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Abstract: Geographic information system (GIS) based tools have become popular for solar photo-
voltaic (PV) potential estimations, especially in urban areas. There are readily available tools for the
mapping and estimation of solar irradiation that give results with the click of a button. Although
these tools capture the complexities of the urban environment, they often miss the more important at-
mospheric parameters that determine the irradiation and potential estimations. Therefore, validation
of these models is necessary for accurate potential energy yield and capacity estimations. This paper
demonstrates the calibration and validation of the solar radiation model developed by Fu and Rich,
employed within ArcGIS, with a focus on the input atmospheric parameters, diffusivity and trans-
missivity for the Netherlands. In addition, factors affecting the model’s performance with respect
to the resolution of the input data were studied. Data were calibrated using ground measurements
from Royal Netherlands Meteorological Institute (KNMI) stations in the Netherlands and validated
with the station data from Cabauw. The results show that the default model values of diffusivity and
transmissivity lead to substantial underestimation or overestimation of solar insolation. In addition,
this paper also shows that calibration can be performed at different time scales depending on the
purpose and spatial resolution of the input data.

Keywords: photovoltaic solar potential; calibration; validation; ArcGIS solar radiation; Netherlands

1. Introduction

Geographic Information System (GIS) based solar photovoltaic (PV) tools have been
developed and used increasingly in the past decade, as they provide a remote assessment
of PV siting, planning, integration and management [1]. These tools have been gaining
popularity within the public sector (general public, governments, etc.) and also the private
sector (PV installers, network operators, etc.). With increasing interest in sustainable
solar energy generation, the mapping of solar PV potential has been explored by many at
local [2,3], municipal [4,5] and regional scales [6]. At a local scale, it is easy and insightful to
assess individual buildings. This information, once generated, can be used for answering
several questions regarding the planning and siting of solar PV or solar thermal systems
and even in urban planning and policy evaluations [7,8].

Early methods for PV potential calculations used computational solar radiation models
which were either top-down or could not capture complex roof tops or probable shading
due to the surroundings [9,10]. Then, a combination of computational models and GIS
methods emerged for improving the solar irradiance calculations and for the estimation of
technical [6,11–13] and socio-economic potential [14]. GIS based algorithms, on the other
hand, help in capturing the spatio-temporal variation of solar irradiation and, consequently,
PV yields [15]. A number of solar irradiation and PV mapping tools that are currently
available and use different methodologies for rooftop PV potential analyses have been
reviewed [16–18]. These algorithms are driven by geographic data and atmospheric
parameters specific to the particular area. Most of the GIS based methods are based on some
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form of geographic data, such as satellite images, digital elevation models (DEM) [10,14,17]
or LiDAR data [19–22]. These methods use different assumptions and, hence, differ in their
accuracy and performance. Usually, the most common assumption is that every point on
the rooftop receives an equal amount of solar radiation, irrespective of the slope, orientation
and shading factors. Such assumptions often lead to inaccuracies [23]. When it comes to
preparing maps or creating PV potential tools, it is necessary that the tool is customized to
suit the geographic area, as solar irradiation and its associated weather parameters change
drastically depending on the location and time. Commonly used solar irradiance models
have been reviewed and analyzed [9,10,18]. Out of the few existing raster-based models,
the GRASS r.sun model developed by Šúri and Hofierka [24] and ESRI’s Solar Radiation
used in ArcGIS [25], developed by Fu and Rich [26], allow for integration of attributes that
vary spatially over large regions. In addition, these models also account for shadows from
surrounding buildings and trees, while allowing modeling over inclined surfaces, which is
of specific interest in the urban landscape.

For solar irradiance calculations, GRASS r.sun uses a Linke turbidity factor and beam
and diffuse radiation coefficients, which are obtained from a data bank and calculated
from decomposing global radiation measurements from a nearby weather station [27].
On the other hand, ArcGIS’s Solar Radiation uses simplified models, in addition to an
easily operable interface with high resolution geospatial graphics. In addition, in the Solar
Radiation tool, sky transmissivity and diffusivity parameters for calculation of direct and
diffuse insolation are values which can be changed via a time series; throughout the year,
every month, or within a day. Diffusivity ranges from zero to one, with typical values of
0.2–0.3 for clear sky conditions. Transmissivity also ranges from zero to one, with 0.5–0.7 for
clear skies. Note that transmissivity and diffusivity are inversely related [28]. The GRASS
r.sun is an opensource software, while ESRI’s Solar Radiation is a proprietary software.

The atmospheric parameters (Linke turbidity factor, clear-sky index, transmissivity,
etc.) can have a significant impact on the calculated annual irradiation [22,29]. These
atmospheric parameters are hard to model and customize for a particular location [24].
Using the tools without validating these variables can have a significant influence on
the final results; therefore, using parameters closer to local insolation values reduces the
variation in solar radiation estimation [20,30]. Especially, with the Solar Radiation, model
validation is necessary since the actual values cannot be defined from atmospheric data
prior to model implementation [10]. The Australian PV Institute’s (APVI) Solar Potential
Tool, developed by the University of New South Wales, uses the Solar Radiation model as
the background [31]. They used validation methods to estimate the accuracy of the APVI
tool in comparison to measurements of the output AC power of PV systems and NREL’s
System Advisory Model (SAM [32]). The study also analyzed the accuracy of ArcGIS’s
Solar Radiation tool with respect to insolation on shaded and unshaded surfaces [33].
Copper and Bruce [31] stated that a linear correction can be applied to ArcGIS’s estimates
of insolation in order to achieve better fits with the results from SAM. However, it was
observed that studies do not validate these models before using them, despite the influence
of this on the results.

