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Abstract: The main goal of this study was to assess the levels of concentration of biological air
pollutants in biomass processing power plants, based on the measurements taken in a plant located
in Southern Poland. This work shows problems related to the co-combustion of biomass and
indicates the health risks to which employees of positions closely related to the processing and
combustion of biomass are exposed. Bacterial and fungal aerosol samples were collected using a
six-stage Andersen cascade impactor with aerodynamic cut-off diameters of 7.0, 4.7, 3.3, 2.1, 1.1 and
0.65 µm (Tisch Environmental, USA). The highest average concentration level of micro-organisms
was recorded in the air in the biomass analysis laboratory, where there was no constant airflow. It was
found that the concentration levels of biological agents were below the Polish proposals for threshold
limit values in the work environment polluted with organic dust. However, it was observed that the
share of the respirable fraction (RF) of bacterial aerosol (particles less than 3.3 µm) in workplaces
was equal to or higher than 50% of the total concentration, which may cause increased potentially
adverse health effects and problems with concentration among power plant employees. Therefore, to
ensure adequate air quality in the tested object, it is necessary to properly ventilate. This preliminary
research could be the important starting point for a complete and precise assessment of bioaerosol
exposures in biomass processing power plants in order to protect workers’ health.

Keywords: bioaerosol; biomass processing; power plant; bacterial aerosol; fungal aerosol; occupa-
tional hazard

1. Introduction

Renewable energy sources are an alternative to traditional energy carriers because they
reduce the harmful impact of the energy sector on the natural environment by reducing
harmful substances. One of the most popular renewable energy sources is biomass [1].
Almost 200 years ago, biomass was the main carrier of primary energy used by humans.
Since the 1990s, interest in biomass and its use has been gradually increasing [2]. In
the near future, the use of this energy source is expected to increase. Biomass brings
local benefits, e.g., increasing the level of energy security, creating new workplaces and
promoting regional development, and global environmental benefits, e.g., reduction of
CO2 [3,4].

The main advantage of using alternative energy sources is that their resources comple-
ment each other in natural processes, and their acquisition is much more environmentally
friendly. Biomass is increasingly being used for power generation; however, assessments
of the potential occupational health problems related to the processing of biomass are very
limited. Despite the many benefits of biomass, its processing carries a high health risk
to central-heating plant workers from exposure to biological air pollutants, e.g., bacteria,
microscopic fungi, and viruses [5].
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Nowadays, it is necessary to assess the danger of workplace breathable air in order
to protect the health of workers there and prevent the onset of chronic and dangerous
diseases as much as possible [6]. The biggest threat to the health of people working in
the processing of biomass is organic dust [7], which arises both in the process of use and
processing. Previous Polish research stated that biomass is the primary source of bacteria at
power plant workplaces. These results also showed that bacteria associated with biomass
could be easily transferred to workers’ hands and masks during routine activities [8].

In the European Union (EU) countries, coal will cease to be a source of energy after
2050 and will be replaced by renewable energy sources [9]. The popularity of biomass in the
Polish energy sector is growing every year [10,11]. It is very important because Poland still
has the worst value of ecological sustainability indicator for the amount of carbon dioxide
equivalent (ton) per capita emitted in the atmosphere, due to the anthropic activities and is
still far from that of the other European countries like Germany, France, Italy, and Spain [12].
Therefore, biomass should be a source of energy that is most often used by Polish power
plants, and the combined heat and power plants’ use of biomass reduces carbon dioxide
emission into the atmosphere. Thus, it helps meet the EU requirements.

The use of biomass in Poland also brings many economic benefits, not only for local
communities but also for the entire country [13,14]. It has an impact on reducing carbon
dioxide emissions, contributes to an increase in the number of jobs, and allows for the
management of agricultural wasteland. It also allows for the safe disposal of waste and
contributes to regional development. The Polish energy industry uses forest biomass in the
form of wood chips or pellets most often, which usually does not cause major combustion
problems. The big problem is that forest biomass resources are limited, while the existing
agro-mass resources in the form of straw, greenery, and biowaste are available in large
amounts but are most often wasted by rotting in fields and emitting carbon dioxide [15].

The organic dust generated in the processing and use of biomass is the main health
hazard for workers who come into contact with this fuel [5,16]. The dust contains both
plant substances and micro-organisms that develop in it, which have a disastrous effect
on the human body through toxic, irritating, and allergenic effects. The type of source
materials, material processing, climatic conditions, and storage technology are the main
environmental factors influencing the potential pathogenicity and the concentration of
fungi and bacteria in the dust [17]. Combined heat and power plant workers represent a
group particularly exposed to the risks associated with the presence of high concentrations
of biological air pollutants [18].

