A Data Driven Approach to Robust Event Detection in Smart Grids Based on Random Matrix Theory and Kalman Filtering †
Abstract
:1. Introduction
2. Random Matrix Theory and Kalman Filtering
2.1. Random Matrix Theory
2.1.1. Ring Law
2.1.2. MSR
2.1.3. Data Processing of Ring Law
2.2. Dynamic Kalman Filtering Technique
3. Real-Time Event Detection
4. Experimental Results and Discussion
4.1. Data Conditioning
4.1.1. Noise Reduction
4.1.2. Missing Data Recovery
4.2. Event Detection Using Voltage Magnitudes
4.2.1. Heavy Noise
4.2.2. Missing Data
4.3. Event Detection Using Voltage Phase Angles
4.4. Event Detection Using Real PMU Data
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mousavi-Seyedi, S.S.; Aminifar, F.; Afsharnia, S. Application of WAMS and SCADA data to online modeling of series-compensated transmission lines. IEEE Trans. Smart Grid 2017, 8, 1968–1976. [Google Scholar] [CrossRef]
- Kekatos, V.; Giannakis, G.B.; Wollenberg, B. Optimal placement of phasor measurement units via convex relaxation. IEEE Trans. Power Syst. 2012, 27, 1521–1530. [Google Scholar] [CrossRef]
- Liu, J.; Tang, J.; Ponci, F.; Monti, A.; Muscas, C.; Pegoraro, P.A. Trade-offs in PMU deployment for state estimation in active distribution grids. IEEE Trans. Smart Grid 2012, 3, 915–924. [Google Scholar] [CrossRef]
- Li, Q.; Cui, T.; Weng, Y.; Negi, R.; Franchetti, F.; Ilic, M.D. An information-theoretic approach to PMU placement in electric power systems. IEEE Trans. Smart Grid 2013, 4, 446–456. [Google Scholar] [CrossRef] [Green Version]
- Maji, T.K.; Acharjee, P. Multiple solutions of optimal PMU placement using exponential binary PSO algorithm for smart grid applications. IEEE Trans. Ind. Appl. 2017, 53, 2550–2559. [Google Scholar] [CrossRef]
- Lin, W.; Yang, C.; Lin, J.; Tsay, M. A fault classification method by RBF neural network with OLS learning procedure. IEEE Trans. Power Deliv. 2001, 16, 473–477. [Google Scholar] [CrossRef]
- Vasilic, S.; Kezunovic, M. Fuzzy ART neural network algorithm for classifying the power system faults. IEEE Trans. Power Deliv. 2005, 20, 1306–1314. [Google Scholar] [CrossRef]
- Nguyen, D.; Barella, R.; Wallace, S.A.; Zhao, X.; Liang, X. Smart grid line event classification using supervised learning over PMU data streams. In Proceedings of the 2015 Sixth International Green and Sustainable Computing Conference (IGSC), Las Vegas, NV, USA, 14–16 December 2015. [Google Scholar]
- Adhikari, U.; Morris, T.; Pan, S. Applying Hoeffding adaptive trees for real-time cyber-power event and intrusion classification. IEEE Trans. Smart Grid 2018, 9, 4049–4060. [Google Scholar] [CrossRef]
- Xie, L.; Chen, Y.; Kumar, P.R. Dimensionality reduction of synchrophasor data for early event detection: Linearized analysis. IEEE Trans. Power Syst. 2014, 29, 2784–2794. [Google Scholar] [CrossRef]
- Rafferty, M.; Liu, X.; Laverty, D.M.; McLoone, S. Real-time multiple event detection and classification using moving window PCA. IEEE Trans. Smart Grid 2016, 7, 2537–2548. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Li, K.; Laverty, D.M.; Xue, Y. Synchrophasor-based islanding detection for distributed generation systems using systematic principal component analysis approaches. IEEE Trans. Power Deliv. 2015, 30, 2544–2552. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.; Flueck, A.J.; Kim, D.; Ahn, J.; Lee, J.; Kwon, D. Power system real-time event detection and associated data archival reduction based on synchrophasors. IEEE Trans. Smart Grid 2015, 6, 2088–2097. [Google Scholar] [CrossRef]
- Liu, X.; Laverty, D.M.; Best, R.J.; Li, K.; Morrow, D.J.; McLoone, S. Principal component analysis of wide-area phasor measurements for island detection-A geometric view. IEEE Trans. Power Deliv. 2015, 30, 976–985. [Google Scholar] [CrossRef]
- Kim, D.; Chun, T.; Yoon, S.; Lee, G.; Shin, Y. Wavelet-based event detection method using PMU data. IEEE Trans. Smart Grid 2017, 8, 1154–1162. [Google Scholar] [CrossRef]