This paper, therefore, addresses the relevance and implementation of using calibrated
values for diffusivity and transmissivity for estimation of global horizontal irradiation for
varying spatial resolutions and geographic areas, using the Solar Radiation tool of ArcGIS,
with particular focus on the Netherlands as a case study. We used the typical meteorological
year data as well as the most recent 10 years irradiance data for calibration purposes.

This paper is further organized as follows. In Section 2 the methods and data used are
presented. Section 3 shows and discusses the results for the annual and monthly analysis
of parameters with a validation case. Additionally, the model implemented for varying
spatial resolutions is also presented. Section 4 concludes the paper.
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2. Materials and Methods
2.1. ArcGIS Solar Radiation Tool

It is evident that solar irradiation varies with time, during a day, in a month and
throughout the year. It also varies with the climatic conditions and the position of the
sun. Therefore, the challenge for the model is to predict the values as close as possible to
reality. The tool is quite simple, requiring only a couple of atmospheric parameters. In
the case of the Solar Radiation tool, it is hard to calibrate these atmospheric parameters
of diffusivity and transmissivity before running the model. The Solar Radiation tool of
ArcGIS’s Spatial Analyst Toolbox calculates the solar radiation over a geographic area or
for specified point (latitude–longitude) locations, based on the hemispherical viewshed
algorithm explained in [34–36]. This tool takes location, elevation, slope, orientation and
atmospheric transmission as most the relevant inputs. The total amount of radiation
calculated for a given location is given as global radiation in the (energy) units of Wh/m2.

The variable parameters we discuss in this paper are atmospheric diffusivity and
transmissivity [28], which denote the proportion of global normal radiation flux that is
diffuse and the fraction of radiation that passes through the atmosphere (averaged over all
wavelengths), respectively. These values, thus, range from 0 to 1. All the calculations were
performed under clear sky conditions.

The Solar Radiation tool uses a diffusivity value of 0.3 and transmissivity value of 0.5
as the default settings and this is referred to as the default model throughout this paper. For
calibration of the Solar Radiation tool, solar irradiation for all combinations of diffusivity
(0.2–0.7) and transmissivity (0.3–0.7) parameters (modelled values) have been simulated.
In the results, for the purpose of analysis, these values will be referred to as whole numbers
preceded by D or T to denote diffusivity and transmissivity, respectively. For example,
D3T5 refers to a diffusivity of 0.3 and transmissivity of 0.5.

2.2. Calibration Data

A major source of meteorological data in the Netherlands comes from the Royal
Netherlands Meteorological Institute (KNMI) [37]. This institute provides a wide range of
meteorological products and manages 50 automatic ground-based weather stations across
the country, of which, 33 stations record the solar irradiance. Calibration of the atmospheric
parameters was conducted using the measured values from the KNMI network. The KNMI
station at De Bilt, in the Netherlands (52.10N, 5.18E) was chosen as a reference point for
data calibration. Irradiation values obtained from the ground stations were mapped and
interpolated to identify variations throughout the country for 10 years (2011–2020). The
De Bilt station was selected out of the 33 stations that provide irradiation data, as this
station is located in the center of the Netherlands and is commonly used as a reference
point by KNMI for describing and forecasting the weather in the whole of the Netherlands.
In fact, the change in irradiation from coast to mainland is not very prominent (about
10%) [38] and, therefore, a single station (at the center) can well be used as a reference when
performing nationwide calculations. The model will be implemented for the area of De Bilt
and meteorological data from that station will be used for atmospheric data calibration.
For calibration purposes, De Bilt values were chosen in order to see if it was performing
adequately to be used for the whole country.

Out of the 33 stations which measure irradiance, 30 stations were selected due to
interruptions in the data collection of 3 stations within the 10 years. The locations of these
KNMI ground measurement stations and their classification as either coast or mainland
used in this study are shown in Figure 1. Daily sums of measured irradiance from the
ground stations were gathered and aggregated per month and per year. In addition,
irradiation maps for the country were created using a simple inverse distance weighted
interpolation technique with irradiation data obtained from these 30 KNMI stations. This
provides an insight into the variation in irradiance within the country over the years at
low resolution, which is sufficient for checking for anomalies related to localized weather
conditions or instrumentation errors [39].
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Figure 1. Royal Netherlands Meteorological Institute (KNMI) stations in the Netherlands. Stations
are categorized as coast (blue dots) and mainland (red). The station in the center (black square) is the
De Bilt KNMI Station, and the station in the red square is the Baseline Surface Radiation Network
(BSRN) station Cabauw.

In addition to the KNMI stations, there is a Baseline Surface Radiation Network (BSRN)
station at Cabauw in the Netherlands. This is one of the stations that provides radiation
measurements as part of a worldwide network [40,41]. There are about 40 stations in this
global network in different climatic zones. These data are of primary importance for the
validation and evaluation of various satellite and model estimates of radiation parameters.
The Netherlands falls under the temperate maritime climate zone and Cabauw (51.97N,
4.93E) is a BSRN station in the Netherlands, which adheres to the highest achievable
data measurement standards. Therefore, data from this station were used to validate the
calibrated model [42]. This station is about 30 km southwest of De Bilt (see Figure 1).