The bacteria and fungi found in organic dust are generally non-infectious but can be
harmful to the respiratory system. Bioaerosols can cause various types of diseases: mucous
membrane irritation (MMI), chronic obstructive pulmonary disease, immunotoxic diseases
such as organic dust toxic syndrome (ODTS), allergic diseases (allergic alveolitis, asthma,
and allergic rhinitis), and irritation of the mucous membranes, conjunctiva, and skin [19].
The mucosa of the respiratory system most often becomes the gateway to infection by
micro-organisms. Infectious agents for most of the diseases listed above are transmitted
by air. The most common ailment caused by various types of air pollution is allergy (an
excessive reaction of the body to the presence of allergens), in which large amounts of
antibodies are produced [20].

Simple and effective methods to determine the biological aerosol concentration are
lacking, and consequently, almost no bioaerosol exposure limits are available [21]. Most
of the studies about microbiological air quality in workplaces have focused on the total
concentration of bioaerosols. This information is indispensable for the assessment of
population exposure, as well as for the identification of biological aerosols emission sources.
However, it is especially important to garner information about particle size concentrations
of bioaerosols, as this is critical to their fate in the air and their deposition in the human
respiratory system [22]. Bioaerosols vary considerably in size, from approximately 0.02 to
100 µm. The particle size distribution (PSD) of bioaerosols depends upon the type of
micro-organism species, age of the spore and nutrient medium, humidity, differences in
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aggregation rates of the spores, and the type of particles they are associated with, such
as mist or dust [23]. The higher the respirable fraction (RF) of bioaerosols (particles less
than 3.3 µm), the more damage they cause in the body by penetrating the deepest tissues
of the body [24–26]. A serious occupational hazard to people exposed to organic dust is
poisoning with toxins produced by micro-organisms. Mycotoxins, which are highly toxic,
mutagenic, and carcinogenic, may be present in organic dust [27].

The aim of this study is to explore the assessment of problems related to the co-
combustion of biomass in boilers and indicate the risks to which power plant employees of
positions closely related to the processing and combustion of biomass are exposed. The
study focuses on determining the level and size distribution of biological air pollutants gen-
erated during biomass processing for energy purposes, thus increasing awareness of their
possible human health hazards. The results may have wider implications for knowledge of
biological air pollutants related to the processing of biomass in the energy sector.

2. Materials and Methods
2.1. Sampling Site

The study was conducted in four different stations of a power plant in Southern
Poland during January 2020. Table 1 shows the quality parameters of biomass currently
co-fired with fine coal at the power plant. The measurements were made in the area of the
power plant where group I (wood chips) of biomass is processed.

Table 1. Quality parameters of biomass currently burned at the power plant in Southern Poland.

Group Group I (Wood) Group II (Agro-Mass)

Biomass type Wood chips Sunflower husk pellets
Minimum calorific value [kJ/kg] 7500 16,900

Total moisture value [%] 51 9
Ash value [%] 5 3

Sulphur value [%] 0.01 0.1
Chlorine value [%] 0.01 0.09
Elemental carbon 23 43

2.2. Sampling and Analysis

The samples of biological aerosol concentrations were taken using a six-stage Andersen
cascade impactor with cut-off diameters of 7.1, 4.7, 3.3, 2.1, 1.1, and 0.65 µm (Figure 1).
The impactor was designed to measure the concentration of specific size distributions
of micro-organisms in the air of the tested environment. The structure of the impactor,
the diameter of the openings of each segment, together with the flow used, enables the
distribution of the aerosol fraction into groups with aerodynamic diameters corresponding
to the penetration of various places in the human respiratory system.

The subsequent bioaerosol fractions on each segment were immediately transferred to
Petri dishes filled with agar medium. The Petri dishes were then subjected to qualitative
analysis. The air sampling device was set at a height of approximately 1.5 metres in order
to simulate aspiration from the human inhalation zone. Four measurement points were
selected for the research (Table 2). To determine the ‘external background,’ the bioaerosol
collected in the outdoor air at a considerable distance from the workstations was tested.

Table 2. Sampling points in the power plant.

No. Measuring Station

1 Bio-raw materials unloading yard
2 Biomass analysis laboratory
3 Weight conveyor
4 Outdoor air
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Figure 1. The six-stage Andersen cascade impactor used during measurements in (a) unloading yard, (b) biomass analysis
laboratory, and (c) weight conveyor.

