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Abstract: Nonequilibrium statistical mechanics or molecular theory has put the transport equations
of mass, momentum and energy on a firm or rigorous theoretical foundation that has played a
critical role in their use and applications. Here, it is shown that those methods can be extended to
nonequilibrium entropy conservation. As already known, the “closure” of the transport equations
leads to the theory underlying the phenomenological laws, including Fick’s Law of Diffusion,
Newton’s Law of Viscosity, and Fourier’s Law of Heat. In the case of entropy, closure leads to the
relationship of entropy flux to heat as well as the Second Law or the necessity of positive entropy
generation. It is further demonstrated how the complete set of transport equations, including
entropy, can be simplified under physically restrictive assumptions, such as reversible flows and local
equilibrium flows. This analysis, in general, yields a complete, rigorous set of transport equations
for use in applications. Finally, it is also shown how this basis set of transport equations can be
transformed to a new set of nonequilibrium thermodynamic functions, such as the nonequilibrium
Gibbs’ transport equation derived here, which may have additional practical utility.

Keywords: theory of entropy conservation; energy efficiency; energy applications; second law

1. Introduction

Nonequilibrium entropy conservation for open systems is often the “forgotten” trans-
port equation in the analysis and applications of the conservation laws to physico-chemical
systems. Irving and Kirkwood [1] developed the conservation equations of mass, mo-
mentum, and energy from the molecular level, beginning with the Liouville equation
or the fundamental equation of classical statistical mechanics, putting most of transport
phenomena on a firm theoretical foundation. This includes the theory behind the phe-
nomenological laws, such as Newton’s Law of Viscosity, Fourier’s Law of Heat, and Fick’s
Law of Diffusion. As shown here, Irving and Kirkwood’s methodology can be extended
to include entropy conservation and the Second Law. Importantly, as originally shown
by Jaynes [2,3], nonequilibrium entropy conservation and the Second Law only follows
willful approximations of the underlying molecular probability density functions. In fact,
it is well-known that the Liouville equation itself cannot support the principle of entropy
increase and the Second Law without approximations, which we have termed “Liouville’s
Paradox” [4]. From a practical level, the Second Law sets limits on the amounts of work
and heat that are possible for a particular system, as well as “unallowed” states that still
may satisfy the principles of mass and energy conservation but not exist. Additionally,
simplifications are often invoked in order to obtain expected transport behavior under
“ideal” conditions, including the categories of local equilibrium flows, reversible flows, and
inviscid flows. As shown here, the molecular approach to entropy conservation allows
us to clarify those simplifying conditions in the context of the complete set of transport
equations giving internal consistency to their use in applications and analysis.

This paper is broken down into three main sections in order to accomplish this goal.
The Liouville equation is presented and used to review the development of the conservation
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equations of mass, momentum and energy according to the Irving and Kirkwood (IK)
approach. Then, we turn our attention to the derivation of the Second Law or entropy
conservation in open systems, and finally look at special cases across the complete set of
transport equations in order to provide a basis for applications that seek the behavior of
systems in simplified forms. It is to be noted that no attempt is made here to review the
multitude of approaches to nonequilibrium entropy treatments in the literature; rather, we
base our development on the Liouville equation or the foundational equation of classical
statistical mechanics.

2. Materials and Methods
The Liouville Equation and the Transport Equations of Mass, Momentum, and Energy

We begin with the many-body Liouville equation for particle number preserving
systems written as

∂ fN
∂t

= −
N

∑
i=1

[
pi
m
· ∂ fN

∂ri
+ Fi(rN) · ∂ fN

∂pi

]
(1)

where fN is the N-particle density function, ri and pi are the position and momentum
coordinates for the ith particle of mass m, and we have assumed that the force acting on
particle i is only a function of the position coordinates rN ≡ (r1, r2, . . . , rN). It is assumed
that the N particles are spin-less, and they are indistinguishable, i.e., we have a pure
component system. Using the gradient of a potential, the force on molecule i the can be
written as

Fi = −
∂

∂ri
ΦN(rN) (2)

In practice, the total force or potential is expressed using the pairwise additivity ap-
proximation

Fi = −
∂

∂ri
ΦN(rN) ≈ −

N

∑
j=1
j 6=i

∂

∂ri
φ(rij) (3)

where the pair potential φ(rij) is the interaction potential between any two molecules in
the system (rij = rj − ri).

Following, IK [1], the mass conservation equation is obtained by multiplying
Equation (1) by

α =
N

∑
k=1

δ(rk − r), (4)

and integrating over all phase space to obtain

∂n
∂t

+
∂

∂r
· [nv0] = 0 (5)

where r is an arbitrary locator vector and

< α >=
1

N!

N

∑
k=1

∫
fN(rN , pN , t)drNdpN =

1
N!

N

∑
k=1

(N − 1)!
∫ ∫

δ(rk − r) f1(rk, pk, t)drkdpk

=
1
N

N

∑
k=1

∫
δ(rk − r)n(rk , t)drk

= n(r, t) (6)

with the definition of the local mass average velocity, v0(r, t):

v0(r, t) ≡ 1
n

∫
(

p
m
) f1(r, p, t)dp (7)
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or, in terms of mass, we can obtain the so-called Continuity equation

∂ρ

∂t
+

∂

∂r
· [ρv0] = 0

where ρ = mn
Next, the momentum conservation equation is obtained by multiplying

Equation (1) by

α =
N

∑
k=1

pkδ(rk − r) (8)

giving [1]
∂

∂t
(ρv0) +

∂

∂r
· (ρv0v0) = −

∂

∂r
· P + ρ

Fext

m
(9)