2.3. Input Data for the Model

Since the Solar Radiation tool is GIS based, it requires inputs in terms of raster or
vector data. In particular, the Area Solar Radiation tool requires a DEM as an input to
model solar radiation over geographic areas. The DEM used as input in this study is of
50 cm resolution and was obtained from Actueel Hoogtebestand Nederlands (AHN) [43].
Additionally, a DEM of 5 m (AHN) and 30 m (Aster DEM) [44,45] were used for irradiance
calculations to evaluate the effect of spatial resolution on the outputs generated. A vector
dataset of the locations and attributes of the KNMI and BSRN stations was used to map the
measured irradiance values. Spatial resolution is one of the key factors deciding the quality
of the output, as can be observed from Figure 2. The higher the resolution, the greater the
detail in the images. Therefore, this should be chosen depending on the purpose of use.
Modelling irradiation on the rooftops can be performed with 50 cm data, as can be clearly
seen from Figure 2c. The slopes and orientations of the rooftops can also be calculated
effectively at this resolution, which helps in potential estimations at the building level.
With 5 m data, it is likely only possible to do this at the neighborhood or block level. With
30 m data, regional or national level estimations are possible.
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Figure 2. Example of varying spatial resolution of the digital elevation models; (a) 30 m (b) 5 m and
(c) 50 cm. The white areas correspond to missing data.

2.4. Method

The Solar Radiation model was implemented for calibrating the model parameters T
and D. The model has the capability to predict the irradiance values for varying temporal
resolutions; daily, monthly, annual average and also within a specified time period. In this
paper, the values were calibrated for two cases of varying temporal resolutions; yearly
(annual average) and monthly average since this gives better information for potential
estimations. In addition to these two temporal scales, we evaluated the data at varying
spatial resolutions. All the modelled values were validated against a reference set for
the default case, modelled values calibrated per year and modelled values calibrated
every month.

The Solar Radiation modeling tool is computationally intensive, the process can run
from a few hours up to multiple days depending on the inputs provided. In this particular
tool, the simulation time is exponentially proportional to the resolution of the sky size and
the raster input [3]. This also means that the higher the resolution of the input image, the
greater the detail in the results and longer processing time.

ArcGIS uses Python as a scripting module to perform geographic data analysis, data
conversion, data management, and for map automation [46]. Therefore, a customized
Python script to run all permutations of atmospheric parameters of the model was incor-
porated to automatically run and iterate all the combinations of D and T values without
manual intervention. The computed values of different permutations and combinations
were then calibrated using measured values from the KNMI ground station in De Bilt. The
best fit parameters of diffusivity and transmissivity were estimated for each month and
year separately. The percentage difference (PD) between measured and modelled values
was used to find the best fit values per month and per year (Equation (1)) [47].

Data fitting is highly dependent on the purpose of use, and the spatial and temporal
scales at which the result is needed. In this paper, we chose to find the best fit values of
global horizontal irradiation (GHI) for one location (De Bilt) over 10 years, assuming that
the calibrated values from this location can be used for the whole country. The default
model values and the calibrated model values (GHImod) were then compared with the
measurements from De Bilt (GHImeas) using percent differences (PD) and mean bias error
(MBE). MBE is the statistical model performance indicator, representing the systematic
error of the prediction model to under or over estimate. The percentage difference PD and
MBE are defined as:

PD =|[(GHImeas − GHImod)/GHImeas]× 100 (1)

MBE =
1
N ∑(GHImod − GHImeas) (2)

with N referring to the number of measurements and the subscripts “meas” and “mod”
corresponding to the irradiation values measured at KNMI De Bilt and obtained from the
Solar Radiation model for all settings of D and T, respectively. Modelled data are calibrated
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per month and once a year. Analysis at a local scale to depict buildings was also performed
on an area close to the Cabauw station and this was chosen for validating the method.

3. Results and Discussion

This section presents and discusses the results of the calibration and validation meth-
ods along with insights into the spatio-temporal variation of solar radiation within the
Netherlands. In addition, the purpose of using a GIS based radiation model is presented.

3.1. Spatio-Temporal Variation of Solar Radiation in the Netherlands

Solar irradiation depends on the geographic position and local climatic variations.
The spatial and temporal variations in the global solar irradiation in the Netherlands for
the years ranging from 2011 till 2020 are shown in Figure 3. The coastal region generally
has a higher level of irradiation compared to the mainland. De Bilt, which is in the center
of the country, falls in the median zone. Irradiation values from this station can, therefore,
be taken as the average for the whole country.
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Figure 3. Annual global horizontal irradiation in kWh/m2 derived from KNMI stations across Netherlands for the years
2011–2020. Data have been interpolated to create a continuous irradiation map. The locations of the KNMI stations are also
indicated as dots in the irradiation maps.

An overview of the ranges of values recorded at the 30 meteorological stations in the
Netherlands is shown in Figure 4. The boxplots show the annual irradiation as recorded at
the KNMI stations grouped as coast and mainland; 12 stations along the coast and 18 from
the mainland (see Figure 1). It is clear that the coastal area has higher irradiation values
compared to the mainland. It is worthy to mention that these values are larger than the
30-year average (983.41 kWh/m2 measured between 1981–2010) used to characterize the
Dutch climate [47]. Extremely high values have been recorded over the past three years.
Table A1 in Appendix A, shows the averaged irradiation values for the coast and mainland
categories, collected for the 30 stations in the Netherlands.
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Figure 4. The range of irradiation values for all 30 stations categorized as coast (east) and inland
(located west from the coast) for 10 years. Extremely high values were observed in the last 3 years,
with record highs above 1200 kWh/m2 for a few stations on the coast. The East to West variation of
irradiation in the Netherlands can also be inferred from the graph.