The airflow during the sampling was 28.3 dm3/min, controlled by a rotameter with a
sampling time of 10 min [28]. The impactor was disinfected using 70% ethanol-immersed
cotton balls between each sampling. After sampling, the Petri dishes were wrapped with a
masking tape (as a control to minimize unexpected contamination), stored at 4 ◦C (using a
portable plastic cooler box), and moved to a laboratory.

Malt extract agar (MEA 2%) was applied to the fungi, with chloramphenicol added
for the cultivation and maintenance of the pathogenic and non-pathogenic fungal species’
growth, especially dermatophytes. By adding chloramphenicol, the selectivity of the
medium was achieved. For bacteria, Trypticase soy LAB-AGAR was used with cyclohex-
imide added to inhibit fungal growth. The samples of fungi were incubated for 5 to 6 days
at 26 ◦C and the samples of bacteria for 48 h at 36 ± 1 ◦C.

The total colony counts of biological aerosols were revised for multiple impactions by
the positive hole method and expressed as colony-forming units (CFUs) per cubic metre of
air [29]. Quality control was practised in accordance with standards PN-EN 12322 [30] and
ISO 11133 [31].

2.3. Statistical Analyses

The concentration values reported in this study were presented as the mean values.
Due to a nonparametric distribution of the collected data (analysed with the Shapiro–Wilk
test), the results were analysed using the Mann–Whitney U test to assess differences at the
sampling sites. Statistically significant differences were determined when a probability
p-value was lower than 0.05.

3. Results and Discussion
3.1. Total Concentration of Bioaerosol

The values of the bacterial and fungal aerosol concentrations [CFU/m3] in the air at
workplaces and in the outdoor air measured with the Andersen impactor are presented in
Table 3 and Figure 2.
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Table 3. The average concentration and size distribution, CFU/m3 of micro-organism colony-forming
units per cubic metre.

Average Concentration, CFU/m3

Bacteria Fraction (µm)
Bio-Raw
Materials

Unloading Yard

Biomass
Analysis

Laboratory

Weight
Conveyor Outdoor Air

>7.1 53 87 42 46
7.1–4.7 67 72 53 68
4.7–3.3 92 147 94 69
3.3–2.1 120 173 87 72
2.1–1.1 92 124 64 57
1.1–0.65 44 71 39 28

Total 468 673 378 341
RF 256 367 190 158

Share (%) of RF 55 54 50 46

Fungi Fraction (µm)
Bio-raw

materials
unloading yard

Biomass
analysis

laboratory

Weight
conveyor Outdoor air

>7.1 35 55 55 35
7.1–4.7 85 60 42 44
4.7–3.3 94 111 71 41
3.3–2.1 65 113 65 51
2.1–1.1 27 62 58 53
1.1–0.65 18 37 35 27

Total 323 438 327 251
RF 110 212 159 131

Share (%) of RF 34 48 49 52
RF—respirable fraction of bioaerosol (0.65–3.3 µm).
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The Mann-Whitney U test confirmed significant differences in the concentration levels
of bacterial and fungal micro-organisms between the individual measuring stations and
the outdoor air with p-values <0.05. The highest average concentration both of bacterial
and fungal aerosol was recorded in the biomass analysis laboratory (673 CFU/m3 and
438 CFU/m3, respectively). The lowest concentrations of biological aerosol were recorded
in the outdoor air, where the concentration of airborne bacteria was 341 CFU/m3 and fungi
251 CFU/m3.
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In Poland and many other countries, the legislation governing microbiological stan-
dards for air pollution has not been developed and implemented. The main reason for
this is a huge variety of air microflora and a large variety of methods. Therefore, there are
no accepted criteria for assessing exposure to biological agents. The proposed standards
for rooms polluted with organic dust are 1.0 × 105 CFU/m3 for mesophilic bacteria and
5.0 × 104 CFU/m3 for fungi [32]. The concentration levels of culturable bacteria and fungi
obtained in this study were below the proposed standards.

3.2. Indoor-to-Outdoor-Ratio (I/O)

Throughout the biological aerosol sampling in any indoor environment, outdoor
biological aerosol sampling should be performed for comparison of indoor and/or outdoor
source strengths. Comparing the bioaerosol levels present in indoor environments with
those in outdoor areas can be a useful tool to indicate whether the concentration of indoor
bioaerosols is affected by both indoor and outdoor environments [33]. The indoor-to-
outdoor ratio (I/O) shows where the source of bioaerosol might be found.

