energies

Article

A Comparison of Machine Learning Algorithms in Predicting
Lithofacies: Case Studies from Norway and Kazakhstan

Timur Merembayev !

check for

updates
Citation: Merembayev, T.;
Kurmangaliyev, D.; Bekbauov, B.;
Amanbek, Y. A Comparison of
Machine Learning Algorithms in
Predicting Lithofacies: Case Studies
from Norway and Kazakhstan.
Energies 2021, 14, 1896.
https://doi.org/10.3390/en14071896

Academic Editor: Abbas Mardani

Received: 13 February 2021
Accepted: 22 March 2021
Published: 29 March 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Darkhan Kurmangaliyev 2, Bakhbergen Bekbauov 2

and Yerlan Amanbek *

Department of Mathematics, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
timur.merembayev@gmail.com

2 KazMunayGas Engineering LLP; Nur-Sultan 010000, Kazakhstan; D.Kurmangaliyev@kmg.kz (D.K.);
B.Bekbauov@kmg kz (B.B.)

Correspondence: yerlan.amanbek@nu.edu.kz

Abstract: Defining distinctive areas of the physical properties of rocks plays an important role in
reservoir evaluation and hydrocarbon production as core data are challenging to obtain from all wells.
In this work, we study the evaluation of lithofacies values using the machine learning algorithms in
the determination of classification from various well log data of Kazakhstan and Norway. We also
use the wavelet-transformed data in machine learning algorithms to identify geological properties
from the well log data. Numerical results are presented for the multiple oil and gas reservoir data
which contain more than 90 released wells from Norway and 10 wells from the Kazakhstan field. We
have compared the the machine learning algorithms including KNN, Decision Tree, Random Forest,
XGBoost, and LightGBM. The evaluation of the model score is conducted by using metrics such as
accuracy, Hamming loss, and penalty matrix. In addition, the influence of the dataset features on the
prediction is investigated using the machine learning algorithms. The result of research shows that
the Random Forest model has the best score among considered algorithms. In addition, the results
are consistent with outcome of the SHapley Additive exPlanations (SHAP) framework.

Keywords: machine learning; well log data; lithology classification

1. Introduction

It is important to understand the geological structure of formations based on the
provided data in many applications. The key features of the complex subsurface can be
defined by geophysicists. The geophysicists’ experience on the finding of lithotypes can
help to improve the accuracy of the labels in the well logs. Such experience requires many
hours of work and additional data from different sources such as seismic survey, cores,
etc. One of the possible solutions is to use the machine learning algorithms to accelerate
the accurate prediction process in a systematic way. To achieve appropriate accuracy of
results, the data-driven algorithms require a large amount of data which should be used
in a balanced way in the training procedure. Traditionally, the most common features of
a region are identified by geophysicists and then uncommon features are estimated by
additional well log data using the knowledge of relationships among lithotypes such as PS,
RHOB, and NPHI.

To determine lithotypes, geophysicists perform work in stages: first, Shale and sand-
stone are determined, often gamma logs are used, sometimes for control of PS, RHOB,
and NPHI. After these rocks, the isolation of uncommon lithotypes is made only by their
characteristic features. The more features (curves), the better the accuracy of determining
the lithotypes. An inexperienced geologist without knowledge of the geology of the field
may not accurately determine similar lithotypes; therefore, the use of trained models will
solve the problem of the lack of knowledge among geophysicists about the field.
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Machine learning can be an effective tool to enrich geoscience workflows. Geosta-
tistical approaches were proposed in many studies [1-4] to reduce the uncertainty of the
subsurface property of using the large datasets .

There are several works regarding application of data analysis methods for mining
areas [5,6]. The importance of lithofacies detection for uranium mining is discussed and
investigated in [7,8] using machine learning algorithms to solve multilabel lithofacies
classification. The in situ leaching of uranium requires a better understanding of the
permeable and impermeable rock types.