From Figure 4, it is also evident that irradiation for location/locations is not the same
every year. Even though the spatial variation of irradiation is prominent, even up to some
15% (Figure 3), we choose the De Bilt values for validation of the solar irradiance for the
whole country, as this is the central location of the country.

3.2. Calibrated Values vs. Default Values

All combinations of D and T for the 10 years have been modelled for the location of De
Bilt. Table 1 shows the GHI values measured at the De Bilt station per month for the year
2020 and modelled values from the same location with the default settings and calibrated
values (best combinations of D and T) and their corresponding percentage difference (PD).
Note, that the modelled values for different years are the same for every combination
each month, except for leap years, as shown in Table A2 in Appendix A. This is because
solar irradiation modelling has been performed on a single location (De Bilt station) with a
constant DEM for all the years, assuming that there are no height variations throughout the
10 years. The locations of the ground measurement systems are also usually unchanged
and are placed in fields with no obstructions. This clearly indicates that the model is very
sensitive to the provided height information, which in turn, can be used in a manner that is
dependent on the purpose of the analysis.

From Table 1, it is clear that the default model substantially underestimates the
GHI. On an annual basis, for the year 2020, the default model yields an annual sum of
891.12 kWh/m2, which is about 21% less than the measured values at De Bilt. Only for
two months (June and July) are the percentage differences below 6%, while in the winter
months, the differences are much larger. If these values are not adjusted, they might lead to
error propagation when these values used in further PV potential estimations. Therefore, it
is necessary to find the right combination of D and T parameters in order to achieve better
fits and, in turn, better accuracy. Choosing the correct temporal resolution for irradiance
estimations is, therefore, important for the final results. For example, when trying to look
at the production profile for a single household, hourly irradiance calculations can be
very useful, in particular, for optimization of self-consumption. On the other hand, if the
purpose is creating an irradiance map for the whole country, then it is more useful to select
a seasonal or yearly variation.
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Table 1. Global horizontal irradiation (GHI) from de Bilt from measured (GHImeas), results from
solar radiation default model D3T5 (GHImod) for the year 2020 and the corresponding percentage
differences (PD).

Month GHImeas
(kWh/m2)

GHImod
(default)

PD
(%)

GHI
(calibrated)

PD
(%)

Jan 16.58 6.94 58.17 17.73 6.93
Feb 31.76 20.33 35.99 30.18 4.98
Mar 93.94 58.73 37.48 100.25 6.73
Apr 155.53 103.23 33.62 151.32 2.70
May 194.33 148.42 23.62 194.94 0.32
Jun 163.95 160.52 2.09 160.52 2.09
Jul 149.01 156.99 5.36 148.31 0.46

Aug 142.56 121.23 14.97 145.79 2.26
Sep 98.51 71.92 26.99 98.96 0.45
Oct 39.66 29.71 25.09 40.66 2.52
Nov 25.90 9.05 65.08 25.96 0.23
Dec 13.53 4.05 70.07 12.53 7.39

Annual 1125.27 891.12 20.81 1090.25 3.11

The best combination of diffusivity D and transmissivity T values was studied for the
Netherlands for every month and for a year as a whole at the De Bilt location. Best fit values
for each month were determined by finding the lowest PD between GHImeas and GHImod
(Equation (1)). The results for the best combination of D and T and the corresponding error
ranges for monthly fits are shown in Figure 5a,b and Figure 6a, respectively.
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The difference in PD between the default and the calibrated model is huge (Figure 6a).
The PD for the calibrated model is well below 7% for most of the fits. Here, the highest
PD was also observed for the winter months, similar to the PD of the default model.
Most repeating (four times in 10 years) D and T values are also from the winter months.
The variation of best fit D and T values is shown separately for the 10 years in Figure 5a.
Figure 6b shows the fits achieved by calibrating the model using the monthly and yearly
fits, in comparison with the default model. It is evident as to how much error can be
reduced by using calibrated values from Figure 6b. The MBE for the default model for
2020, as shown in Figure 6b, is negative, which means that the model is underestimating
the value. Furthermore, analyzing the MBE values for all the 10 years revealed that the
default model is biased, which means that for all the 10 years under review, the default
model has underestimated the GHI.

Calibrating the values using only one annual DT combination resulted in higher PD
values than fitting the data using DT combinations optimized per month, as shown in
Table 1. Modelled values, obtained by using one DT combination per year, under estimate
the irradiance for winter months and overestimate the irradiance for summer months.
Therefore, over a year, the cumulative irradiation values are closer to the reference values.
However, the monthly fits are much better when looking at higher temporal scales. On the
other hand, if we are looking at lower spatial resolutions (district or country level), yearly
fitting could suffice. This is because detailed information would be masked as the DEM
input would be coarse (resolution of about 15 m–30 m or larger), which is not enough to
distinguish between individual buildings.