- Kavasseri, R.G.; Cui, Y.; Brahma, S.M. A new approach for event detection based on energy functions. In Proceedings of the IEEE PES General Meeting, National Harbor, MD, USA, 27–31 July 2014; pp. 1–5. [Google Scholar]
- Lin, Z.; Xia, T.; Ye, Y.; Zhang, Y.; Chen, L.; Liu, Y.; Tomsovic, K.; Bilke, T.; Wen, F. Application of wide area measurement systems to islanding detection of bulk power systems. IEEE Trans. Power Syst. 2013, 28, 2006–2015. [Google Scholar] [CrossRef]
- Liang, X.; Wallace, S.A.; Nguyen, D. Rule-based data-driven analytics for wide-area fault detection using synchrophasor data. IEEE Trans. Ind. Appl. 2017, 53, 1789–1798. [Google Scholar] [CrossRef]
- He, X.; Chu, L.; Qiu, R.C.; Ai, Q.; Lin, Z. A novel data-driven situation awareness approach for future grids-Using large random matrices for big data modeling. IEEE Access 2018, 6, 13855–13865. [Google Scholar] [CrossRef]
- Zhang, J.; Welch, G.; Bishop, G.; Huang, Z. A two-stage Kalman filter approach for robust and real-time power system state estimation. IEEE Trans. Sustain. Energy 2014, 5, 629–636. [Google Scholar] [CrossRef]
- Gao, P.; Wang, M.; Ghiocel, S.G.; Chow, J.H.; Fardanesh, B.; Stefopoulos, G. Missing data recovery by exploiting low-dimensionality in power system synchrophasor measurements. IEEE Trans. Power Syst. 2016, 31, 1006–1013. [Google Scholar] [CrossRef]
- Xu, X.; He, X.; Ai, Q.; Qiu, R.C. A correlation analysis method for power systems based on random matrix theory. IEEE Trans. Smart Grid 2017, 8, 1811–1820. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Ai, Q.; Qiu, R.C.; Huang, W.; Piao, L.; Liu, H. A big data architecture design for smart grids based on random matrix theory. IEEE Trans. Smart Grid 2017, 8, 674–686. [Google Scholar] [CrossRef]
- Karimipour, H.; Dinavahi, V. Extended Kalman filter-based parallel dynamic state estimation. IEEE Trans. Smart Grid 2015, 6, 1539–1549. [Google Scholar] [CrossRef]
- Netto, M.; Zhao, J.; Mili, L. A robust extended Kalman filter for power system dynamic state estimation using PMU measurements. In Proceedings of the 2016 IEEE Power and Energy Society General Meeting, Boston, MA, USA, 17–21 July 2016. [Google Scholar]
- Ghahremani, E.; Kamwa, I. Local and wide-area PMU-based decentralized dynamic state estimation in multi-machine power systems. IEEE Trans. Power Syst. 2016, 31, 547–562. [Google Scholar] [CrossRef]
- Jones, K.D.; Pal, A.; Thorp, J.S. Methodology for performing synchrophasor data conditioning and validation. IEEE Trans. Power Syst. 2015, 30, 1121–1130. [Google Scholar] [CrossRef]
- Gao, F.; Thorp, J.S.; Pal, A.; Gao, S. Dynamic state prediction based on auto-regression model using PMU data. In Proceedings of the IEEE Power and Energy Conference at Illinois (PECI), Champaign, IL, USA, 24–25 February 2012; pp. 1–5. [Google Scholar]
- Mahmood, F.; Hooshyar, H.; Vanfretti, L. Extracting steady state components from synchrophasor data using Kalman filters. Energies 2016, 9, 315. [Google Scholar] [CrossRef]
- Han, F.; Taylor, G.; Li, M. Towards a data driven robust event detection technique for smart grids. In Proceedings of the 2018 IEEE Power & Energy Society General Meeting (PESGM), Portland, OR, USA, 5–10 August 2018. [Google Scholar]
- Zimmerman, R.D.; Murillo-Sánchez, C.E.; Thomas, R.J. MATPOWER: Steady-state operations, planning and analysis tools for power systems research and education. IEEE Trans. Power Syst. 2011, 26, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Ashton, P.M.; Saunders, C.S.; Taylor, G.A.; Carter, A.M.; Bradley, M.E. Inertia estimation of the GB power system using synchrophasor measurements. IEEE Trans. Power Syst. 2015, 30, 701–709. [Google Scholar] [CrossRef]
- Ashton, P.M.; Taylor, G.A.; Irving, M.R.; Pisica, I.; Carter, A.M.; Bradley, M.E. Novel application of detrended fluctuation analysis for state estimation using synchrophasor measurements. IEEE Trans. Power Syst. 2013, 28, 1930–1938. [Google Scholar] [CrossRef]
Kalman Filter | 1: Initialization |
2: Calculate using (10), | |