The authors of [9] have made comparisons of machine learning algorithms using scikit-
learning framework (MLPClassifier, the DecisionTreeClassifier, the RandomForestClassifier,
and the SVC) for data from offshore wells. Algorithms have been applied to three standard
data templates and a practical data template in a lithology classification problem for wells
from International Ocean Discovery Program (IODP) Expeditions. We used a dataset from
the lithology subdivision in GP (group GP), G1 (group 1), G2 (group 2), and G3 (group 3).
The comparison analysis showed that the multilayer perceptron MLP method had better
results in the lithology classification for the practical template: lithology of the G2 group.

In [10], the authors proposed using embedded feature selection (EFS) and LightGBM to
predict the permeability of a reservoir. Result of EFS was generated based on five features:
DEPTH, AC, DEN, FMIT, and GR out of 22 features and was equal 0.9457 (R2). Furthermore,
the authors made a comparison of several methods of selection: the mutual information
regression (MIR) in FFS and the recursive feature elimination (RFE) in WFS. Commonly
used feature selection methods include filter feature selection (FFS) and wrapper feature
selection (WFS). The same comparison was done for LightGBM: Random Forest and
XGBoost. The best result was from EFS+LightGBM: R2 of 0.9712, RMSE of 0.5959.

The authors of [11,12] presented the application of oil production exploration and
development data to generate high-performance predictive models and optimal classifica-
tions of geology, reservoirs, and fluid characteristics. The deep learning algorithms have
the perspective to solve problems in geoscience in piratically lithology classification as
well [13-15].

In [16], the authors investigated data preprocessing methods for well logs such as a
dimensional reduction and wavelet analysis in order to improve the accuracy of the group
method of data handling (GMDH) for lithological classification. Wavelet analysis was used
for the decomposition of the log signals for the algorithm (GMDH). The authors of [17]
proposed using the continuous wavelet transform of the well log data to detect geological
boundaries. One of the applications of the wavelet coefficient is to measure the edge of
the boundary strength. The boundary strength is a measure of the geological thickness of
units. In the method, instead of solving multivariate classification, additional features were
generated to detect the boundaries of the formations. The multi-element geochemical data
taken from 259 drill holes were studied and its efficiency was shown for the data with a
maximum depth of 600 m.

In this paper, we investigate the prediction of lithofacies using machine learning
algorithms for the geological data of Kazakhstan and Norway. We consider machine
learning methods such as KNN, Decision Tree, Random Forest, XGBoost, and LightGBM
with and without wavelet transformed data. Gamma-ray (GR), medium deep reading
resistivity measurement (RMED), compressional waves sonic log (DTC), neutron porosity
log (NPHI), bulk density log (RHOB), etc. are considered as the input data of the machine
learning models. In addition, the results of the supervised learning are provided in the
SHapley Additive exPlanations (SHAP) visualization framework by indicating significant
well logs. Our research question is the following: how can some supervised machine
learning algorithms accurately predict lithofacies based on the geophysical well log data
from Norway and Kazakhstan fields?

The rest of the paper is organized as follows. In the next section, we describe the
wavelet transformation, data analysis, and machine learning algorithms. Numerical results
of algorithms are presented in Section 3. Section 4 concludes the paper.
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2. Methodology

We first describe the wavelet transformation and then the flowchart of workflow for
machine learning algorithms. Next, the data analysis and data preparation are presented.
We briefly describe the considered machine learning algorithms for supervised multi-
labels classification.

2.1. Wavelet Transformation

We use the Gaussian wavelet transformation for the edge detection in the geology
formation. The second-order derivative of the Gaussian function is also known as the
Mexican hat wavelet. Inflection points of the Mexican hat wavelet represent edges of
objects in the signal. Application of wavelet transformation to the given signal generates
new artificial data which can be useful for further analysis.

The physical meaning of the wavelet transform is to calculate the joint energy spec-
trum of signals in the frequency-time domain and identify both the frequency and time
information of the distinct modes [18].

Wavelet transformation decomposes a geophysical log into a combination of signals
at different frequencies. It allows determining what frequency bands of log is noise and
what frequency band is actual data. It provides a one-to-one mapping of the original log,
so we can go back and forward between the original and transformed data.