To a large extent, yearly fits also reduce the error as compared to the default model,
as shown in Table 2. The graph shown in Figure 7, plots the calibrated values of D and T
when using one value for the whole year. It can be seen that certain years (2015, 2018–2020)
with high levels of radiation have low diffusion and high transmission (D2T6), and low
radiation years (2012 and 2013) have high diffusion and low transmission (D6T4), similar
to what has been published recently [48]. The rest of the years have a median combination
of diffusion and transmission (D4T5). Therefore, on the basis of the trend from these data,
and the look up table (Table A2), it is feasible to predict the DT values for running the
model, without the need to run simulations to recalibrate the model for annual estimations.
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Table 2. Best fit DT values on an annual basis and the corresponding PD

Year DT Year PD (%) GHI meas

2011 D4T5 0.78 1026.04
2012 D6T4 0.92 988.75
2013 D6T4 0.56 1003.51
2014 D4T5 2.18 1040.74
2015 D2T6 1.59 1073.18
2016 D4T5 2.07 1039.47
2017 D4T5 0.2 1020.04
2018 D2T6 4.13 1137.19
2019 D2T6 0.78 1098.79
2020 D2T6 3.11 1125.27
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3.3. Validation of the Calibrated Values

The calibrated values for the year 2020 were used to model the irradiation for a built-up
area close to Cabauw. The results of the default model and results with calibrated models
are shown in Figure 8. Although, the underestimation in the default model is evident, it still
captures the surroundings efficiently. The relationship of the default values to the calibrated
year values is linear. For the case of the default model, building classification in terms of
suitability and delineation of suitable areas on the rooftop can still be done on the basis of
the regional min–max values of modelled solar irradiation. On the other hand, calibrated
values provide more possibilities in terms of potential estimations. Therefore, potential
area estimations can still be made when using the default model without calibration, as
long as the irradiation values are not directly used to estimate the power production or
capacity. This is especially valid for high resolution analyses. During the validation of
images, high values were observed (see Figure 8), especially on south facing roofs, for the
calibrated models. This could be due to the fact that the model was calibrated using data
from one point (the KNMI meteorological station at De Bilt).
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The complexity involved in calibrating the ArcGIS model refers to the fact that one
measured value is used for a whole geographic area, be it measurements from the closest
ground station or a central location. In addition, the only atmospheric parameters which
can be changed are the D and T. This means that for high resolution rooftop analyses, even
the calibrated values may sometimes fall short. An example is shown in Figure 9, where the
irradiation profiles from different roof types are presented. Figure 9a shows the DEM of a
small selection from the area used for validation purposes along with the locations selected
for creating the radiation profiles. Small areas on the rooftops with different orientations
were selected; blue for north, red for south, pink for east, orange for west and green for
flat. All these locations are highlighted in the figure. Figure 9b shows the corresponding
ranges of irradiation values for each image created by the default and calibrated models in
boxplots and the mean values of the selected roof areas, plotted as lines.
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The measured value at Cabauw is depicted as a black line at 1155 kWh/m2 (for 2020).
This value is closer to the first quartile for the monthly calibrated model, median for the
yearly calibrated model and third quartile for the default model. In this scenario, using
the calibrated model to model irradiation on the images or rather larger geographic areas
instead of point locations, one DT fit per year can be seen to perform better. In all three
cases east–west facing roofs have irradiation values closer to the first quartile. Flat roofs
have a value that is larger than the median but only for the calibrated models, this is
also larger than the measured irradiation. South and north facing roofs are closer to the
maximum and the minimum values in the region and are significantly higher or lower
than the measured values. The south facing and flat roof values from the default model
are closer to the measured values, while the calibrated models overestimate the irradiation
values. This suggests that the default model performs adequately when used for annual
calculations and that it has a linear relation with the fitted models.

3.4. Irradiation Modelling with Varying Spatial Resolution

The purpose of using ArcGIS is to be able to analyze solar irradiation based on location.
Locations can vary from a point (latitude–longitude), a particular building, a street, a
neighborhood or even a country. As mentioned earlier, the scale and purpose are important
in selecting the required spatial resolution. Figure 10 shows the effect of spatial resolution
in modelling solar radiation. It is evident as to which types of analysis are possible with the
resulting images. The very high resolution of 50 cm is quite good for bottom-up analyses in
urban applications of suitability modelling or power production and capacity estimations.
On the other hand, 5 m, for example, can be used for modelling parking areas or fields or
even for providing a general suitability classification of neighborhoods. Low resolution
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images can be useful at a regional or national level for very broad or generalized figures. It
should also be noted that the processing time is also related to the input resolution. For
this study area of about 1 km2, the processing time recorded while running the default
model was 01 m:12 s, 06 m:22 s, and 10 m:7 s, for 30 m, 5 m and 50 cm, respectively. It was
executed on a Windows machine with an Intel i5 processor with four cores and eight GB
RAM. This can become slightly complex and the processing time increases when smaller
time intervals, higher resolution and larger geographic areas are used.
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4. Conclusions

This paper shows the importance of using validated values of transmissivity and
diffusivity for performing irradiation analysis using the ArcGIS Solar Analyst Tool. The
analysis shows that there is not one unique combination of D and T values that can be used
as a constant for monthly fits; this also means that, for the prediction of solar irradiation for
the future, other modelling methods, such as r.sun, are also preferable in terms of control
of various atmospheric parameters. However, the Solar Radiation Tool is very simplistic
(easy to execute with a minimum number of atmospheric parameters required) and at the
same time, it can provide a detailed overview of shading or the effect of orientations and
slopes when using high resolution data.

