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Abstract: When performing AC/DC-DC/AC power conversions, multilevel converters provide
several advantages as compared to classical two-level converters. This paper deals with the dynamic
modeling, control, and robustness assessment of multilevel flying-capacitor converters. The dynamic
model is derived using the Power-Oriented Graphs modeling technique, which provides the user with
block schemes that are directly implementable in the Matlab/Simulink environment by employing
standard Simulink libraries. The performed robustness assessment has led to the proposal of a
divergence index, which allows for evaluating the voltage balancing capability of the converter using
different voltage vector configurations for the extended operation of the converter, namely when the
number of output voltage levels is increased for a given number of capacitors. A new variable-step
control algorithm is then proposed. The variable-step control algorithm safely enables the converter
extended operation, which prevents voltage balancing issues, even under particularly unfavorable
conditions, such as a constant desired output voltage or a sudden load change. The simulation results
showing the good performances of the proposed variable-step control as compared to a classical
minimum distance approach are finally provided and commented in detail.

Keywords: multilevel flying-capacitor converter; dynamic modeling; robustness assessment; control;
voltage balancing capability

1. Introduction

The need of performing power conversion is present in a large variety of engineering
fields. When focusing on electrical power conversions, the cases of DC/DC [1–3], AC/DC-
DC/AC [4–6] power conversions can be distinguished. These types of power conversion
find application in many areas, including smart grids [1,4,5], hybrid electric vehicles [7],
and many others. The physical modeling of the employed power converter topology is of
great importance, as it represents the starting point for understanding its dynamic behavior
and developing an effective control strategy. This paper deals with the modeling, control
and robustness assessment of multilevel flying-capacitor converters.

Multilevel topologies bring several advantages when compared to classical two-level
converters, such as a significant distortion reduction in the output voltage waveform and
in the drawn input current, a reduction of the dv/dt effect in the output voltage waveform,
and the generation of a lower common-mode voltage [8,9]. Furthermore, transformerless
grid-connected multilevel converters are largely used in applications, such as motor drives,
solid-state power transformers, and photovoltaic systems, as they provide advantages, such
as increased power, voltage ratings, and lower harmonic distortion [10,11]. In this latter
type of converters, the development of suitable ground potentials models is important,
as high ground potentials represents an issue that may affect the converter operation. This
matter is addressed in [10,11], together with the creation of local grounding points limiting
ground potentials and blocking ground leakage currents from flowing through the host
grid grounding, and together with the testing of grounding circuits for the considered
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application. A vast array of different multilevel converter topologies have been proposed
over the years [8,10–12], including diode-clamped converters, flying-capacitors converters,
cascaded H-bridge converters, etc. Together with the advantages and potentialities that are
brought by multilevel converters comes the difficulty of having more power electronics
devices to control. This has led to the development of different modulation algorithms and
techniques having different trade-offs between the pros and cons [13,14].

When dealing with the modeling and control of multilevel converters, the choice
of the employed modeling approach represents the first step. In [15], the modeling of
the Modular Multilevel Matrix Converter (M3C) is addressed in a matrix form defining
voltage-current model and a power-capacitor voltage model, whereas, in [16], the modeling
of a Modular Multilevel Converter is performed using a state-space model, which is next
discretized using a forward Euler approximation. In this paper, we address the dynamic
modeling of multilevel flying-capacitor converters using the Power-Oriented Graphs (POG)
modeling technique [17], extending the modeling approach that was proposed in [12].
The POG technique is one of the main graphical formalisms for modeling physical systems,
together with Bond Graphs [18] and Energetic Macroscopic Representation [18]. The POG
technique is deemed effective, as it allows for building block diagrams that can be directly
implemented in the Matlab/Simulink environment using blocks that are available in basic
libraries, and to effectively control the power flows within the system [18]. The proposed
approach provides a very compact continuous-time model of the considered multilevel
converter which can be applied to other converter topologies as well, and establishes a
straightforward way of computing the capacitor voltages and currents starting from the
Insulated Gate Bipolar Transistors (IGBTs) switching states. The Readers are referred to [19]
for applications of the POG technique to physical systems modeling in different energetic
domains, where a web POG modeling program is presented, together with some examples.

Once the modeling is performed, the next step is represented by the control of the
considered multilevel converter topology. The subject of multilevel converters control has
been largely treated in the literature, by focusing on different converter topologies and
aiming at different objectives, depending on the converter topology. In [20], the authors
propose an interesting space-vector based approach for modeling modular multilevel
converters for battery electric vehicles, showing that the traditional approach for achieving
cell balancing can be seen as a special case of the proposed model. In [21], the control of
modular multilevel converters is approached using model predictive control that is aided by
disturbance observers with the objective of controlling the AC current and suppressing the
circulating current in the converter. An asymmetric cascade H-bridge multilevel converter
topology that is equipped with a predictive control strategy is instead proposed in [22].
The purpose of the latter is to minimize the converter commutations, while also exploiting
the redundant states to equally distribute the load among the switches, thus equalizing
their lifetime expectation. Focusing on multilevel topologies having floating capacitors
involved in their operation, an important aspect is represented by the capacitors voltages
balancing. If not properly controlled, the floating capacitors voltages may suffer from
ripple [23], which would cause output voltage and current distortion, or even voltages
trajectory divergence, thus further compromising the converter operation. An important
distinction needs to be made between those multilevel converters having full floating
capacitors voltage balancing capability and those not having it, due to topology limitations
or lack of redundancy. This latter case is addressed in [23], where a new PWM method
was proposed to improve the floating capacitors voltage balancing capability. Multilevel
flying-capacitor converters have full floating capacitors voltage balancing capability if
properly controlled and if the number of output voltage levels m equals the number of
capacitors n plus one (i.e., the number of floating capacitors plus two). An analytical
investigation of the voltage balancing characteristics of the flying capacitor converter
while using the phase disposition PWM (PDPWM) modulation technique is presented
in [24]. An interesting approach to ensure floating capacitors voltage balancing capability
is presented in [25], where a modification of the carrier-redistribution PWM (CRPWM) is
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proposed in order to ensure a low output voltage harmonic content and low voltage ripple,
thanks to the symmetric disposition of carriers in every fundamental period. However,
the main drawback that is associated with open-loop methods is that they aim at keeping
the floating capacitors voltages as close to the desired value as possible, but do not consider
the case of a voltage unbalance occurring because of some unfavorable conditions, such as
a fault, for example. In this latter case, a closed-loop control solution is required, in order to
drive the capacitors voltages trajectory back to the desired operating point, thus ensuring
the correct operation of the converter. The multilevel flying-capacitor converter having a
generic number n of capacitors can actually generate all the way up to 2n output voltage
levels, giving rise to what is called "extended operation” [26,27]. However, if the number
of voltage levels m is greater than n + 1, then the multilevel flying-capacitor converter
loses the property of full floating capacitors voltage balancing capability, and a suitable
closed-loop control technique becomes paramount. An example of closed-loop control
technique for the multilevel flying-capacitor converter in such operating condition using a
"minimum distance” approach is proposed in [27]. However, to the best of our knowledge,
there is no proposal in the literature of a metric allowing for performing the robustness
assessment of multilevel flying-capacitor converters against the divergence of the flying
capacitors voltage trajectory. This becomes especially crucial with the converter working in
extended operation, namely with a number m of output voltage levels greater than n + 1 all
the way up to 2n. In this paper, we address: (a) the dynamic modeling of multilevel flying-
capacitor converters; (b) the analysis of all the possible configurations of the converter in
terms of capacitors voltage ratio allowing for the converter to work in extended operation;
(c) the robustness assessment of multilevel flying-capacitor converters when working in
extended operation and controlled using a classical minimum distance approach; (d) the
proposal of a divergence index determining the degradation of the converter operation
using a minimum distance control as the number of output voltage levels is increased for
all of the possible capacitors voltages configurations; (e) the proposal of a new variable-step
closed-loop control strategy for guaranteeing the best flying capacitors voltage balance
in any extended operating condition; and, (f) the comparison of the proposed variable-
step control strategy for multilevel flying-capacitor converters with a classical minimum
distance control approach.

The remainder of the paper is organized as follows. Section 2 introduces the charac-
teristics and basic properties of the POG modeling technique. Section 3, and the included
subsections, address the dynamic modeling of the multilevel flying-capacitor converter.
The main matrices and vectors of the model are introduced and described, together with
some interesting properties that they exhibit. The model verification against the PLECS
simulator is addressed in Section 3.4. Section 4 deals with the control of the multilevel
flying-capacitor converter. In particular, Section 4.1 addresses the minimum distance algo-
rithm, whereas Section 4.2 defines the basic configuration of the multilevel flying-capacitor
converter. Section 4.3 describes the robustness assessment of the considered converter in
extended mode using a minimum distance algorithm, whereas Section 4.4 proposes the
new variable-step control algorithm. The converter simulation in extended mode with
different dynamic loads is addressed in Section 5. Section 6 finally provides the conclusions
of this work.

2. The POG Modeling Technique

The Power-Oriented Graphs (POG) technique [17,18] is a graphical modeling for-
malism that is based on the same energetic approach employed by the Bond Graph (BG)
technique [18] using a different graphical notation. Power-Oriented Graphs are created
using two elementary blocks, namely the elaboration block and the connection block,
which are shown in Figure 1. The first block is employed for the modeling of all the
physical elements storing and/or dissipating energy, whereas the second one is used for
the modeling of all the physical elements performing energy conversion. The elaboration
block describes static or dynamic physical elements, and is characterized by the transfer
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function (or matrix) G(s) of the considered element. If the transfer function G(s) = R is
constant, then the considered physical element is static, being characterized by the static
relation between the input variable v f and the output variable ve or viceversa. The dynamic
elements can be classified into two types:

• across elements De, having a flow variable v f as input and an across variable ve as
output;

• flow elements D f , having an across variable ve as input and a flow variable v f as output.

