Hokkaido | −0.914 | 0.899 |
Tohoku | −0.986 | 0.987 |
Kyushu | −0.963 | 0.962 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urabe, C.T.; Saitou, T.; Kataoka, K.; Ikegami, T.; Ogimoto, K. Positive Correlations between Short-Term and Average Long-Term Fluctuations in Wind Power Output. Energies 2021, 14, 1861. https://doi.org/10.3390/en14071861
Urabe CT, Saitou T, Kataoka K, Ikegami T, Ogimoto K. Positive Correlations between Short-Term and Average Long-Term Fluctuations in Wind Power Output. Energies. 2021; 14(7):1861. https://doi.org/10.3390/en14071861
Chicago/Turabian StyleUrabe, Chiyori T., Tetsuo Saitou, Kazuto Kataoka, Takashi Ikegami, and Kazuhiko Ogimoto. 2021. "Positive Correlations between Short-Term and Average Long-Term Fluctuations in Wind Power Output" Energies 14, no. 7: 1861. https://doi.org/10.3390/en14071861
APA StyleUrabe, C. T., Saitou, T., Kataoka, K., Ikegami, T., & Ogimoto, K. (2021). Positive Correlations between Short-Term and Average Long-Term Fluctuations in Wind Power Output. Energies, 14(7), 1861. https://doi.org/10.3390/en14071861