DT combinations are highly dependent on climatic conditions and calibrated values
should be used depending on the purpose and scale. Calibrating this model is relatively
easy when one has access to measured radiation values and can improve the potential
calculations by at least 10–20%, depending on time scales used in the analysis. It was also
observed that the monthly variation of the combinations leads to higher accuracy results,
which is very useful when modelling energy profiles for households or even for generating
accurate potential information which is closer to reality. When looking at lower temporal
scales (yearly) one DT combination will suffice.

When the model is used to predict the annual irradiation, a direct relation could
be made with the measured values and, therefore, standardized values can be used, as
demonstrated. However, it must be noted that we assume that one single location (De Bilt)
is sufficient for calibrating the model. Hence, these values are reliable when using similar
data and settings as those used in this study and, therefore, are reproducible and reusable.
Better fits can be achieved when the model is calibrated using data from the closest ground
measurement station, no matter which resolution or temporal scale is used.

Finally, the spatial and temporal resolution play an important role in this model,
which are directly related to the accuracy of the model, level of detail and processing
time. We demonstrated the use of ArcGIS in mapping the PV potential, with optimized
and validated D and T values. While the method was applied to the Netherlands, it can
successfully applied to other regions. We finally recommend validating the ArcGIS model
with local irradiation data before it is used for modeling/mapping purposes, if the values
are to be used directly for potential estimations. This information can prove to be useful,
especially in driving data dependent policies for PV penetration in order to encourage
sustainable energy deployment.
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Appendix A

Table A1. Spatio-temporal variation of measured annual irradiation (kWh/m2) and its standard
deviation (std) in the Netherlands, comparing coast, mainland and the central De Bilt location. The
coast column contains averaged irradiation values of 12 stations (blue dots in Figure 1) collected over
10 years. Similarly, the mainland irradiation values were obtained from 18 stations away from the
coast (red dots in Figure 1).

Year
Annual Irradiation (kWh/m2)

Coast std Mainland std De Bilt

30-year average 1 983.41
2011 1067.2 35.4 1042.8 28.8 1026.0
2012 1056.1 30.7 1021.5 21.3 988.7
2013 1070.6 26.5 1020.1 18.6 1003.5
2014 1087.9 19.1 1048.3 24.1 1040.7
2015 1102.4 28.4 1073.9 26.1 1073.2
2016 1105.4 34.5 1053.5 20.4 1039.5
2017 1085.4 30.5 1038.1 29.7 1020.0
2018 1156.9 20.4 1166.4 20.8 1137.2
2019 1119.4 30.8 1100.4 24.7 1098.8
2020 1162.6 28.6 1130.9 33.2 1125.3

1 Averaged solar radiation from 1981–2010 collected from different KNMI stations [49].
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Table A2. Monthly modelled irradiation values for all combination of D and T at de Bilt using Solar Radiation tool.

D T Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0.2 0.3 0.82 4.30 18.66 40.54 64.27 71.52 68.98 49.54 24.65 7.23 1.25 0.36
0.2 0.4 2.41 9.33 32.85 64.08 96.69 106.06 103.01 76.74 41.75 14.59 3.39 1.23
0.2 0.5 5.67 17.25 51.48 92.25 133.88 145.21 141.82 108.74 63.47 25.48 7.46 3.26
0.2 0.6 11.58 28.88 75.06 125.32 176.08 189.20 185.63 145.79 90.24 40.66 14.45 7.35
0.2 0.7 21.58 45.25 104.31 163.83 223.81 238.59 235.00 188.44 122.73 61.13 25.72 14.92
0.3 0.3 1.00 5.04 21.19 45.19 70.96 78.75 76.06 55.00 27.82 8.39 1.51 0.44
0.3 0.4 2.94 10.97 37.39 71.56 106.96 117.00 113.80 85.37 47.21 16.98 4.10 1.52
0.3 0.5 6.94 20.33 58.73 103.23 148.42 160.52 156.99 121.23 71.92 29.71 9.05 4.05
0.3 0.6 14.22 34.13 85.86 140.58 195.66 209.65 205.99 162.92 102.51 47.55 17.57 9.17
0.3 0.7 26.59 53.68 119.72 184.31 249.41 265.14 261.52 211.20 139.87 71.75 31.40 18.68
0.4 0.3 1.24 6.03 24.58 51.38 79.89 88.38 85.49 62.29 32.04 9.94 1.85 0.56
0.4 0.4 3.66 13.15 43.44 81.53 120.67 131.59 128.18 96.88 54.48 20.15 5.04 1.92
0.4 0.5 8.63 24.44 68.39 117.88 167.80 180.94 177.23 137.87 83.19 35.36 11.16 5.11
0.4 0.6 17.73 41.13 100.25 160.92 221.77 236.92 233.12 185.76 118.88 56.73 21.74 11.60
0.4 0.7 33.27 64.93 140.26 211.62 283.53 300.54 296.87 241.54 162.73 85.90 38.98 23.70
0.5 0.3 1.57 7.42 29.31 60.04 92.38 101.88 98.70 72.49 37.95 12.11 2.34 0.72
0.5 0.4 4.65 16.21 51.92 95.49 139.85 152.02 148.31 113.00 64.66 24.60 6.37 2.47
0.5 0.5 11.00 30.18 81.93 138.37 194.94 209.53 205.55 161.18 98.96 43.25 14.12 6.60
0.5 0.6 22.65 50.94 120.41 189.39 258.32 275.10 271.11 217.74 141.79 69.59 27.57 15.00
0.5 0.7 42.63 80.67 169.01 249.85 331.31 350.09 346.36 284.03 194.73 105.72 49.58 30.73
0.6 0.3 2.07 9.51 36.41 73.04 111.13 122.12 118.51 87.80 46.81 15.36 3.06 0.95
0.6 0.4 6.15 20.80 64.63 116.43 168.62 182.66 178.51 137.17 79.93 31.27 8.36 3.30
0.6 0.5 14.56 38.80 102.23 169.12 235.64 252.42 248.04 196.14 122.62 55.10 18.56 8.82
0.6 0.6 30.03 65.64 150.65 232.10 313.15 332.37 328.10 265.71 176.16 88.87 36.32 20.10
0.6 0.7 56.67 104.28 212.15 307.20 402.97 424.43 420.60 347.75 242.73 135.45 65.50 41.26
0.7 0.3 2.91 12.98 48.25 94.71 142.37 155.85 151.53 113.31 61.58 20.79 4.27 1.35
0.7 0.4 8.64 28.45 85.83 151.32 216.58 233.74 228.85 177.46 105.39 42.39 11.67 4.68
0.7 0.5 20.49 53.17 136.06 220.36 303.49 323.89 318.86 254.41 162.05 74.84 25.96 12.53
0.7 0.6 42.34 90.15 201.04 303.29 404.52 427.81 423.07 345.66 233.45 121.01 50.90 28.60
0.7 0.7 80.07 143.63 284.04 402.78 522.41 548.32 544.33 453.97 322.72 184.99 92.02 58.83
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19. Lukač, N.; Špelič, D.; Štumberger, G.; Žalik, B. Optimisation for large-scale photovoltaic arrays’ placement based on Light
Detection and Ranging data. Appl. Energy 2020, 263, 114592. [CrossRef]