A flow power variable v f is always defined in each point of the space, whereas an across
power variable ve is defined between two points. Table 1 provides a compact description
of the dynamic and static elements, together with the across and flow variables, in the
four typically considered energetic domains. The crossed circle in the upper part of the
elaboration block in Figure 1 is a summation node, where the black spot on the right denotes
that the power variable entering the summation node from that side has to be subtracted.
The connection block is characterized by a coefficient (or matrix) K, which completely
describes the energy conversion between the energetic domains.
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Figure 1. POG elementary blocks: elaboration block and connection block.
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Table 1. Physical elements and power variables in the different energetic domains.

Electrical Mechanical
Translational

Mechanical
Rotational Hydraulic

De Capacitor C Mass M Inertia J Hydraulic Capacitor
CI

ve Voltage V Velocity ẋ Angular Velocity ω Pressure P

D f Inductor L Spring E Rotational Spring E Hydraulic Inductor
LI

v f Current I Force F Torque τ Volume Flow Rate Q

R Resistor R Friction b Angular Friction b Hydraulic Resistor
RI

One of the main characteristics of the POG modeling technique is the maintained
direct correspondence between the power sections in the POG model, as highlighted by
the red ellipses in Figure 1, and the power sections of the actual physical system. The scalar
product xTy of the two power variables x and y in the considered power section has the
physical meaning of power flowing through the considered section. The black oriented arrows
placed at the top of each power section in the scheme of Figure 1 highlight the positive
direction of the power flow through the considered section.

Any physical system that is modeled by means of the POG technique is characterized
by the following POG state-space representation:

{
L ẋ = A x + B u
y = C x + D u

,
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where L is the energy matrix, A is the power matrix, B is the input matrix, C is the output
matrix, and D is the input-output matrix. The energy matrix L and power matrix A
describe the instantaneous energy Es stored in the system and the instantaneous power Pd
dissipated in the system, respectively:

Es =
1
2

xT L x, Pd = xT As x,

where As is the symmetric part of matrix A.

3. Modeling of the n-Dimensional Multilevel Flying-Capacitor Converter
3.1. Physical System and Configuration Vectors

Let us consider the electric scheme of an n-dimensional Multilevel Flying-Capacitor
Converter that is shown in Figure 2. The output voltage Vout is a function of the IGBTs
activation signals Ti ∈ {0, 1}, for i ∈ {1 , 2 , . . . , n}. Let Vc and Tj denote the capacitors
voltage column vector and the IGBTs signal row vectors, defined as follows:

Vc =




V1

V2

V3

...

Vn




,




T0
T1
T2
T3
...

Tmc−2
Tmc−1




=




0 . . . 0 0 0
0 . . . 0 0 1
0 . . . 0 1 0
0 . . . 0 1 1
...

. . .
...

...
...

1 . . . 1 1 0
1 . . . 1 1 1




n = 3
⇒




T0
T1
T2
T3
T4
T5
T6
T7




=




0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1




, (1)

where j ∈ {0 , 1 , . . . , mc − 1}, mc = 2n, and Vi are the voltages across the capacitors Ci.
The electrical schemes that are reported in Figure 3 show how, for the case n = 3, the output
voltage Vout is a function of the IGBTs signal vectors Tj in the two cases Tj = T2 = [ 0 1 0 ]
and Tj = T6 = [ 1 1 0 ].

Cn
Vn

C2
V2

C1
V1

Rin

Vin

T1

T2

Tn

T n

...
...

...
...

T 2

T 1

. . .

. . .

Vout

Figure 2. Electrical scheme of the n-dimensional Multilevel Flying-Capacitor Converter.
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Figure 3. Electrical schemes showing how the output voltage Vout is obtained as a function of the Insulated Gate Bipolar
Transistors (IGBTs) signal vectors Ti in the two cases Tj = T2 = [ 0 1 0 ] and Tj = T6 = [ 1 1 0 ].

One can easily verify that the output voltage Vout can always be expressed as follows:

Vout = Sj Vc, (2)

where Sj = [s1 s2 · · · sn], for j ∈ {0 , 1 , . . . , mc − 1}, are proper configuration vectors.
In the two cases of Figure 3, for example, the output voltage Vout can be expressed as in (2)
by using the following two configuration vectors: S2 = [ 0 1 − 1 ] and S6 = [ 1 0 − 1 ].
Table 2 shows the relations between the IGBTs signal vectors Tj, the output voltage Vout
and the configuration vectors Sj for the case n = 3, highlighting the connection between
vectors Tj and Sj. One can verify that the following property holds.

Table 2. Relations between the IGBTs signal vectors Tj, the output voltage Vout and the configuration
vectors Sj when n = 3.

Tj [ T1 T2 T3 ] Vout [ s1 s2 s3 ] Sj Vout (5) αi

T0 [ 0 0 0 ] S0Vc = 0 [ 0 0 0 ] S0 0 0

T1 [ 0 0 1 ] S1Vc = V3 [ 0 0 1 ] S1 Vin/3 1

T2 [ 0 1 0 ] S2Vc = V2 −V3 [ 0 1 −1 ] S2 Vin/3 1

T3 [ 0 1 1 ] S3Vc = V2 [ 0 1 0 ] S3 2Vin/3 2

T4 [ 1 0 0 ] S4Vc = V1 −V2 [ 1 −1 0 ] S4 Vin/3 1

T5 [ 1 0 1 ] S5Vc = V1 −V2 + V3 [ 1 −1 1 ] S5 2Vin/3 2

T6 [ 1 1 0 ] S6Vc = V1 −V3 [ 1 0 −1 ] S6 2Vin/3 2

T7 [ 1 1 1 ] S7Vc = V1 [ 1 0 0 ] S7 Vin 3

Property 1. For j ∈ {0 , 1 , . . . , mc − 1}, the components si ∈ {−1, 0, 1} of the configuration
vectors Sj = [s1 s2 · · · sn] can be obtained from the components Ti ∈ {0, 1} of the IGBTs signal
vectors Tj = [T1 T2 · · · Tn], as follows:

si =

{
T1 if i = 1,

Ti−1 Ti − Ti−1 Ti if i ∈ {2, · · · , n}, (3)
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or, equivalently, as follows:

si =





1 if Ti > Ti−1,
0 if Ti = Ti−1,
−1 if Ti < Ti−1,

(4)

for i ∈ {1, 2, · · · , n} and T0 = 0.

As an example, the Reader can verify that Property 1 holds for all of the configuration
vectors Sj that are reported in Table 2 for the case n = 3. The second last column of Table
2 shows the values of the output voltage Vout corresponding to the following capacitors
voltages Vi:

V1 = Vin, V2 =
2Vin

3
, V3 =

Vin
3

⇒ Vc =




Vin
2Vin

3
Vin
3


. (5)

The last column of Table 2 shows the normalized values αi, as defined in Section 3.3, used
for representing the equally spaced values of the output voltage Vout in the case of n = 3
capacitors and m = 4 output voltage levels.

Let SM denote the matrix containing all of the possible configuration vectors Sj,
for j ∈ {0 , 1 , . . . , mc − 1}:

SM =




S0
S1
...

Smc−1


,

if n = 3

→ SM =




S0
S1
S2
S3
S4
S5
S6
S7




=




0 0 0
0 0 1
0 1 −1
0 1 0
1 −1 0
1 −1 1
1 0 −1
1 0 0




. (6)

Matrix SM can always be rewritten in block matrix form as follows:

SM =

[
0 SM0
1 SM1

]
if n = 3

→ SM =




0 0 0
0 0 1
0 1 −1
0 1 0
1 −1 0
1 −1 1
1 0 −1
1 0 0




. (7)

One can verify that the block matrices SM0, SM1 ∈ R2n−1×(n−1) satisfy the following property.

Property 2. Let Sj
M0 and Sj

M1 denote the j-th row of the block matrices SM0, SM1 ∈ R2n−1×(n−1)

defined in (7). Matrix SM1 can be obtained from matrix SM0, as follows:

Sj
M1 = −S2n−1+1−j

M0 for j ∈
{

1, 2, · · · , 2n−1
}

. (8)

Equation (8) means that the rows of matrix SM1 are equal, with opposite sign, to the rows of matrix
SM0 considered in reverse order.

From Property (2) and Equations (2) and (7), one can verify that the following prop-
erty holds.
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Property 3. If the output value Vout1 = Sj Vc is obtained using the configuration vector Sj, then
the following conjugate output value

Vout2 = Vin −Vout1 = Smc−j Vc

is obtained by employing the configuration vector Smc−j, for j ∈ {0, 1, · · · , mc − 1} and mc = 2n.

3.2. Dynamic Model of the Multilevel Flying-Capacitor Converter

The dynamic model of the Multilevel Flying-Capacitor Converter shown in Figure
2 can be given by using the Power-Oriented Graphs (POG) scheme reported in Figure 4.
The corresponding POG state-space equations are the following:

{
C V̇c =A Vc−ST

j Iout+B Vin,

Vout = Sj Vc.
(9)

Figure 4. Power-Oriented Graphs (POG) model of the Multilevel Flying-Capacitor Converter.

Matrices C, A and vectors Vc, ST
j and B are defined, as follows:

C=




C1 0 · · · 0

0 C2 · · · 0
...

...
. . .

...

0 0 · · · Cn




, A=




−1
Rin

0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0




, Vc =




V1

V2

...

Vn




, ST
j =




s1

s2

...

sn




, B=




1
Rin
0
...

0




. (10)

A representation such as the one that is shown in (9) and (10) highlights the following
interesting features of the system:

• The energy matrix C groups together the dynamic physical parameters Ci for i ∈
{1, 2, . . . , n}, namely the system capacitors.