The integral wavelet transform of a function f(x) with respect to a mother wavelet is
given by

—+o0
Wy (s, T) = - f(x)sr(x)dx ¢Y)

where

#ore) = 29 (257 @

where s > 0, T are the scale factor and shift, respectively.
For creation wavelet transformation, we used the Ricker wavelet, also known as the
“Mexican hat wavelet”:

2

2 2
lp(x) = \/370_7_[1/4 (1 - (g) ) exp_;? (3)

To illustrate the above explanation, we conduct wavelet transformation of the geo-
physical logs from Kazakhstan, see Figure 1.

To better display the result of the wavelet transformation of logs we use a log scale in
Figure 1b. Figure 1a shows its application to the wavelet transform for two logs.
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Figure 1. Result of applying continuous wavelet transformation.
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We have followed the general workflow of a machine learning classifier which is

illustrated in Figure 2. Our process of the classifier model consists of the following steps:

1.
2.
3.

Data preprocessing.

Application of the wavelet transformation to generate new features.

Finding hyperparameters and construction of machine learning algorithm as a classi-
fier of lithofacies.

Training of the model on the well log data with the labeled lithology by geophysicist
or geologist.

Evaluation of the trained model of classifier according to specified score based on the
test dataset.

The initial stage is started with a generation of new features from the current well logs.

Next, training of the model for the new dataset, which includes wavelet-transformed well
logs, is performed. The trained model is evaluated by estimation of the accuracy on the
test dataset.

S

@ Generate new features by

Well logs data .
wavelet transformation

l ,
S S

Train dataset Test dataset

A J

Tuning

hyperparameters

A 4

Training model

v

Evaluation model

Figure 2. Flowchart of workflow for machine learning algorithms.

2.2. Data Analysis

We consider the well log data form an offshore field in the North Sea, near Norway:.

The study area contains 98 wells with a maximum depth of 5000 m. Dataset consists of
interpreted lithofacies and well logs, 22 wireline log curves including gamma ray (GR),
medium deep reading resistivity measurement (RMED), compressional waves sonic log
(DTC), neutron porosity log (NPHI), and bulk density log (RHOB) and others. Digital
measurements were recorded at 0.1 m intervals, see Table 1 and 2 for abbreviations and
descriptions of the dataset.
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Table 1. The well log abbreviations.

Log Name Log Description
LITHOFACIES_LITHOLOGY Interpreted Lithofacies
RDEP Deep Reading Restitivity measurement
RSHA Shallow Reading Restitivity measurement
RMED Medium Deep Reading Restitivity
measurement
RXO Flushed Zone Resistivity measurement
RMIC Micro Resisitivity measurement
SpP Self Potential Log
DTS Shear wave sonic log (us/ft)
DTC Compressional waves sonic log (us(ft))
NPHI Neutron Porosity log
PEF Photo Electric Factor log
GR Gamma Ray Log
RHOB Bulk Density Log
DRHO Density Correction log
CALI Caliper log
BS Borehole size
DCAL Differential Caliper log
ROPA Average Rate of Penetration
SGR Spectra Gamma Ray log
MUDWEIGHT Wheight of Drilling Mud
ROP Rate of Penetration
DEPTH_MD Measured Depth
x_loc X location of sample
y_loc Y location of sample
z_loc Z(TVDSS) location of sample

The interpreted lithofacies contains 12 classes. Lithofacies type corresponds to codes
(number) which are used in machine learning training and prediction: 0: Sandstone, 1:
Sandstone/Shale, 2: Shale, 3: Marl, 4: Dolomite, 5: Limestone, 6: Chalk, 7: Halite, 8:
Anhydrite, 9: Tuff, 10: Coal, 11: Basement.

For data exploration we use a library Cegal https://github.com/cegaldev/cegaltools,
accessed on 22 March 2021, which is the geoscience tool for loading, plotting, and evaluating
well log data using python script. It is also an interactive tool to visualize data details and
dependence. Figure 3 shows one well with its logs.
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Figure 3. Visualization of well logs.
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Distribution of lithology types in log scale are presented in Figure 4. We have a similar
distribution of lithology classes for training and test datasets.
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Figure 4. Histogram of lithology facies in log scale.

Table 2. The descriptions and abbreviations for full dataset.