20. Brito, M.C.; Gomes, N.J.; dos Santos, T.R.; Tenedorio, J.A. Photovoltaic potential in a Lisbon suburb using LiDAR data. Sol. Energy
2012, 86, 283–288. [CrossRef]

21. Gergelova, M.; Kuzevicova, Z.; Labant, S.; Kuzevic, S.; Bobikova, D.; Mizak, J. Roof’s Potential and Suitability for PV Systems
Based on LiDAR: A Case Study of Komárno, Slovakia. Sustainability 2020, 12, 18. [CrossRef]

22. Li, Z.; Zhang, Z.; Davey, K. Estimating Geographical PV Potential Using LiDAR Data for Buildings in Downtown San Francisco.
Trans. GIS 2015, 19, 930–963. [CrossRef]

23. Jakubiec, J.A.; Reinhart, C.F. A method for predicting city-wide electricity gains from photovoltaic panels based on LiDAR and
GIS data combined with hourly Daysim simulations. Sol. Energy 2013, 93, 127–143. [CrossRef]

24. Šúri, M.; Hofierka, J. A New GIS-Based Solar Radiation Model and Its Application to Photovoltaic Assessments. Trans. GIS 2004,
8, 175–190. [CrossRef]

25. About ArcGIS. Mapping & Analytics Software and Services. Available online: https://www.esri.com/en-us/arcgis/about-
arcgis/overview (accessed on 22 February 2021).

26. Fu, P.; Rich, P.M. Design and Implementation of the Solar Analyst: An ArcView Extension for Modeling Solar Radiation at
Landscape Scales. In Proceedings of the 19th Annual ESRI User Conference, San Diego, CA, USA, 26–30 July 1999; pp. 1–31.

27. Camargo, L.R.; Zink, R.; Dörner, W. Spatiotemporal Modeling for Assessing Complementarity of Renewable Energy Sources in
Distributed Energy Systems. ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. 2015, 2, 147–154. [CrossRef]

28. ESRI. How Solar Radiation Is Calculated—ArcGIS Pro. Documentation. Available online: https://pro.arcgis.com/en/pro-app/
latest/tool-reference/spatial-analyst/how-solar-radiation-is-calculated.htm (accessed on 8 February 2021).

29. Huang, S.; Fu, P. Modeling Small Areas Is a Big Challenge. Available online: http://www.esri.com/news/arcuser/0309/solar.
html (accessed on 22 February 2021).

30. Australian Photovoltaic Institute. APVI Solar Maps. Available online: http://pv-map.apvi.org.au (accessed on 24 May 2018).
31. Copper, J.K.; Bruce, A.G. Validation of Methods Used in the APVI Solar Potential Tool. In Proceedings of the Asia Pacific Solar

Research Conference, Sidney, Australia, 8–10 December 2014.
32. Gilman, P.; Dobos, A. System Advisor Model, SAM 2011.12.2: General Description; NREL: Golden, CO, USA, 2012.
33. Rich, P.M.; Dubayah, R.; Hetrick, W.A.; Saving, S.C. Using Viewshed Models to Calculate Intercepted Solar Radiation: Applications in

Ecology; American Society for Photogrammetry and Remote Sensing: Bethesda, MA, USA, 1994; pp. 524–529.
34. Fu, P. A Geometric Solar Radiation Model with Applications in Landscape Ecology; University of Kansas: Lawrence, KS, USA, 2000.
35. Fu, P.; Rich, P.M. A geometric solar radiation model with applications in agriculture and forestry. Comput. Electron. Agric. 2002,