• The power matrix A and the input matrix B contain the static physical parameter Rin,
which is the system input resistance.

• The configuration vector Sj contains the control signals that directly determine how the
output current Iout is going to charge/discharge the capacitors through Ic0 = ST

j Iout

and, at the same time, how the output voltage Vout is going to be generated from the
capacitors voltages through (2).

Therefore, the proposed POG state-space model allows for the parameters within the system
matrices to maintain their physical meaning, and also allows to emphasize the presence of
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the configuration vector Sj, representing the output of the two control algorithms that are
addressed in Section 4.1 and Section 4.4. The POG block scheme that is shown in Figure 4
presents a graphical representation of the dynamic model of the considered system. The
vertical dashed lines À, Á, . . ., and Ä present in the POG scheme describe the system power
sections: the product of the two power variables characterizing the power section has the
physical meaning of "power flowing through the considered power section”. The input
power Pin = Vin Iin flows through power section À and the output power Pout = Vout Iout
flows through power section Ä. The block scheme in between sections À and Á describes
the static equation of the input resistance Rin, the block scheme in between sections Á and
Â describes the interaction between the input resistance Rin and the capacitors Ci, and
the block scheme in between sections Â and Ã describes the dynamic equations of the
capacitors Ci. Finally, the block scheme in between sections Ã and Ä, which is characterized
by the configuration vector Sj, describes the interaction between the capacitors Ci and the
output power section Ä.

Remark 1. The first vectorial equation of system (9) can be rewritten as follows:

V̇c = C-1AVc−C-1ST
j Iout

︸ ︷︷ ︸
V̇out

c

+C-1B Vin.

Vector V̇out
c = −C-1ST

j Iout is the component of the velocity vector V̇c which is due to the presence
of the output current Iout. The direction of vector V̇out

c is completely defined by the configuration
vector Sj and by the values of the capacitors Ci.

Remark 2. The first scalar equation of system (9) can be rewritten as follows:

RinC1V̇1 = Vin −V1 − Rin s1 Iout. (11)

Because the value of the input resistance Rin is typically very low, from (11) it follows that V1 ' Vin,
that is the value of voltage V1 tends to remain close to the input voltage value Vin. Hereinafter,
the condition V1 = Vin will be assumed. This condition holds exactly if Rin → 0, or if capacitor C1
is replaced with a battery providing a constant voltage Vin.

3.3. Calculation of All the Configuration Voltage Vectors

An m-level Multilevel Converter is characterized by m different equally spaced values
Voi of the output voltage Vout:

Voi =
i Vin

m− 1
for i = {0, 1, . . . , m− 1}. (12)

In the following, the values Voi in (12) will often be referred to by using the symbolic integer
values αi, defined as follows:

αi =
Voi
Km

= i where Km =
Vin

m− 1
, (13)

for i = {0, 1, . . . , m− 1}. From (13), it follows that the product αi Km directly gives the
values of the corresponding equally spaced values Voi of the output voltage Vout. All of
the possible values Voi of the output voltage Vout that can be obtained using a particular
voltage vector Vc can be expressed as follows:

Vo = SMVc, (14)
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where SM is the matrix defined in (6). The considered Flying-Capacitor system acts properly
as a Multilevel Converter only if vector Vo = [ Vo1, Vo2, . . . , Vomc ]

T contains, among its
components Voj, all of the m different equally spaced values Voi given in (12):

∀i ∈ {0, 1, . . . , m− 1}, ∃ Voj ∈ {Vo1, Vo2, . . . , Vomc} | Voj =
i Vin

m− 1
. (15)

Definition 1. Any voltage vector Vc satisfying (14) and (15) will be called a " Configuration
Voltage Vector of order m” for the Multilevel Flying-Capacitor Converter.

The problem of finding all the Configuration Voltage Vectors Vc of order m for the
considered Multilevel Flying-Capacitor Converter can be solved as follows. Dividing (14)
by constant Km, one obtains the following symbolic integer relation:

VL = SMVm where VL =
Vo

Km
and Vm =

Vc

Km
. (16)

A vector Vm in (16) is a Configuration Voltage Vector of order m only if all the components
VLj of vector VL = [VL1, VL2, . . . , VLmc ], for j ∈ {1, 2, . . . , mc}, are integer values
VLj ∈ {0, 1, . . . , m− 1} that satisfy the following relation:

unique({VL1, VL2, . . . , VLmc}) = {0, 1, . . . , m− 1}, (17)

where “unique(S)” is a function providing a new set containing all the elements of set S
which are different from each other.

Property 4. In (16), all of the components βi of a Configuration Voltage Vector Vm, for i ∈
{1, . . . , n}, are integer values satisfying βi ∈ {0, 1, . . . , m− 1}:

Vm =




βn
βn−1

...
β1


 =




m− 1
βn−1

...
β1


, (18)

where βi+1 ≥ βi for i ∈ {1, 2, . . . , n− 2}. Furthermore, note that the top component βn of
vector Vm is always given by βn = m− 1.

The first statement of Property 4 holds true, because: (1) all of the components
VLj of vector VL in (16) are integer values, see (17); and, (2) the configuration vectors
S1 = [0 . . . , 0, 0, 1], S2 = [0 . . . , 0, 1, 0], S3 = [0 . . . , 1, 0, 0], . . ., Smc = [1, 0 . . . , 0, 0]
are always present among the rows of matrix SM. The second statement of Property 4 holds
true, because the top component βn of vector Vm is always equal to the first component V1
of vector Vc expressed in symbolic integer form: βn = V1/Km = Vin/Km = m− 1, see (13).
This relation holds thanks to the assumption V1 = Vin made in Remark 2.

Thanks to Property 4, all of the Configuration Voltage Vectors Vm of order m for the
considered Multilevel Flying-Capacitor Converter can be found by making an exhaustive
research in (18) for βi ∈ {0, 1, . . . , m− 1}, and keeping all of the solutions Vm that satisfy
(16) and (18). Table 3 reports all of the Configuration Voltage Vectors Vm for the case n = 3
and for m ∈ {4, 5, . . . , 8}. The total number Nc of Configuration Voltage Vectors for the
case n = 3 is Nc = 24. Figure 5 shows a graphical representation of the normalized form
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Vm of all the Configuration Voltage Vectors Vm for the case n = 3. The normalized form
Vm of the Voltage Vectors Vm defined in (18) is obtained as follows:

Vm =
Vm(2 : end)

m− 1
=




βn−1
m−1

...
β1

m−1


 =




V2
...

Vn




if n = 3

→ Vm =

[
V2

V3

]
, (19)

meaning that the last n− 1 components of vector Vm, from the second to the last one, are
normalized by m− 1. Figure 5 clearly shows a symmetry with respect to the red straight
line V3 = 1− V2. This symmetry is strictly connected to Property 5 and Property 6,
introduced in the following.

Table 3. All of the Configuration Voltage Vectors Vm for the case n = 3 and m ∈ {4, 5, . . . , 8}.
m 4 4 4 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7 8 8 8 8 8 8

Vm

3 3 3 4 4 4 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 7 7
1 2 2 2 3 3 2 3 3 4 4 4 3 3 4 4 5 5 3 3 5 6 5 6
1 1 2 1 1 2 1 1 2 1 2 3 1 2 1 3 2 3 1 2 1 2 4 4

Nβ 2 3 4 3 4 5 3 4 5 5 6 7 4 5 5 7 7 8 4 5 6 8 9 10

Figure 5. All the Configuration Voltage Vectors Vm, in normalized form Vm, for the case n = 3.

Property 5. For every Configuration Voltage Vector Vm, there exists a Conjugate Configuration
Voltage Vector V?

m, defined as follows:

Vm =




m− 1
βn−1

...
β2
β1




⇒ V?
m =




m− 1
m− 1− β1
m− 1− β2

...
m− 1− βn−1




. (20)
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Furthermore, one can easily verify that (V?
m)

? = Vm. This property directly follows from Property
3.

Property 6. Every Configuration Voltage Vector Vm, see (20), is characterized by a configuration
number Nβ, defined as follows:

Nβ =
n−1

∑
i=1

βi.

The set C of all the Configuration Voltage Vectors Vm can be divided into three different subsets,
which are denoted by C1, C2, and C3, defined as follows:

C1 = {Vm ∈ C|Nβ < m− 1}, C2 = {Vm ∈ C|Nβ = m− 1}, C3 = {Vm ∈ C|Nβ > m− 1}. (21)

The sets C1 and C3 are conjugate to one another: if Vm ∈ C1, then V?
m ∈ C3 and vice versa.

Furthermore, set C2 is conjugate to itself: if Vm ∈ C2, then V?
m = Vm.

Note: Table 3 has been given, for each number of output voltage levels m, in ascending
order from left to right with respect to the configuration number Nβ. Additionally, the
colors that are present in Table 3 denote the subsets to which the Configuration Voltage
Vectors Vm belong: green color if Vm ∈ C1, yellow color if Vm ∈ C2, and blue color if
Vm ∈ C3. The same color notation has been adopted in Figure 5 to identify the subsets to
which the normalized forms Vm of the Configuration Voltage Vectors Vm belong, which
are highlighted by the colored ellipses.

The number Nc of Configuration Voltage Vectors Vm for the case n = 4 is Nc =

407. Figure 6 shows a graphical representation of the normalized form Vm of all the
Configuration Voltage Vectors Vm for the case n = 4. The considerations that are introduced
in Property 5 and Property 6 also apply to the set of all the Configuration Voltage Vectors
Vm for the cases n = 4, n = 5, etc.
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Figure 6. All of the Configuration Voltage Vectors Vm, in normalized form Vm, for the case n = 4.