In this study, since the I/O ratio was > 1, it can be concluded that the major source of
bioaerosols is biomass analysis and processing for energy purposes (Figure 3). The highest
average I/O ratio calculated for bacteria and fungi concentrations observed in the biomass
analysislaboratory was 1.97 and 1.75, respectively, with the peak of micro-organisms’ sizes
from 2.1 µm to 3.3 µm (Figures 4 and 5). In the weight conveyor station and during bio-raw
materials unloading yard, the average I/O value calculated for bacteria concentrations was
1.3 and 1.4, and for fungi was 1.1 and 1.3, respectively (Figure 3).
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3.3. Particle Size Distribution (PSD) of Bioaerosols

The influence of bioaerosols on human health is not only related to their concentrations.
The aerodynamic diameters of bioaerosols determine their potential to be deposited either
in the tracheal, bronchial, or alveolar regions of the lungs, so their size distribution is also
important [20,34]. The use of the six-stage Andersen impactor allowed us to obtain data
on the grain distribution of micro-organisms and to determine how deeply they penetrate
the respiratory system of power plant workers. The particle size distribution (PSD) of
airborne bacteria and fungi collected from the air of the analysed power plant is shown in
Figures 4 and 5, respectively.

The share of respirable fraction (RF) of bacterial aerosol observed in workplaces is
equal to or higher than 50% of the total concentration (Figure 4). In the case of fungal
aerosol, the highest share of RF indoors was found in the weight conveyor (49%) and
biomass analysis laboratory (48%) (Figure 5). Due to their small size, the RF particles are
expected to stay airborne for a longer time than larger particles, and the period of exposure
may be extended [35]. Such results could indicate the existence of a serious potential
exposure of workers to particles of respirable sizes, which may reach the trachea, bronchi,
and alveoli and contribute to adverse symptoms in the respiratory system [36,37].

Moreover, we observed a high contribution of fungal RF in the outdoor air (52%) from
the sampling point near the power plant. However, the level of RF of micro-organisms
in the outdoor air may fluctuate strongly, depending on the instantaneous values of
meteorological parameters and the local structure of bioaerosol [38]. Thus, it is necessary
to further conduct microbiological outdoor air quality monitoring in all four seasons of
the year.

The research analysis showed that, in the outdoor air, the shape of the PSD for bacteria
and fungi is rather “flattened.” Moreover, in the case of bacteria, an increase was observed
in the concentration of coarse bacterial particles in the atmospheric air. This may be due
to the adhesion of small, respirable bacteria (less than 3.3 µm) to the coarse dust particles
suspended in the air.
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4. Conclusions

The present work highlights the problem of exposed employees of power plants
and combined heat and power plants to biological air pollutants in workplaces related to
biomass processing. The results of biological factors’ measurements show that the highest
concentrations of bioaerosol occur indoors, in closed stations, where there is no constant
airflow. The concentration levels of airborne micro-organisms were below Polish proposals
for threshold limit values in the work environment polluted with organic dust.

The share of the respirable fraction (RF) of bacterial aerosol (particles less than 3.3 µm)
in workplaces was equal to or higher than 50% of the total concentration. Additionally, this
result increases the health risk to the exposed staff. However, in future work, it is necessary
to conduct the identification of bacteria and fungi species, which may lead to a complete
and precise assessment of bioaerosol exposures occurring during the processing of biomass
for energy purposes. The high contribution of fungal RF in the outdoor air (52%) from the
sampling point near the power plant was observed. Thus, it is necessary to conduct further
microbiological outdoor air quality monitoring in all four seasons of the year.

The encapsulation of biomass processes should be pursued, and the work environment
should be regularly monitored for the presence of hazards caused by microbiological agents
in order to reduce the exposure of workers employed in power plants co-firing biomass.
This study indicates that the use of personal protective equipment is necessary. The research
also showed that natural ventilation does not provide high-quality microbiological air in a
closed room, such as a laboratory. In such a setting, an efficient and mechanical ventilation
system should be introduced, which would ensure less exposure to contact with fungi
and bacteria.

The research indicated that exposure to the bioaerosols present in the tested power
plant does not pose a direct threat to the health of employees. However, long-term inhala-
tion of micro-organisms can cause negative health effects, especially for people sensitive to
microbial air pollution. This may be manifested by greater susceptibility to diseases of the
upper respiratory tract, headache, watery eyes, itchy skin, or coughing.
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