Statistic Parameter DEPTH_MD CALI RSHA RMED RDEP RHOB GR NPHI PEF DTC SP BS
mean 2184.1 122 58 48 10.6 2.0 70.9 0.2 3.6 105.5 443 7.0
standard deviation 997.2 5.0 74.1 53.8 113.4 0.8 34.2 0.2 8.9 40.8 70.9 6.4
min 136.1 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 —999.0 0.0

25% 1418.6 8.9 0.0 0.9 0.9 2.0 47.6 0.0 0.0 83.7 0.0 0.0

50% 2076.6 124 0.6 14 14 22 68.4 0.2 2.9 105.3 40.4 8.5

75% 2864.4 15.7 15 2.6 2.5 25 89.0 0.4 4.6 139.3 70.4 12.3

max 5436.6 28.3 2193.9 1988.6 1999.9 3.5 1077.0 1.0 383.1 320.5 5265 26.0

2.3. Data Preparation

The dataset contains some missing data. Key reasons for missing data are technical
problems during acquisition data, cost optimization during geophysic logging, human
factor, and others. We utilize the Missingo library [19] to detect the data gap from provided
dataset. It helps to define logs with their location. In Figure 5, one well is presented and
well logs contain missing data such as missing for full depth of well or with some gaps.
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Figure 5. Real value of logs with missing data.

After careful study and statistical analysis of logs for missing data, we decided to con-
centrate the following logs, which have a smaller percentage of missing data: DEPTH_MD,
CALI, RSHA, RMED, RDEP, RHOB, GR, NPHI, PEF, DTC, SP, and BS.
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2.4. Algorithms

There are various machine learning algorithms, and each algorithm has its own
advantages and disadvantages for solving geoscience problems. In this paper, we made
a comparison analysis of five algorithms: K-nearest neighbors (kNN) [20], the Decision
Tree [21], the Random Forest Classifier (RFC) [22], and the extreme gradient boosting
(XGBoost) [23], LightGBM [24]. They are also explored with and without the generation
additional features obtained from the wavelet transformation. In this research, we used
“scikit-learn” [25], the developed python framework for utilization of kNN, Desicion Tree,
and Random Forest classifier. XGBoost and LightGBM have their own python framework.

K-Nearest Neighbors (kNN) is a machine learning method that has been used for
data mining [20]. Each point (data point) has location in a multidimensional space, where
the space consists of axis or features of current datasets. The trained model defines
an optimal count of neighbors for the trained dataset and when we have a new (test)
data point the model finds the K nearest neighbors for the test dataset. KNN has the
advantage of being nonparametric. The method is sensitive to scale, so standardizing data
is mandatory to eliminate differences in scale. It can be an issue when the dataset is very
large, the application of special methods can solve the issue to decrease the space.

Decision tree methods are data mining methods, and they have been successfully used
for classification problems. Decision trees were developed by Morgan and Sonquist in 1963,
and they applied the algorithm for determinants of social conditions [21]. One advantage
of the decision trees is that they are computationally fast and can handle high-dimensional
data. On the other hand, a single decision tree can overfit on the data and the algorithm is
greedy; therefore, it keeps growing deeper in the tree.

The random forest was introduced by Breiman as a learning tree classifier of an
ensemble [22]. The key idea of the algorithm is to take the values of a random vector from an
aggregated bootstrap sample (train dataset) and then to train many decision trees. However,
the trained tree can have a lot of trees, thus it requires more computational resources.

The main advantage of the XGBoost is parallelization. XGBoost is a scalable version
of the gradient boosting machine algorithm and showed efficiency in several machine
learning applications. In [23], the XGBoost is an ensemble of classification and regression
trees and works for data with nonlinear features. The key idea is to use weak trees and
enhancement of trees accuracy for each iteration, taking account the error in prediction
from the previous result of a weak tree, the next tree classifier is trained to take into account
the error of the already trained ensemble.

LightGBM is a relatively new framework and has a wide application in machine
learning/data science applications. The main issue of gradient boosting algorithms is that
the algorithm processes all data to gain the result of possible separation points, which
impacts performance. This method has been modified to improve the optimal search
technique [24].