The number Nc of the Configuration Voltage Vectors Vm increases very rapidly by
increasing n, with a rate faster than exponential: Nc = 24 for n = 3, Nc = 407 for n = 4,
Nc = 14252 for n = 5, Nc = 1044305 for n = 6, etc.

3.4. Model Verification

The model of the multilevel flying-capacitor converter proposed in Figure 4 has been
tested in simulation against one of the most well-known platforms for the simulation of
power electronics systems, namely PLECS, in order to perform a model verification. For this
comparative simulations, the case n = 4 and Vm = [4 3 2 1]T has been considered to be a
case study. Figure 7 reports the PLECS model and the system parameters. The initial and
desired voltages for the multilevel converter capacitors can be determined by computing
the voltage vector Vc starting from the configuration voltage vector Vm and using (13) and
(16), namely Vc = [100 75 50 25]T. The initial conditions of the RLC load are assumed
to be equal to zero. The desired voltage Vd is assumed to be sinusoidal with an offset
equal to Vin/2, a peak-to-peak amplitude equal to Vin and a frequency equal to 50 Hz. The
simulation performed using the PLECS model in Figure 7 and the simulation performed
using the Matlab/Simulink POG model in Figure 4 have both been performed applying
the Minimum Distance Control described in Section 4.1.
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Vin 100 [V]
Rin 0.1 [mΩ]
C1 25 [mF]
C2 33 [mF]
C3 50 [mF]
C4 100 [mF]
LL 19 [mH]
CL 50 [µF]
RL 10 [Ω]

Figure 7. PLECS implementation and parameters of the n = 4 multilevel flying-capacitor converter.

The results that are given by the PLECS model are shown in Figure 8. The comparison
of these results with those given by the Matlab/Simulink POG model is reported in Figure 9.

Figure 8. Simulation results given by the PLECS model: output voltage Vout (upper subplot) and filtered voltage across CL (lower subplot).
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0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

50

100

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

50

100

Time [s]

[V
]

[V
]

Vout from Simulink (blue) and from PLECS (red)

Filtered Vout from Simulink (blue) and from PLECS (red)

Figure 9. Comparison of the results given by PLECS and Matlab/Simulink: output voltage Vout (upper subplot) and filtered voltage
across CL (lower subplot).

The very good matching between the output voltage characteristics that are given by
PLECS and by Matlab/Simulink in Figure 9 verifies the correctness of the proposed model
of the multilevel flying-capacitor converter.

4. Control of the Multilevel Flying-Capacitor Converter
4.1. Minimum Distance Control

Figure 10 shows the typical scheme of a closed-loop Minimum Distance Control of a
Multilevel Flying-Capacitor Converter. The first block of the scheme is the Output Level
Generator. Let us consider the case of m = 6 output voltage levels, which will, therefore,
be equally spaced between level “0” and level “m− 1 = 5”. The black characteristic in
Figure 11 shows the desired normalized voltage Ṽd multiplied by m− 1, in order to see it
superimposed to the blue characteristic, namely the desired output voltage level α.

Version March 29, 2021 submitted to Journal Not Specified 2 of 2

Output Level

Generator
Ṽd

Control

Algorithm

α Sj

Multilevel

Flying-

Capacitor

Converter

1

Vin

Iin

5

Vout

Iout

Vc, Iout

Figure 10. Typical scheme of a closed-loop Minimum Distance Control of a Multilevel Flying-Capacitor Converter.
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Desired output voltage level α and normalized desired voltage Ṽd (m− 1)

Figure 11. Desired output voltage level α superimposed to normalized desired voltage Ṽd (m− 1).

The Output Level Generator generates an integer value α ∈ {0, 1, . . . , m− 1}, which
defines the desired output level to be applied at a certain time instant tk:

α =
m−1

∑
h=0

(Vd ≥ Vcrh),

where (Vd ≥ Vcrh) = 1 if Vd ≥ Vcrh and (Vd ≥ Vcrh) = 0 if Vd < Vcrh . The second and third
blocks in the scheme of Figure 10 are the Control Algorithm and the Multilevel Flying-
Capacitor Converter. The latter is modeled using the POG block scheme that is shown in
Figure 4. Indeed, it is possible to notice the correspondence between the power sections À

and Ä in Figures 4 and 10. The purpose of the Control Algorithm is to properly generate
the Configuration Voltage Vector Sj, which has a one-to-one correspondence with the
IGBTs signal vector Tj through Property 1, giving the desired output level α. This will be
accomplished by exploiting the redundance of Configuration Voltage Vectors Sj generating
the same desired output level α when available, as described in the remainder of this section.
The Control Algorithm shown in Figure 10 is typically a "Minimum Distance Algorithm”.
Thanks to the assumption V1 = Vin made in Remark 2, the Minimum Distance algorithm
only applies to the components V2, V3, . . ., Vn of the capacitors voltage vector Vc. Let us
denote, as Vc = Vc(2 : n), Vm0 = KmVm(2 : n) = VinVm and SCj = −Sj(2 : n)./C(2 : n),
the following reduced vectors:

Vc =




V2
V3
...

Vn


, Vm0 =




Vin βn−1
m−1

Vin βn−2
m−1

...
Vin β1
m−1




, SCj =




− s2j
C2

− s3j
C3
...
− snj

Cn




, (22)

where Vm is the considered Configuration Voltage Vector that is introduced in (16), and Sj
is the j-th configuration vector defined in (10). The minimum distance algorithm tries to
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keep the reduced voltage vector Vc as close as possible to the desired reduced voltage
vector Vm0. Let α be the desired output level to be applied at time tk and let

Sα =

{
j | j ∈ [0, 1, . . . , mc − 1] ∧ SjVc =

αVin
m− 1

}
(23)

be the set of the indexes j of all the configuration vectors Sj, which, for the considered
Configuration Voltage Vector Vm, provide the output level α. The Minimum Distance
algorithm acts as follows:

1. At instant tk, read the value of the reduced voltage vector Vc(tk);
2. For any j ∈ Sα, compute the new position Vcj(tk + TW) of the reduced voltage vector

Vc at instant tk + TW , which is due to the application of the configuration vector Sj:

Vcj(tk + TW) = Vc(tk) + SCj Iout TW︸ ︷︷ ︸
∆SCj

= Vc(tk) + ∆SCj, (24)

where Iout is the value of the output current at instant tk and TW is the time for which
the configuration vector Sj is applied.

3. For any j ∈ Sα, compute the following distance vectors:

∆Vcj = Vcj(tk + TW)−Vm0 (25)

between points Vcj(tk + TW) and the desired reduced Voltage Vector Vm0.
4. At instant tk, apply the configuration vector Sj∗ , with j∗ ∈ Sα, for which the norm of

vectors ∆Vcj is minimized:

Sj∗ such that |∆Vcj∗ | ≤ |∆Vcj| for j ∈ Sα. (26)

Figure 12 shows a graphical example of how the Minimum Distance algorithm works
in the case of n = 3, m = 4, Vm = [ 3 2 1 ]T when the desired output level is α = 1. In this
case, the distance vector ∆Vcj in (25) having the minimum norm is |∆Vc4|, highlighted in
magenta in the figure.

4.2. Basic Configurations

For any n-dimensional multilevel flying-capacitor converter, let us denote, as Basic
Configuration Voltage Vector, the following Configuration Voltage Vector:

V∗m =
[

m−1 m−2 . . . 2 1
]T, (27)

occurring when m = n + 1.

Property 7. For any given n, the basic configuration voltage vector V∗m is the only configuration
voltage vector for which the Minimum Distance algorithm is able to keep the reduced voltage vector
Vc in the neighborhood of the desired reduced voltage vector V∗m0, for any value of the normalized
desired voltage Ṽd and the output current Iout.

This property holds because the Basic Configuration Voltage Vector V∗m is the only
one for which the number of possible configurations Sj that are associated to the two
adjacent levels of any desired voltage Vd are sufficient to guarantee that, at each PWM step,
the distance between the reduced vector Vc and the desired reduced voltage vector V∗m0 is
decreased for any value of the output current Iout. For any other Configuration Voltage
Vector Vm, it is always possible to find values for Vd and Iout causing the reduced vector
Vc to indefinitely diverge from the desired reduced voltage vector Vm0.
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Figure 12. Calculations of the Minimum Distance algorithm in the case of n = 3, m = 4, Vm =

[ 3 2 1 ]T when the desired output level is α = 1.

Figure 13 shows a first example of the validity of Property 7, for the case n = 3 and
V∗m = [ 3 2 1 ]T. In this figure, a certain number of trajectories in the space (V2, V3) starting
from initial conditions that are distant from the desired reduced voltage vector Vm0 are
shown. Red asterisks in the figure denote the considered initial conditions. The trajectories
have been obtained using the Minimum Distance algorithm and using the following input
signals:

Vd =
Vin
2

+
Vin
2

sin(800πt), Iout = 10 A, Vin = 1 V. (28)

The figure clearly shows that all of the trajectories asymptotically tend to the desired
reduced voltage vector Vm0 = [ 0.66 0.33 ]T.

A second similar example is given in Figure 14 for the case n = 4 and V∗m =
[ 4 3 2 1 ]T. The three-dimensional trajectories in the space (V2, V3, V4) have been
obtained using the same input signals (28) that were used for the previous example. Even
in this case, one can notice that all of the trajectories asymptotically tend to the desired
reduced voltage vector Vm0 = [ 0.75 0.5 0.25 ]T.
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Figure 13. Stability of the Basic Configuration Voltage Vector V∗m = [3 2 1]T for n = 3.

Figure 14. Stability of the Basic Configuration Voltage Vector V∗m = [4 3 2 1]T for n = 4.