37, 25–35. [CrossRef]
36. Fu, P.; Rich, P.M. The Solar Analyst 1.0 Manual; Helios Environmental Modeling Institute (HEMI): Lawrence, KS, USA, 2000.
37. KNMI—Koninklijk Nederlands Meteorologisch Instituut. Available online: https://www.knmi.nl/home (accessed on 8 February 2021).
38. Velds, C.A.; van der Hoeven, P.C.T. Zonnestraling in Nederland; KNMI: Baarn, The Netherlands, 1992; ISBN 978-90-5210-140-8.
39. Kausika, B.B.; Moraitis, P.; van Sark, W.G.J.H.M. Visualization of Operational Performance of Grid-Connected PV Systems in

Selected European Countries. Energies 2018, 11, 1330. [CrossRef]
40. König-Langlo, G.; Sieger, R.; Schmithüsen, H.; Bücker, A.; Richter, F.; Dutton, E.G. The Baseline Surface Radiation Network and Its

World Radiation Monitoring Centre at the Alfred Wegener Institute; WMO: Geneva, Switzerland, 2013; p. 30.
41. Driemel, A.; Augustine, J.; Behrens, K.; Colle, S.; Cox, C.; Cuevas-Agulló, E.; Denn, F.M.; Duprat, T.; Fukuda, M.; Grobe, H.; et al.

Baseline Surface Radiation Network (BSRN): Structure and data description (1992–2017). Earth Syst. Sci. Data 2018, 10, 1491–1501.
[CrossRef]

42. Knap, W. Basic and Other Measurements of Radiation at Station Cabauw (2020-03); KNMI: Baarn, The Netherlands, 2020.
43. AHN. Available online: https://www.ahn.nl/ (accessed on 22 February 2021).
44. NASA/METI/AIST/Japan Spacesystems; U.S./Japan ASTER Science Team. ASTER DEM Product 2001. Available online:

https://lpdaac.usgs.gov/products/ast14demv003 (accessed on 26 March 2021). [CrossRef]
45. NASA/METI/AIST/Japan Spacesystems; U.S./Japan ASTER Science Team. ASTER Global Digital Elevation Model V003 2019.

Available online: https://lpdaac.usgs.gov/products/astgtmv003 (accessed on 26 March 2021). [CrossRef]

http://doi.org/10.1016/j.solener.2011.08.034
http://doi.org/10.1016/j.energy.2018.07.020
http://doi.org/10.1016/j.solener.2010.02.009
http://doi.org/10.1016/j.rser.2019.109309
http://doi.org/10.1016/j.rser.2014.08.060
http://doi.org/10.1016/j.apenergy.2020.114592
http://doi.org/10.1016/j.solener.2011.09.031
http://doi.org/10.3390/su122310018
http://doi.org/10.1111/tgis.12140
http://doi.org/10.1016/j.solener.2013.03.022
http://doi.org/10.1111/j.1467-9671.2004.00174.x
https://www.esri.com/en-us/arcgis/about-arcgis/overview
https://www.esri.com/en-us/arcgis/about-arcgis/overview
http://doi.org/10.5194/isprsannals-II-4-W2-147-2015
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-solar-radiation-is-calculated.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/how-solar-radiation-is-calculated.htm
http://www.esri.com/news/arcuser/0309/solar.html
http://www.esri.com/news/arcuser/0309/solar.html
http://pv-map.apvi.org.au
http://doi.org/10.1016/S0168-1699(02)00115-1
https://www.knmi.nl/home
http://doi.org/10.3390/en11061330
http://doi.org/10.5194/essd-10-1491-2018
https://www.ahn.nl/
https://lpdaac.usgs.gov/products/ast14demv003
http://doi.org/10.5067/ASTER/AST14DEM.003
https://lpdaac.usgs.gov/products/astgtmv003
http://doi.org/10.5067/ASTER/ASTGTM.003


Energies 2021, 14, 1865 16 of 16

46. ESRI. What Is ArcPy?—ArcGIS Pro. Available online: https://pro.arcgis.com/en/pro-app/latest/arcpy/get-started/what-is-
arcpy-.htm (accessed on 8 February 2021).

47. Van Tiggelen, J. Assimilation of Satellite Data and In-Situ Data for the Improvement of Global Radiation Maps in the Netherlands; KNMI:
Baarn, The Netherlands, 2014.

48. Van Heerwaarden, C.C.; Mol, W.B.; Veerman, M.A.; Benedict, I.; Heusinkveld, B.G.; Knap, W.H.; Kazadzis, S.; Kouremeti, N.;
Fiedler, S. Record high solar irradiance in Western Europe during first COVID-19 lockdown largely due to unusual weather.
Commun. Earth Environ. 2021, 2, 1–7. [CrossRef]

49. KNMI. KNMI’14 Climate Scenarios for the Netherlands—A Guide for Professionals in Climate Adaptation; KNMI: Baarn, The Netherlands,
2014.

https://pro.arcgis.com/en/pro-app/latest/arcpy/get-started/what-is-arcpy-.htm
https://pro.arcgis.com/en/pro-app/latest/arcpy/get-started/what-is-arcpy-.htm
http://doi.org/10.1038/s43247-021-00110-0

	Introduction 
	Materials and Methods 
	ArcGIS Solar Radiation Tool 
	Calibration Data 
	Input Data for the Model 
	Method 

	Results and Discussion 
	Spatio-Temporal Variation of Solar Radiation in the Netherlands 
	Calibrated Values vs. Default Values 
	Validation of the Calibrated Values 
	Irradiation Modelling with Varying Spatial Resolution 

	Conclusions 
	
	References