Based on the train dataset we calculated the main hyperparameters for Random
Forest, see Table 3. The main hyperparameters for XGBoost and LightGBM are presented
in Tables 4 and 5, respectively.

Table 3. Main hyperparameters for Random Forest Classification.

Hyperparameter Symbol Parameter Value
The number of trees in the forest n_estimators 200
The maximum depth of the trees max_depth 70
The minimum number of samples required
to be at a leaf node min_samples_leaf 1
The minimum number of samples required
to split an internal node min_samples_split 2

The number of features for the best split max_features 10
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Table 4. Main hyperparameters for XGBoost Classification.

Hyperparameter Symbol Parameter Value

Number of boosted trees to fit n_estimator 526
Minimum sum of instance weight min_child_weight 11
Maximum depth of a tree max_depth 12

Minimum loss reduction required to make

a further partition on a leaf node of the tree gamma 8

L1 regularization term on weights lambda 1.36

L2 regularization term on weights alpha 0.23

Boosting learning rate learning_rate 0.73

Table 5. Main hyperparameters for LightGBM Classification.

Hyperparameter Symbol Parameter Value

Number of boosted trees to fit n_estimator 216

Minimum sum of instance weight min_child_weight 412
Maximum depth of a tree max_depth 11

Minimum loss reduction min_split_gain 0.08

L1 regularization term on weights lambda_I1 2.69

L2 regularization term on weights lambda_12 4.27

Boosting learning rate learning_rate 0.05

The prediction performance of the algorithms is evaluated by tree statistical quality
indicators: Jaccard metrics (accuracy), Hamming loss, and Penalty metrics. The reader is
referred to Table 5.

The Jaccard metric is computed as

N 1 Migpets —1 .
LHumming(y/]/) = n 1(]/] # ]/]) 4
labels j=0
The Hamming loss is defined as
oy _ vingil
i) = ~ 5
Tl =15 ®)

To estimate the accuracy of models, a penalty matrix is used and is derived from the
averaged input of a representative sample. This allows for petrophysical unreasonable
predictions to be scored by a degree of “wrongness”.

The scoring matrix is defined as follows:

1 N
S= 23 A, ©
i=0
where N is the number of samples, ¥; is the true lithology label, and y; is the predicted
lithology label.
3. Results

Computations are performed on a desktop machine (3.2 GHz Intel Core i7 8700
processor) with 32 GB RAM. Tuning hyperparameters and cross-validations operations are
a time-consuming, therefore they are computed in parallel mode using eight cores.

3.1. Lithofacies Prediction for the Norway Data

The comparison of the selected algorithms has been performed on 12 features and
additional seven features generated by wavelet transformation, for a total of 19 features.
Table 6 shows scores of models on the test dataset by the Jaccard metrics (accuracy),
Hamming loss, and Penalty metrics. We observe that the RFC has the highest score on the
test set with metrics Accuracy, Penalty matrix, and Hamming loss of 0.948, —0.1289, and
0.0473, respectively. Thus, RFC was selected to provide a detailed analysis of lithofacies
classification. The classification report for the RFC model (12 features) can be found in
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Table 7. By evaluating the precision information from Table 7, we noticed that the lowest
value were computed for Dolomite (4) and Coal (10). A reason for such values could be the
lack of representation of these lithofacies classes in the dataset.

Table 6. Comparison of three scores models on the test dataset.

Models Original Dataset (12) Original and Generated Features (19)
Accuracy Penalty Hamming Accuracy Penalty Hamming
matrix loss matrix loss

kNN 0.926 —0.1796 0.0672 0.801 —0.5237 0.1969
R;‘;‘rde‘;i“ 0.948 —0.1289 0.0473 0.938 —0.1697 0.0624
Decision Tree 0.820 —0.4810 0.1832 0.8167 —0.4810 0.1826
XGBoost 0.855 —0.3812 0.1418 0.8621 —0.3681 0.1631
LightGBM 0.897 —0.2600 0.0984 0.9013 —0.2599 0.1378

Table 7. Classification report of RFC.