4.3. Robustness Assessment of the Configuration Voltage Vectors

All of the Configuration Voltage Vectors Vm different from the basic one V∗m are
characterized by divergent voltage trajectories under particularly unfavorable operating
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conditions, as stated in Property 7. In Figures 15 and 16, for example, the voltage trajectories
that are associated with two different Configuration Voltage Vectors Vm in the space
(V2, V3) for the case n = 3 are reported, starting from different initial conditions that are
distant from the desired reduced voltage vector Vm0. The considered initial conditions
are denoted by red asterisks in the figures. The trajectories shown in Figure 15 have
been obtained using Vm = [5 4 3]T, Vm0 = [ 0.8 0.6 ]T, Vd = 0.3 V and Iout = 10 A.
The trajectories in Figure 16 have been obtained using Vm = [5 3 2]T, Vm0 = [ 0.6 0.4 ]T,
Vd = 0.7 V and Iout = 10 A. In both cases, after a transient, all of the trajectories tend to
diverge along a particular direction, which is characteristic of the considered Configuration
Voltage Vectors Vm. One can verify that the same qualitative behavior is obtained for any
Vm different from the Basic Configuration Voltage Vector V∗m.

Figure 15. Instability of the Configuration Voltage Vector Vm = [5 4 3]T when Vd = 0.3 and
Iout = 10 [A].

From the previous considerations, the need to find a criterion to evaluate the degree
of divergence of the different Configuration Voltage Vectors Vm arises. For this purpose,
a Vectorial Divergence Function

−→
V m(Ṽd) can be defined for each Vm. Before giving the

definition of this function, the following preliminary material needs to be introduced.

• Given the Configuration Voltage Vectors Vm = [ m− 1 βn−1 . . . β2 β1 ]T and the
value of the last n-th capacitor Cn, let us choose the values of the remaining n− 1
capacitors C1, C2, . . ., Cn−1, as follows:

C1 =
β1Cn

m− 1
, C2 =

β1Cn

βn−1
, . . . , Cn−2 =

β1Cn

β3
, Cn−1 =

β1Cn

β2
, (29)

namely, each capacitor Ci is chosen inversely proportional to the components of
vector Vm.
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• The Minimum Distance Algorithm that is given in Section 4.1 can be rewritten in an equiva-
lent form by using the following Matlab-like function “[Sj, ∆V] = MDA(∆V, α, Iout, TW)”,
which must be called providing ∆V = Vc(tk)−Vm0:

Figure 16. Instability of the Configuration Voltage Vector Vm = [5 3 2]T when Vd = 0.7 and
Iout = 10 [A].

function [Sj, ∆V] = MDA(∆V, α, Iout, TW)
Compute set Sα defined in (23);
Compute vectors SCj defined in (22) using (29);
for j ∈ Sα

Compute ∆Vcj as follows, see (25):
∆Vcj = ∆V + SCj Iout TW ;

end
Find j∗ ∈ Sα for which the norm of vectors ∆Vcj is minimized, as in (26);
Set Sj = S∗j ;
Set ∆V = ∆V∗cj;

Definition 2. Given a Configuration Voltage Vector Vm, the corresponding Vectorial Divergence
Function

−→
V m(Ṽd) is defined, by employing a Matlab-like notation, as follows:
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Iout = 1; % Function normalized with respect to Iout
TPWM = 1; % Function normalized with respect to time
Cn = 1; % Function normalized with respect to Cn
for Ṽd = (0 : 1/NPoints : 1) % NPoints of variable Ṽd ∈ [0, 1]

VD = Ṽd(m− 1); % NPoints of variable VD ∈ [0, m− 1]
αH = ceil(VD); % Upper adjacent level
αL = floor(VD); % Lower adjacent level
dc = VD − αL; % Duty cycle of the upper level
∆V = 0; % Zero initial condition
for h = 1 : NSteps % Repeat NSteps times

TW = dcTPWM % Time interval of the upper level
[∼, ∆V] = MDA(∆V, αH , Iout, TW); % Upper level Minimum Distance Algorithm
TW = (1− dc)T_PWM % Time interval of the lower level
[∼, ∆V] = MDA(∆V, αL, Iout, TW); % Lower level Minimum Distance Algorithm

end−→
V m(Ṽd) = ∆V/NSteps; % Function

−→
V m is defined in point Ṽd

end

The precision of calculation of function
−→
V m(Ṽd) increases if the values of parame-

ters NPoints and NSteps increase. The Vectorial Divergence Function
−→
V m(Ṽd) satisfies the

following properties.

Property 8. The Vectorial Divergence Function
−→
V m(Ṽd) of all the Basic Configuration Voltage

Vectors V∗m is zero for any value of variable Ṽd = [0 1]:

−→
V m(Ṽd) = 0 for Ṽd = [0, 1].

This property holds as a direct consequence of Property 7.

Property 9. The Vectorial Divergence Function
−→
V m(Ṽd) satisfies the following symmetry with

respect to the value Ṽd = 0.5:

−→
V m(Ṽd) = −

−→
V m(1− Ṽd), for Ṽd ∈ [0, 0.5].

This property holds as a direct consequence of Property 3. Property 9 implies the
symmetry of the Vectorial Divergence Function

−→
V m(Ṽd) with respect to the origin. Figure

17 gives an example showing two different graphical representations of the Vectorial
Divergence Function

−→
V m(Ṽd) that is associated with all of the Configuration Voltage

Vectors Vm for the case n = 3, NPoints = 400 and NSteps = 200. The left subplot shows the

norm |−→V m(Ṽd)| of the Vectorial Divergence Function versus Ṽd ∈ [0, 0.5]. The function
|−→V m(Ṽd)| has not been plotted for Ṽd ∈ [0.5, 1], because of the symmetry defined in
Property 9. The right subplot of Figure 17 shows the Vectorial Divergence Function−→
V m(Ṽd) on plane (V2, V3). This subplot clearly shows the symmetry of function

−→
V m(Ṽd)

with respect to the origin, as stated in Property 9. The two digit numbers "m.i”, which
are present for each characteristic in the two subplots of Figure 17, denote the number
m of output levels and the order i of the Configuration Voltage Vector Vm of the nearby
colored line, according to the order and the colors reported in Figure 18. The two subplots
of Figure 17 clearly show that the norm |−→V m(Ṽd)| of the Vectorial Divergence Function−→
V m(Ṽd) tends to increase with the number m of the output levels and, therefore, it can be
used as a starting point to estimate the degree of divergence and, thus, the degradation of
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the voltage balancing capability, associated to the corresponding Configuration Voltage
Vector Vm. For this purpose, let us define the following Divergence Index.

Figure 17. Left subplot: Norm |−→V m(Ṽd)| of the Vectorial Divergence Function vs Ṽd ∈ [0, 0.5]; Right
subplot: Vectorial Divergence Function

−→
V m(Ṽd) on the plane (V2, V3) for all of the Configuration

Voltage Vectors Vm in the case n = 3.

Definition 3. The Divergence Index IM of a Configuration Voltage Vector Vm is defined as fol-
lows:

IM = max
(
|−→V m(Ṽd)|

)
,

namely as the maximum value of the norm |−→V m(Ṽd)| of the Vectorial Divergence Function−→
V m(Ṽd).

The larger the Divergence Index IM, the less robust is the corresponding Configu-
ration Voltage Vector Vm. Therefore, the Divergence Index IM is inversely proportional to
the degree of robustness of the corresponding Configuration Voltage Vector Vm. For all of the
Basic Configuration Voltage Vectors V∗m, the Divergence Index IM is zero, according to
Property 8. Index IM can also be used to provide a new sorting for the Configuration
Voltage Vectors Vm having the same number m of output levels. Figure 18 shows the new
sorting, in ascending order of the Divergence Index IM for each vector Vm having the
same number m of output voltage levels. Therefore, the different Configuration Voltage
Vectors Vm having the same number m of output levels are sorted in decreasing degree of
robustness when moving from left to right in Figure 18. The magenta line that is reported
in Figure 18 is the Mean Index Im of the Configuration Voltage Vectors Vm. The Mean Index
Im is defined as the mean value of the norm |−→V m(Ṽd)| of the Vectorial Divergence Function
−→
V m(Ṽd): Im = mean

(
|−→V m(Ṽd)|

)
. Figure 18 clearly shows a strong correlation between

the Divergence Index IM and Mean Index Im.
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Figure 18. Configuration Voltage Vectors Vm, for n = 3, sorted in ascending order with respect to the Divergence Index IM.

In order to verify the correctness of the sorting proposed in Figure 18, all of the
Configuration Voltage Vectors Vm, for n = 3, have been tested in simulation using the
three types of voltage signals Vd that are shown in Figure 19 (sinusoidal, triangular, and
sawtooth) with Vin = 1 V, an offset equal to Vin/2, a peak-to-peak amplitude equal to
Vin, a frequency equal to 50 Hz, an output current equal to Iout = 1 A, and capacitors Ci
chosen as in (29) with Cn = 1 F. Figure 20 shows the results of these simulations, where the
Divergence Index IM (red characteristic, left vertical axis) is compared with the maximum
norm max(|∆V|) of vectors ∆V = Vc(t)−Vm0 obtained in simulation for the three types of
the considered periodical signals (colored characteristics, right vertical axis). Two different
reference axes have been used in Figure 20, because the Vectorial Divergence Function−→
V m(Ṽd) and corresponding Divergence Index IM have been computed using a constant
normalized voltage Ṽd ∈ [0, 1], whereas the maximum norms max(|∆V|) have been
obtained in simulation using different signals, i.e., periodical normalized signals Ṽd with a
non-zero frequency of 50 Hz. It can be shown that the two quantities IM and max(|∆V|)
would tend to be comparable only if the frequency of the periodical normalized signals Ṽd
became equal to zero. Consequently, the Divergence Index IM represents an upper boundary for
the maximum norm index max(|∆V|), for each Configuration Voltage Vector Vm. Furthermore,
Figure 20 shows the good direct proportionality existing between the Divergence Index
IM and the maximum norm indices max(|∆V|) of the three considered signals. This good
proportionality shows the effectiveness of using the Divergence Index IM for evaluating
the divergence characteristics of the different Configuration Voltage Vectors Vm, which
gives a direct measurement of their degree of robustness.
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Figure 19. Desired voltage signals Vd for the comparisons in Figures 20 and 21.