3: Update using (19)–(21) | |
4: Update using (16) | |
Event Detector | 5: Form using (26) |
6: Transform to using (6) | |
7: Transform to using (7) | |
8: Form using (2) | |
9: Transform to using (8) | |
10: Calculate MSR using (5) | |
11: If , repeat 2–10 at the next time t + 1; otherwise, go to 12 | |
12: Visualize MSR |
SNR | RMSE of Voltage Magnitude | SNR | RMSE of Voltage Phase Angle | ||||
---|---|---|---|---|---|---|---|
Raw Values | Original KF | Dynamic KF | Raw Values | Original KF | Dynamic KF | ||
5 | 17.519 | 8.6245 | 3.7744 | 5 | 6.6478 | 4.7623 | 3.8785 |
15 | 5.6129 | 2.7867 | 2.3817 | 10 | 3.5212 | 2.0497 | 1.5254 |
25 | 1.7739 | 0.8944 | 0.8906 | 15 | 2.0960 | 1.0613 | 0.9556 |
35 | 0.5534 | 0.2807 | 0.2765 | 20 | 1.1541 | 0.5932 | 0.5699 |
45 | 0.1738 | 0.0886 | 0.0877 | 25 | 0.6867 | 0.3389 | 0.3274 |
55 | 0.0550 | 0.0278 | 0.0276 | 30 | 0.3650 | 0.1867 | 0.1762 |
65 | 0.0174 | 0.0090 | 0.0088 | 35 | 0.2182 | 0.1118 | 0.1020 |
75 | 0.0055 | 0.0029 | 0.0027 | 40 | 0.1178 | 0.0663 | 0.0655 |
85 | 0.0018 | 0.0010 | 0.0009 | 45 | 0.0670 | 0.0424 | 0.0409 |
95 | 0.0006 | 0.0006 | 0.0005 | 50 | 0.0357 | 0.0326 | 0.0295 |
Percentage of Missing Data | RMSE of Voltage Magnitude (SNR = 95) | RMSE of Voltage Phase Angle (SNR = 35) | ||||
---|---|---|---|---|---|---|
Raw Values | Original KF | Dynamic KF (×10−4) | Raw Values | Original KF (×10−2) | Dynamic KF (×10−2) | |
5% | 6.96 | 3.08 | 6 | 2.63 | 18.22 | 16.82 |
10% | 10.02 | 4.62 | 7 | 3.71 | 18.27 | 16.84 |
15% | 12.08 | 6.17 | 8 | 4.62 | 18.46 | 17.40 |
20% | 14.12 | 7.50 | 9 | 5.33 | 18.63 | 17.87 |
25% | 15.63 | 8.84 | 9 | 5.95 | 18.78 | 18.29 |
30% | 17.17 | 10.37 | 10 | 6.52 | 18.90 | 18.79 |
35% | 18.46 | 11.74 | 11 | 7.05 | 19.52 | 19.11 |
40% | 19.85 | 12.96 | 12 | 7.53 | 19.88 | 19.68 |
45% | 21.18 | 14.41 | 13 | 8.01 | 20.30 | 20.01 |
50% | 22.11 | 16.03 | 13 | 8.42 | 20.82 | 20.71 |
Signal | Bus Number | Sampling Time | Active Power Demand (MW) |
---|---|---|---|
swell and sag signals | 60 | t = 1–600 | fluctuation around 80 |
t = 601–700 | fluctuation around 120 | ||
t = 701–1050 | fluctuation around 80 | ||
t = 1051–1150 | fluctuation around 40 | ||
t = 1151–1500 | fluctuation around 80 | ||
others | t = 1–1500 | no change | |
multiple signals | 60 | t = 1–600 | fluctuation around 120 |
t = 601–700 | fluctuation around 150 | ||
t = 701–800 | fluctuation around 180 | ||
t = 801–900 | fluctuation around 210 | ||
t = 901–1000 | fluctuation around 240 | ||
t = 1001–1100 | fluctuation around 270 | ||
t = 1101–1200 | fluctuation around 300 | ||
t = 1201–1300 | fluctuation around 330 | ||
t = 1301–2000 | fluctuation around 360 | ||
99 | t = 1–600 | fluctuation around 60 | |
t= 601–700 | fluctuation around 100 | ||
t = 701–1200 | fluctuation around 60 | ||
t = 1201–1300 | fluctuation around 20 | ||
t = 1301–2000 | fluctuation around 60 | ||
others | t = 1–2000 | no change |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, F.; Ashton, P.M.; Li, M.; Pisica, I.; Taylor, G.; Rawn, B.; Ding, Y. A Data Driven Approach to Robust Event Detection in Smart Grids Based on Random Matrix Theory and Kalman Filtering. Energies 2021, 14, 2166. https://doi.org/10.3390/en14082166
Han F, Ashton PM, Li M, Pisica I, Taylor G, Rawn B, Ding Y. A Data Driven Approach to Robust Event Detection in Smart Grids Based on Random Matrix Theory and Kalman Filtering. Energies. 2021; 14(8):2166. https://doi.org/10.3390/en14082166
Chicago/Turabian StyleHan, Fujia, Phillip M. Ashton, Maozhen Li, Ioana Pisica, Gareth Taylor, Barry Rawn, and Yi Ding. 2021. "A Data Driven Approach to Robust Event Detection in Smart Grids Based on Random Matrix Theory and Kalman Filtering" Energies 14, no. 8: 2166. https://doi.org/10.3390/en14082166
APA StyleHan, F., Ashton, P. M., Li, M., Pisica, I., Taylor, G., Rawn, B., & Ding, Y. (2021). A Data Driven Approach to Robust Event Detection in Smart Grids Based on Random Matrix Theory and Kalman Filtering. Energies, 14(8), 2166. https://doi.org/10.3390/en14082166