Lithofacies Class Precision Recall f1-Score Support
0 0.94 0.95 0.94 33,697
1 0.89 0.92 0.9 29,227
2 0.98 0.96 0.97 147,278
3 0.9 0.94 0.92 6447
4 0.46 0.87 0.61 185
5 0.81 0.94 0.87 9746
6 0.97 0.97 0.97 2085
7 1 0.99 0.99 1684
8 0.93 0.94 0.93 198
9 0.94 0.97 0.96 2954
10 0.73 0.9 0.8 586
11 1 1 1 16
accuracy 0.95 234,103
macro avg 0.88 0.95 0.91 234,103
weighted avg 0.96 0.95 0.95 234,103

To understand the good accuracy of the RFC model for lithology classification, we
use the SHAP package to verify the results, which are consistent with another study [26].
SHAP is a good tool for explanation of the different models and it provides an important
value for each features. SHAP builds an explanatory model for a single row—prediction
pair to explain a result of prediction. The SHAP values are calculated by averaging the
values over all possible features.

SHAP does not enable us to determine the probabilities of predicted classes in the
multi-label classification. The explanation models (tree and kernel) cannot output probabil-
ities due to the constraint associated with nonlinear transformations, but it provides the
raw margin values of the objective function which fit the model.

Figure 6 shows the global importance for 12 classes which was calculated as the
average of absolute SHAP values. SHAP ranks the input features by the mean SHAP value,
the amount of the value provides the importance of the feature in prediction of certain class
(higher means more influential). The GR feature influences on the model prediction in all
lithology classes, other features have less influence if compared with GR feature.
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Figure 6. Importance factor of each input variable for the features.

Figure 7 gives additional explanation of the model, the influence of input features on
the model prediction of lithology classes, and their distributions. SHAP calculates a Shapley
value for input features and instances, and plots it on the figure. The y-axis is the input
features with an order of importance for the model prediction from top to bottom. Each dot
on plots is colored by the value of the selected variable, from low (blue) to high (red). SHAP
chooses the selected variable for each feature based on its correlation values. Figure 7a-1
illustrates the influence of features on each lithology classes. We note that the GR feature
has high SHAP values and it impacts the model prediction of the following lithology classes:
Sandstone, Limestone, Chalk, Halite, Anhydrite, Coal. However, for Sandstone/Shale,
Shale, Marl, and Basement classes; the GR feature tends to have negative SHAP values for
their lithology classes. We can see the influence of the GR, DTC, and RHOB variables on
almost all lithology classes. On the other hand, some lithology classes such as Tuff and
Coal have different important features in the model prediction.

Due to different nature of the Coal properties from the other classes it was found that
RHOB and NPHI were significant features in the prediction of Coal. Moreover, RHOB, DTC,
RMED, and GR were dominant features in the forecast of Dolomite and Limestone lithology.
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Figure 7. Summary plots for influence models prediction by classes for the Norway data.
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3.2. Lithofacies Prediction for the Kazakhstan Data

We carried out numerical experiments in the above-mentioned way for wells in the
Kazakhstan oil and gas field; the study area contains 10 wells with a maximum depth of
1700 m. The lithology for the field primarily consists of clay, coal, limestone, dolomite,
and sand. The data contain well logs such as thermal neutron porosity, caliper, gamma-ray;,
temperature, resistivity, sonic, and others. The information from well logs was recorded at
every foot of the formation where it is logged across.

Data was split into train and test datasets split to 75% and 25%, respectively. In Figure 8,
the distribution of lithologic types for train and test dataset in log scale is presented, and
distributions have a similar shape. The total dataset is 59,423 rows and 23 features, the train
dataset contains rows 47,538 and 23 features, and the test dataset contains 11,885 rows and
23 features.

10k

count
count

0 1 2 3 4
Lithology Lithology
(a) Histogram of lithology facies for (b) Histogram of lithology facies for
train dataset. test dataset.

Figure 8. Summary plots for various failure modes of columns.

Based on the result for the Norway dataset, we used the Random Forest Classifier for
data from the Kazakhstan field which showed a better result on three metrics. In Table 8,
there are three scores that summarize the performance of the Random Forest Classifier on
the test datasets for the different lithofacies types. The Random Forest Classifier shows a
precisely result as well.