Even for the case n = 4, all the Configuration Voltage Vectors Vm have been tested
in simulation by employing the same normalized periodical signals Ṽd used for the case
n = 3, which are shown in Figure 19. Figure 21 reports the results of these simulations
and the comparison between the Divergence Index IM (red characteristic, left vertical
axis) and the maximum norm indices max(|∆V|) (colored lines, right vertical axis). In
this figure, the 407 Configuration Voltage Vectors Vm of case n = 4 have been sorted
with respect to the Divergence Index IM. The upper part of the figure shows, for each
m ∈ [5, 6, . . . , 16], the Configuration Voltage Vector Vm having the minimum Divergence
Index IM. The simulation results that are reported in Figure 21 show the good direct
proportionality existing between the Divergence Index IM and the maximum norm indices
max(|∆V|), even in the case n = 4, and, therefore, the effectiveness of using the Divergence
Index IM for evaluating the divergence characteristics, i.e., the degree of robustness, of the
different Configuration Voltage Vectors Vm.

Figure 20. Comparison between the Divergence Index IM and metric max(∆V), computed from simulation using three
different Ṽd signals, for the Configuration Voltage Vectors Vm in the case n = 3.
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Figure 21. Comparison between the Divergence Index IM and metric max(∆V), computed from simulation using three
different Ṽd signals, for the Configuration Voltage Vectors Vm in the case n = 4.

4.3.1. Minimum Distance Control: Stability Issues in Extended Operation

The analysis performed on the basis of the Vectorial Divergence Function
−→
V m(Ṽd)

has shown that all of the Configuration Voltage Vectors Vm, other than the basic one V∗m,
are unstable with different degrees of divergence in some unfavorable conditions, such
as constant desired voltage Ṽd, while using the Minimum Distance algorithm. Moreover,
Figures 20 and 21 have shown that, for some periodical desired signal Ṽd with an average
value equal to 0.5, the maximum distance max(∆V) of the voltage vector Vc from the
desired voltage vector Vm0 remains bounded. The amplitude of the maximum distance
max(∆V) increases if the output current Iout increases, and it decreases if capacitor Cn or
the frequency of the periodical signal Ṽd increase.

If Vc remains in the vicinity of the desired voltage vector Vm0, then the multilevel
converter works properly, providing an output signal Vout switching between equally
spaced voltage values. On the contrary, if the maximum distance max(∆V) increases
excessively, then the output values SMVc of the multilevel converter will no longer be
equally spaced and the average value of the output switching signal Vout will no longer be
equal to the desired signal VinṼd. If this situation occurs, the multilevel converter cannot
work properly, because it provides output signals that are not equal to the desired ones.
The output voltage error Verr = Vout −VinṼd remains low and, therefore, acceptable, only
if the maximum distance max(∆V) remains sufficiently low. Unfortunately, in practical
applications, such as the electric motors control, it can happen that the desired voltage
vector Ṽd does not have an average value equal to 0.5. In this condition, vector Vc diverges
from the desired voltage vector Vm0, which means that the output voltage error Verr
increases excessively and the multilevel converter can no longer work correctly. Another
destabilizing condition can be identified in a sudden load change. These two scenarios are
considered in the following two simulation case studies:
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(A) Let us consider the case of a constant output current Iout = 1.1 A and a sinusoidal
desired voltage with an average value that is equal to 0.5: Ṽd = 0.5 + 0.5 sin(393 t). Fur-
thermore, the voltage signal is supposed to remain constant at the value Ṽd = 0.43 for
a short time interval t ∈ [t1 t2], where t1 ' 32 ms and t2 ' 72 ms. Figure 22 shows
the simulation results. The red characteristic in Figure 22 is the desired signal Ṽd, the gray
characteristic is the output switching signal Vout, whereas the blue characteristic is the
average value of the output signal Vout. From the figure, it is evident that: (1) in the first
part of the simulation, i.e., t < t1, the multilevel converter works correctly, since the output
switching levels are equally spaced and, thus, the output voltage error Verr is very low; (2)
during the second part of the simulation, i.e., t ∈ [t1 t2], the values of the output switching
levels change considerably with respect to the desired ones, and they are no longer equally
spaced. Therefore, the average value of the output signal Vout (blue characteristic) is no
longer equal to the desired value Ṽd (red characteristic); and, (3) in the third part of the
simulation, i.e., t > t2, the multilevel converter no longer works correctly, since the output
signals (the gray and blue characteristics) are no longer equal to the desired one (the red
characteristic). This is due to the fact that the trajectories of the reduced voltage vector Vc
have diverged from the desired value Vm0 because of the constant voltage Ṽd. Moreover,
the Minimum Distance algorithm is not able to force the reduced voltage vector Vc to move
back towards the desired voltage vector Vm0 after divergence has occurred.

(B) Let us consider the case of a sinusoidal desired voltage with an average value that is
equal to 0.5: Ṽd = 0.5 + 0.5 sin(393 t). The load current is supposed to be constant and
equal to Iout = 1 A for t < t1 = 0.04 s. Next, a sudden load change causing a current
step is supposed to occur, causing Iout to jump from 1 A to 10.5 A for t1 ≤ t < t2 = 0.1 s.
The load operating condition giving Iout = 1 A is supposed to be reestablished for t ≥ t2.
Figure 23 shows the simulation results. The characteristics color notation is the same as
the one adopted in Figure 22. From Figure 23, it is evident that: (1) in the first part of the
simulation, i.e., t < t1, the multilevel converter works correctly, since the output switching
levels are equally spaced, which means that the output voltage error Verr is very low;
(2) for t ∈ [t1 t2), the values of the output switching levels change with respect to the
desired ones, and they are no longer equally spaced; and, (3) for t ≥ t2, the output voltage
levels remain unequally spaced, due to the divergence of the trajectories of the reduced
voltage vector Vc from the desired value Vm0 caused by the sudden load change. Moreover,
the Minimum Distance algorithm is not able to force the reduced voltage vector Vc to move
back towards the desired voltage vector Vm0 after the divergence has occurred.

Unfortunately, situations such as those that are shown in Figures 22 and 23 can happen
for all of the Configuration Voltage Vectors Vm, except for the basic one V∗m. This poses
quite a limitation on the operation of the converter in the so-called "Extended Operation”,
namely for Vm 6= V∗m allowing to generate a number of output voltage levels m > n + 1
for the given n, since unpredictable undesired conditions may compromise the correct
functioning of the multilevel converter.
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Figure 22. Deformation of the output voltage waveform in the extended operation of the converter with the Configuration
Voltage Vector Vm = [7 6 2]T caused by the voltage trajectory divergence in presence of a constant output voltage.
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Figure 23. Deformation of the output voltage waveform in the extended operation of the converter with the Configuration
Voltage Vector Vm = [7 6 2]T caused by the voltage trajectory divergence in presence of a sudden load change.
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4.4. Variable-Step Control of the Multilevel Flying-Capacitor Converter

To cope with the divergence problem described in the previous section, the use of a
new solution based on the PWM physical scheme that is shown in Figure 24 is proposed.
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The basic elements of the new PWM scheme are the following:

(a) a square wave signal having period TPWM acting as a clock, which activates the
Variable-Step Control and resets the integrator to the zero initial condition when the
rising edge occurs;

(b) an integrator with a constant input 1
TPWM

and a reset signal that is timed by the square
clock. The output Vs of the integrator is a sawtooth signal which ranges from 0 to 1
within a time interval t ∈ [tr, tr + TPWM], where tr is the reset time instant, see the
black line in Figure 25;

(c) the voltage Vdc that is provided by the Variable-Step Control block, defining the duty
cycle of the high level of the PWM signal, namely the time interval TH , see the green
line in Figure 25;

(d) the value of the signal VHL = Vdc −Vs determines the output of the selector and, thus,
the configuration vector Sj, which is going to be applied to the multilevel converter
during the next time interval: Sj =SH for a time interval TH if VHL > 0 and Sj =SL
for a time interval TPWM − TH if VHL < 0;

(e) at each activation time, the Variable-Step Control reads the input signal Ṽd and gen-
erates three output signals: SH , Vdc and SL. Using these signals, the Variable-Step
Algorithm can decide the duty cycle dc and the two levels SHVc and SLVc of the next
PWM period;

(f) let VH > Vd denote the voltage corresponding to configuration vector SH and VL < Vd
denote the voltage corresponding to configuration vector SL. The duty cycle dc =
TH/TPWM of the next PWM period, that is the ratio between the duration TH of the
higher level and the duration of the PWM period TPWM, can be computed, as follows:

Vd = VH dc + VL(1− dc) ↔ dc =
Vd −VL
VH −VL

. (30)

Using (30), the duty cycle dc always guarantees that the average value of the PWM
output voltage in the next period TPWM is equal to the desired value Vd.



Energies 2021, 14, 1903 30 of 40

Version March 25, 2021 submitted to Energies 27 of 37

1
TPWM 1

s

Vs

VHL
Variable-Step

Control
Ṽd
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Figure 25. Scheme for the application of the configuration vectors SjH and SjL associated with the higher and lower level
time intervals TH and TPWM − TH .

Figure 26 provides the basic structure of the Variable-Step Control algorithm by means
of a Matlab-like function called “Multi_Step_Algorithm(· · · )”. This function is called at
each activation time providing the following input parameters:
∆V, Ṽd, Iout, TPWM, Ns, Vr0. The "Multi_Step_Algorithm” attempts to keep the re-
duced voltage vector Vc as close as possible to the desired reduced voltage vector Vm0,
see (22). The main features of the “Multi_Step_Algorithm” are the following:

function [SH , Vdc, SL] = Multi_Step_Algorithm(∆V, Ṽd, Iout, TPWM, Ns, Vr0)
1. VD = Ṽd(m− 1); % Variable VD ∈ [0, m− 1]
2. αH0 = ceil(VD); % Initial upper adjacent level
3. Vdc = VD − floor(VD); % Voltage Vdc in Figure 24 and Figure 25
4. Nm = ∞; % Initialize minimum norm of ∆Vcij
5. for Nsi = 1 : Ns % Nsi is the amplitude of the Step
6. for k = 0 : Nsi − 1 % k is the up and down Shift
7. αH = αH0 + k; αL = αH − Nsi; % Current levels αH and αL
8. Compute the new duty cycle dc; % As in (30)
9. if (αH < m)&&(αL ≥ 0) % αH , αL must not exceed boundaries
10. Compute sets SαH and SαL ; % Defined in (23)
11. Compute vectors SCHi and SCLj; % Defined in (22)
12. for i ∈ SαH % Cycle over indexes in SαH
13. for j ∈ SαL % Cycle over indexes in SαL

14. ∆Vcij =∆V+[SCHi dc+SCLj(1−dc)]IoutTPWM; % Distance vector
15. if norm(∆Vcij) < Nm % If |∆Vcij|< current minimum
16. Nm = norm(∆Vcij); % Set Nm to the current one
17. Set: SH = Si; SL = Sj; Vdc = dc; % Set the outputs
18. end
19. end
20. end
21. end
22. end
23. if (Nm < norm(∆V))||(Nm < Vr0Nsi) % Nm<|∆V|or< hypersphere radius
24. return % Exit from the algorithm
25. end
26. end

Figure 26. Matlab-like form of the Variable-Step Control algorithm.
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• At each activation time tk, the "Multi_Step_Algorithm” computes the two configu-
ration vectors SH , SL and the duty cycle Vdc to be applied in the following PWM
time interval [tk tk + TPWM]: configuration SH will be applied in the first part of the
PWM period when VHL = Vdc −Vs > 0, while configuration SL will be applied in the
second part of the PWM period when VHL < 0, see Figure 25.

• The input Ns defines the maximum amplitude of the Step to be used in the algorithm,
which is the maximum level-to-level distance. The for cycle at line 5 in Figure 26 defines
the current value Nsi ∈ [1, 2, . . . , Ns] of the amplitude of the Step, i.e., the current
level-to-level distance. The for cycle at line 6 defines the current value k of the up and
down shift to be considered for the current amplitude Nsi of the Step.

• At lines 7 and 8, the current values of the upper level αH , the lower level αL, and the
duty cycle dc are computed. If the current values of αH and αL are admissible, see
condition at line 9, then the sets SαH and SαL of the admissible configuration vectors
SHi and SLj and the corresponding vectors SCHi and SCLj are computed at lines 10
and 11.

• The two for cycles at lines 12 and 13 are used to compute the distance vector ∆Vcij
for each possible combination of the configuration vectors Si and Sj belonging to
the two sets SαH and SαL . At line 14, the distance vector ∆Vcij is computed starting
from the initial condition ∆V and adding the two terms SCHi dc IoutTPWM and SCLj(1−
dc)IoutTPWM, due to the application of the configuration vectors SHi and SLi in the
first part dcTPWM and in the second part (1−dc)TPWM of the PWM period TPWM,
respectively.

• If the norm of the distance vector ∆Vcij is smaller than the current minimum norm
Nm, see line 15, then the algorithm updates the value of parameter Nm, see line 16,
and it sets the values of the output variables SH , SL and Vdc equal to the values Si, Sj
and dc of the current solution, see line 17.

• The "Multi_Step_Algorithm” ends its minimum distance vector search, see line 24,
when one of the conditions at line 23 is verified, or when the maximum level-to-
level distance Ns has been achieved. At line 23, the algorithm exits the search if the
current minimum distance Nm is lower than the initial one, or if Nm is lower than
radius Vr0 Nsi, where Vr0 is the input basic radius and Nsi is the current level-to-level
distance. Radius Vr0 Nsi represents the varying radius of an hypersphere in the (n− 1)-
dimensional space. Figure 27 shows the resulting circumferences with varying radius
Vr0 Nsi for the case n = 3.

• The "Multi_Step_Algorithm” introduces and uses the new concept of “variable level-
to-level distance”. This concept means that the algorithm can choose a higher level
αH and a lower level αL that are not adjacent, see line 7 of the algorithm. The current
level-to-level distance is denoted by variable Nsi ∈ [1, Ns]. The new duty cycle dc
associated with the two levels αH and αL, computed in line 8, guarantees that the
average value of the PWM output voltage in the next PWM period TPWM will be equal
to the desired value Vd.

• The ability to change the level-to-level distance allows the "Multi_Step_Algorithm”
to keep the reduced voltage vector Vc in the vicinity of the desired voltage vector
Vm0 even in extended operation and in presence of some particularly unfavorable
operating conditions, such as normalized desired voltage Ṽd having an average value
different from 0.5.

• If the unfavorable conditions persist, the algorithm can enlarge the level-to-level
distance Nsi up to its upper boundary Ns = m− 1. This enlargement increases the
number of the configuration vectors Sj that the algorithm can use to keep vector Vc in
the vicinity of the desired vector Vm0, and to maintain the correct functioning of the
multilevel converter. Furthermore, when the unfavorable conditions no longer occur,
the "Multi_Step_Algorithm” has the ability to force the converter to go back to work
as a normal multilevel converter switching between adjacent levels only, i.e., with a
current level-to-level distance Nsi equal to one.
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• The example reported in Figure 28 shows all the possible combinations of levels αH
and αL that can be obtained when m = 6, Nsi ∈ {1, 2, 3, 4, 5} and the desired voltage
VD = (m− 1)Ṽd is in between levels “2” and “3”.
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Figure 27. Circumference with varying radius Nsi Vr0 in the two-dimensional space for the case n = 3.
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Figure 28. Possible combinations of higher and lower output voltage levels αH and αL as a function
of the current level-to-level distance Nsi for the case m = 6 and a desired voltage VD in between “2”
and “3”.
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4.4.1. Variable-Step Control: Solution of the Stability Issues in Extended Operation

Section 4.3.1 has shown that the Minimum Distance Control is not capable of ensur-
ing the correct operation of the multilevel flying-capacitor converter, in extended mode,
under particularly unfavorable operating conditions, such as a desired voltage Ṽd, with
an average value that is different from 0.5 or a sudden load change. Examples of this type
are shown in Figures 22 and 23, respectively. On the contrary, the Variable-Step Control
that was presented in the previous section is able to ensure the correct functioning of the
multilevel converter, even under unfavorable operating conditions. To give some examples,
reference is made to Figures 29 and 30, showing the simulation results obtained using the
Variable-Step Control under the same operating conditions as those of the simulations in
Figures 22 and 23, respectively, when the Minimum Distance Control was used instead. In
Figures 29 and 30, the red characteristic is the desired signal Ṽd, the gray characteristic is
the switching output signal Vout, and the green characteristic is the average value of the
output signal Vout.

With reference to Figure 29, it is evident that: (1) in the first part of the simulation,
for t < t1, the multilevel converter works correctly in extended operation using the
minimum level-to-level distance Nsi = 1 and the output voltage error Verr = Vout −VinṼd
remains low; (2) during the second part of the simulation, for t ∈ [t1 t2], the current
level-to-level distance Nsi increases from 1 to 2, and the gray output variable Vout switches
between levels VL = 2/7 and VH = 4/7. In this part of the simulation, the effectiveness
of the Variable-Step Control comes into play, which prevents vector Vc from diverging
excessively from the desired reduced vector Vm0, even in the presence of the unfavorable
condition of a signal Ṽd constant and different from 0.5. On the other hand, in the simulation
of Figure 22, the Minimum Distance Algorithm was not able to prevent the divergence
of the vector Vc, therefore compromising the correct functioning of the converter; (3) in
the third part of the simulation, for t > t2, the operating condition Nsi = 2 is maintained
until the distance between vectors Vc and Vm0 is sufficiently reduced, namely until time
instant t3 ' 176 ms; and, (4) in the fourth part of the simulation, for t > t3, the converter
starts operating as a classical multilevel flying-capacitor converter in extended mode once
again, setting the current level-to-level distance Nsi back to 1. On the other hand, in the
simulation of Figure 22, the Minimum Distance Algorithm was not able to force the vector
Vc to move back towards the desired vector Vm0 after the divergence occurred.

With reference to Figure 30, it is evident that: (1) in the first part of the simulation,
for t < t1, the multilevel converter works correctly in extended operation using the
minimum level-to-level distance Nsi = 1 and the output voltage error Verr = Vout −VinṼd
remains low; (2) for t ∈ [t1 t2), the current level-to-level distance Nsi increases from 1
to 2, in order to prevent vector Vc from diverging excessively from the desired reduced
vector Vm0 as a consequence of the undesired sudden load change. On the other hand,
in the simulation of Figure 23, the Minimum Distance Algorithm was not able to prevent
the divergence of the vector Vc, therefore compromising the correct functioning of the
converter; (3) for t ≥ t2, the operating condition Nsi = 2 is maintained until t = t3 '
0.1039 s, namely for the very short time interval that it takes for the distance between
vectors Vc and Vm0 to be sufficiently reduced; and, (4) for t ≥ t3, the converter starts
operating as a classical multilevel flying-capacitor converter in extended mode once again,
setting the current level-to-level distance Nsi back to 1. On the other hand, in the simulation
of Figure 23, the Minimum Distance Algorithm was not able to force the vector Vc to move
back towards the desired vector Vm0 after the divergence occurred.