Table 8. Comparison three scores of Random Forest Classifier for the test dataset.

Models Original Dataset (12) Original and Generated Features (19)
Accuracy Penalty Hamming Accuracy Penalty Hamming
matrix loss matrix loss
R;“dom 0.977 ~0.061 0.0227 0.975 ~0.068 0.0253
orest

Class 2 (dolomite) was not precisely predicted, see Table 9. The reason for such values
can be an imbalanced dataset.

Table 9. Classification report of RFC for Kazakhstan field test data.

Lithofacies Class Precision Recall f1-Score Support
0 0.97 0.99 0.98 4045
1 0.78 0.89 0.83 47
2 0.38 0.88 0.53 64
3 0.99 0.97 0.98 7620
4 0.96 0.99 0.97 109
accuracy 0.98 11,885
macro avg 0.82 0.94 0.86 11,885

weighted avg 0.98 0.98 0.98 11,885
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Figure 9 shows the global importance for five classes. The PHIE (prediction of effective
porosity) and PHIT (prediction of total porosity) features influence the model prediction in
all Clay (3) and Sand (0) classes.
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Class 1

Figure 9. Importance factor of Random forest model for each input variable for the features.

Figure 10 shows the influence of input features on the model prediction of lithol-
ogy classes. The SHAP values of the Sand class are higher for PHIE and PHIT features.
The colors of PHIE and PHIT values indicate some threshold that can split the positive and
negative influence of PHIE and PHIT features on the model prediction, see Figure 10a. The
SHAP values of the Limestone class are higher for PHIE and PHIT features, see Figure 10b.
The model found dependence by depth for the Limestone, also likely the class is located
on defined depth for this field. The SHAP values of Dolomite, Clay, and Coal classes are
higher for PHIE, PHIT, PEFZ, and RHOZ features, see Figure 10c,d. The High values of
PHIE and RHOZ features are a positive influence on the model prediction of Dolomite.
Lower values of PHIE and PHIT features are a positive influence on model prediction of
Clay. Lower values of PHIE, PEFZ, and RHOZ features are a positive influence on model
prediction of Coal.
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Figure 10. Summary plots for influence models prediction by classes for Kazakhstan dataset.

4. Conclusions

This paper analyzes the supervised learning algorithms for the well log data from
Norway and Kazakhstan with or without the additional wavelet-transformed features.
Our focus was on the data of offshore and onshore reservoirs. The findings suggest that
our fitted Random Forest model shows the best results among the considered algorithms.
The cross-validation methodology was applied in the machine learning models. Machine
learning algorithms, in particular Random Forest method, can be integrated to specific
geophysical software to proceed with a lithology classification automatically based on well
logs without using information about sludge or core samples, and others. This process can
improve efficiency of finding solution for some geophysical interpretation problems.

The nature of the decision tree methods (kNN, Random Forest, Decision Tree, etc.) is
verified as set of good methods for the well log data, as it enables solving the nonlinear
problem of the lithological classifications. The random forest model has an accuracy
of 0.948, penalty matrix score of —0.1289, hamming loss score of 0.0473 for 12 features
and an accuracy of 0.938, penalty matrix of —0.1697, and hamming loss of 0.0624 for 19
features including features which were generated from wavelet transformation of the data.
Scores of algorithms that used the data and wavelet-transformed data are similar to scores
of algorithms that trained only on the data without wavelet transformation. However,
we believe that such additional features could help for different problems(regression) in
geoscience such as identification of permeability or porosity.

We used the SHAP framework to explore the impact of features on the targeted
classification and to detect the complex relationships between features. The result of the
SHAP in our dataset showed that the significant features on a prediction of some lithology
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classes were GR, DTC, and RHOB. However, some classes such as Tuff and Coal can be
detected by other features (NPHI and RDEP).

In our future research, we intend to concentrate on deep learning algorithm such as
1D-CNN, LSTM, and RNN for prediction of multi-label lithofacies classification, porosity,
and permeability using the well log data.
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