The simulation results that are reported in Figures 29 and 30 clearly highlight the
effectiveness of the proposed Variable-Step Control as compared with the classical Min-
imum Distance Control. This especially holds in those applications, such as the electric
motors control, where it can happen that the desired voltage vector Ṽd does not have an
average value equal to 0.5, or that an undesired sudden load change occurs. At the same
time, it is desirable to have the converter operating in extended mode, because of all the
advantages in the output voltage quality coming from a larger number of output voltage
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levels without increasing the number of capacitors. The proposed Variable-Step Control
aims at enabling the multilevel flying-capacitor converter operation in extended mode any
time the operating conditions allow it, and it enlarges the level-to-level distance Nsi only
when strictly necessary to prevent the divergence of the flying capacitors voltages.

The Reader is invited to refer to the supplementary material in order to test and
compare the Minimum Distance Control algorithm and the Variable-Step Control algo-
rithm [28]. The Simulink model "Multilevel_Flying_Capacitor_Converter_mdl.slx” has
been created with Matlab R2020b and it contains the dynamic model of the multilevel
flying-capacitor converter with n capacitors given in Figure 4, as well as the implemen-
tation of both the Minimum Distance Control and the Variable-Step Control. The two
algorithms are implemented in the Matlab functions "Distance_Control_0.m” and “Dis-
tance_Control_n.m”, respectively. The main script that allows to control the simulations is
named “Multilevel_Flying_Capacitor_Converter.m”, where the system parameters that
the user can set are reported and commented. Note that variables m and mii in the script
"Multilevel_Flying_Capacitor_Converter.m” denote the number m of output levels and the
order mii of the Configuration Voltage Vector Vm, according to the orders that are reported
in Figure 20 for the case n = 3 and in Figure 21 for the case n = 4.
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Figure 29. Non-Deformation of the output voltage waveform in the extended operation of the converter with the Configura-
tion Voltage Vector Vm = [7 6 2]T, in the presence of a constant output voltage, thanks to the Variable-Step Control.
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Figure 30. Non-Deformation of the output voltage waveform in the extended operation of the converter with the Configura-
tion Voltage Vector Vm = [7 6 2]T, in the presence of a sudden load change, thanks to the Variable-Step Control.

5. Converter Testing with Dynamic Loads

This section deals with the simulation of the multilevel flying-capacitor converter
with n = 3 in extended operation, while using the Configuration Voltage Vector Vm =
[5 4 1]T, with several proposed load case studies. The considered load configuration is an
RLC circuit, where a capacitor CL and a resistor RL are connected in parallel, and their
parallel configuration is connected in series to an inductor LL. The described load can be
modeled using the POG block scheme that is shown in Figure 31 on the left. The transfer
function H(s) relating the output power variable Iout to the input power variable Vout is
the following:

H(s) =
Iout(s)
Vout(s)

=
sRLCL+1

s2RLCLLL+sLL+RL
. (31)

The parameters values for the considered load case studies are shown in Figure 31 on the
right, together with the converter parameters. As far as loads 1, 2 and 3 are concerned,
the desired voltage Vd is assumed to be sinusoidal with an offset that is equal to Vin/2,
a peak-to-peak amplitude equal to Vin and a frequency equal to 50 Hz. As far as load 4 is
concerned, the desired voltage Vd is assumed to be constant and equal to 4.5 V. By focusing
on the loads 1, 2, and 3, and using the parameters LL, CL, and RL given in Figure 31, one can
notice that they represent the cases of voltage Vout delayed by π/4 with respect to current
Iout, current Iout delayed by π/4 with respect to voltage Vout, and current Iout in phase with
voltage Vout, respectively. The initial conditions of the RLC load are assumed to be equal to
zero. Figure 32 shows the simulation results in terms of output voltages Vout. The first three
rows of subplots show the simulation results after the transient when the loads 1, 2 and 3
are considered. From the first three rows of subplots on the left-hand side, obtained using
the Minimum Distance Control, it is possible to see that the average Vout characteristic
exhibits different degrees of deviation from the desired voltage Vd. This is due to the fact
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that the distance between vectors Vc and Vm0 tends to increase, even if the average value
of Ṽd is equal to 0.5, i.e., the average value of Vd is equal to Vin/2. This can be explained by
recalling that the output current Iout is not constant, as the load is dynamic, which means
that the strength of the control action applied by the Configuration Vector Sj in (24) changes
in time through Iout, which is a function of Vout. Without a loss of generality, it is possible to
state that this makes the Voltage Configuration Vectors Vm different from the basic one V∗m
loose the full flying capacitors voltage balancing capability, i.e., to become unstable, even
when the average value of the desired voltage Vd is equal to Vin/2. It follows that the distance
between vectors Vc and Vm0 will keep increasing, thus causing the output voltage levels
to be increasingly unequally spaced. On the other hand, the subplots on the right-hand
side show the very good matching between the average Vout characteristic and the desired
voltage Vd when the converter is controlled using the Variable-Step Control. It follows that
the Variable-Step Control is capable of handling the cases of non-constant output current
Iout in extended operation as well, by increasing the current level-to-level distance Nsi
when necessary in order to prevent the divergence of vector Vc from vector Vm0. As an
example of this, the voltage trajectories of the flying capacitors, namely the components
of vector Vc, are shown in Figure 33 for the case "Load 2” when the two different controls
are used. From the figure, it is clearly possible to see that the Minimum Distance Control
causes the divergence of vector Vc (blue characteristic) from the desired vector Vm0, which
is highlighted by the red spot in the figure. Furthermore, the blue characteristic also shows
that the strength of the control action applied by the Configuration Vector Sj in (24) is
indeed not constant during the simulation, but it is a function of the output current Iout,
since the length of the blue voltage trajectories in Figure 33 is not constant. On the other
hand, the Variable-Step Control is indeed capable of ensuring the convergence of vector Vc
to the desired vector Vm0.
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Vd is equal to Vin/2. This can be explained by recalling that the output current Iout is not constant,601

Figure 31. On the left: RLC load POG scheme; On the right: RLC load and converter parameters.

The fourth row of subplots presented in Figure 32 shows the case of constant desired
voltage Vd with the load parameters identified by “Load 4” in Figure 31 on the right.
The bottom-left subplot shows that the case of constant desired voltage Vd 6= Vin/2, namely
Ṽd 6= 0.5, is still the most severe one. This can be seen from the fact that the output
voltage levels quickly become unequally spaced because of the divergence of vector Vc
from vector Vm0. Furthermore, note that the average output voltage in the bottom-left
subplot of Figure 32 tends to decrease, as a consequence of the divergence of the vector
Vc trajectories. Consequently, the output current Iout will also tend to decrease. This
situation gives rise to an unstable loop: the more Vout decreases with respect to the desired
value Vd, the lower the output current Iout, the weaker the control action applied by the
Configuration Vector Sj in (24), the more severe the divergence of the Vc trajectories from
Vm0. However, the bottom-right subplot of Figure 32 shows how the divergence of the Vc
trajectories from Vm0 is prevented by the Variable-Step Control, thanks to the increase of
the current level-to-level distance Nsi from 1 to 2, showing the effectiveness of the proposed
Variable-Step Control.
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Figure 32. Left subplots: simulations using the Minimum Distance Control for Vm = [5 4 1]T; Right subplot: simulations
using the Variable-Step Control for Vm = [5 4 1]T.
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Figure 33. Voltage trajectories for the “Load 2” case using the Minimum Distance Control (blue) and
the Variable-Step Control (green).

6. Conclusions

In this paper, the modeling, the control, and the robustness assessment of the multi-
level flying-capacitor converter have been addressed. The main contributions of this paper
are summarized in the following:

• the Power-Oriented Graphs modeling technique has been exploited to derive the
system dynamic model of the n-dimensional converter, generating a POG model that
can be directly implemented in Matlab/Simulink by employing standard Simulink
libraries;

• a procedure for computing all the possible voltage vector configurations Vm providing
equally spaced levels of the output voltage Vout has been given;

• the robustness assessment of the converter operating in extended mode when using a
Minimum Distance Control has been performed;

• a Divergence Index IM has been introduced, which can be used as a metric for properly
ordering the different Configuration Voltage Vectors on the basis of their voltage
balancing capability in extended operation;

• a new Variable-Step Control algorithm has been proposed, allowing for the safe
extended operation of the converter even under particularly destabilizing operating
conditions, such as a constant desired output voltage or a sudden load change.

The good performances of the proposed control algorithm have finally been tested
in simulation and compared with the results that are given by the classical Minimum
Distance Control.

The next steps of the research work presented in this paper include the code optimiza-
tion of the Variable-Step Control, in order to study and address its real-time implementation,
as well as the investigation of the other potential benefits that the Variable-Step Control
can bring. Additionally, the closed-loop stability analysis through the load can provide
important criteria that the load must satisfy in order to ensure closed-loop stability. As far
as the modeling part is concerned, the presented modeling procedure can be extended in
order to show that it can also be easily applied to other converter topologies, such as the
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diode-clamped topology. Furthermore, we are planning to address the analysis and the
modeling of other multilevel converters, in order to perform their stability analysis and
investigate the properties they exhibit, following the outlines introduced in this paper for
multilevel flying-capacitor converters.
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