The left-hand side of Equation (9) can be expanded, and subtracting the continuity
equation, Equation (8), we obtain the general momentum conservation equation

ρ
∂

∂t
v0 + ρ

(
v0 ·

∂

∂r

)
v0 = − ∂

∂r
· P + ρ

Fext

m
(10)

where the pressure tensor P is defined as

P ≡ Pk + Pφ (11)

with the kinetic contribution

Pk = m
∫ ( p

m
− v0

)( p
m
− v0

)
f1(r, p, t)dp (12)

and the potential contribution

Pφ = −1
2

n2(r, t)
∫

g̃(r, R, t)
RR
R

dφint(R)
dR

dR (13)

where R = r2 − r is the separation distance vector between a molecule at r and another
molecule at r2, g̃(r, R, t) is a nonequilibrium radial density function, and the pair potential
φint(R) is assumed to be spherically symmetric for the sake of simplicity [1].

In order to obtain the energy conservation equation, Irving and Kirkwood [1] showed
that α should be given by

α =
1

2m

N

∑
k=1

p2
kδ(rk − r) +

N

∑
k=1

φext(r, t)δ(rk − r) +
1
2 ∑

j
∑

k
k 6=j

φint(|rj − rk|)δ(rk − r) (14)

where, α is the total of the kinetic, external potential (φext), and intermolecular potential
(φint) energies evaluated at the locator vector r and at a time t. Multiplying Equation (1) by
Equation (14) and integrating over all space leads to [1]

∂

∂t
n(Ū +

1
2

mv2
0 + φext) +

∂

∂r
· nv0(Ū +

1
2

mv2
0 + φext)

= − ∂

∂r
· (v0 · P)−

∂

∂r
· q (15)

where we have defined the internal energy per molecule

Ū(r, t) ≡ Ūk(r, t) + Ūφ(r, t) (16)

and
Ūk(r, t) =

m
2n

∫
| p
m
− v0|2 f1(r, p, t)dp (17)
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is the average kinetic energy per molecule relative to v0, and

Ūφ(r, t) =
1
2

∫
φint(R)n2(r, R, t)dR (18)

is the intermolecular interaction potential energy average per molecule.
The energy flux vector relative to the mass average velocity, or differential heat, also

has two contributions
q = qk + qφ (19)

where
qk ≡

1
2m2

∫
f1(r, p, t)|p−mv0|2(p−mv0)dp (20)

qφ ≡
1

2m

∫ [
φint(R)I− RR

R
∂φint(R)

∂R

]
·[j̃(2)1 (r, R, t)−mv0n2 g̃(r, R, t)]dR (21)

and the two-particle function j(2)1 (ri, rj, t) is defined as

j(2)1 (ri, rj, t) ≡
∫ ∫

f2(ri, rj, pi, pj)pidpidpj (22)

Finally, the continuity and momentum conservation equations can be eliminated from
Equation (15) to equivalently express the general differential energy balance equation as

n
∂

∂t
Ū + nv0 ·

∂

∂r
Ū = −

(
∂

∂r
· q
)
− (P :

∂v0

∂r
) (23)

where we have assumed that φext is time independent for the sake of simplicity.
Equation (23) is a celebrated form in energy transport phenomena, where the left-hand
side relates time and space changes in the internal energy per molecule Ū. On the right-
hand side of Equation (23), the first and second terms are the spatial gradients in the
relative energy flux vector (differential heat) and part of differential work, respectively.
Note that: in Equation (23) denotes the double dot tensor product operation. Looking at
Equations (20) and (21), it is seen that differential heat q physically is the transfer of relative
molecular kinetic energy and intermolecular interaction energies. It is unfortunate that the
term “heat transfer” has persisted for so many years, since (differential) heat by definition
is the transfer of energy across a (differential) boundary relative to the bulk flow; heat is
never “transferred” - only energy is transferred.

3. Results
3.1. Nonequilibrium Entropy Conservation

Following Irving and Kirkwood’s (IK) paradigm in development of the transport the-
ory for mass, momentum, and energy, the nonequilibrium entropy conservation equation
can be obtained by introducing a dynamic variable α, which is defined here in terms of the
Green z-functions, as [4]

α = −kB ∑
s

[
N!

s!(N − s)!

]
δ
(
rj − r

)
zs(rs, ps, t) (24)

where kB is Boltzmann’s constant and the sum is over the set of molecules s and j is any
molecule in the set s. Following Green [5], zs is the natural logarithm of an sth ordered, normal-
ized density function that depends on the multi-particle expansion method [5,6]. Specifically,

z1 = ln(h̄3 f1) (25)

z2 = ln[ f2(r1, r2, p1, p2, t)/ f1(r1, p1, t) f1(r2, p2, t)] (26)
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etc., for the so-called Kirkwood superposition approximation. Note that Equation (24) is a
slightly simpler version of our previous definition [4] where it suffices for rj in Equation (24)
to be any molecule in the set s.

The phase-space average of α, < α >, is computed by integrating α over all phase-
space coordinates as

< α >= nS̄BG = −kB
1

N!

∫
α fNdrNdpN = −kB ∑

s

1
s!

∫ ∫
δ
(
rj − r

)
fszsdrsdps (27)

where we have used the short-hand notation for differentials (drN = dr1dr2 · ·drN , etc.)
This average has been termed the “Boltzmann-Gibbs” entropy since it links Boltzmann’s
and Gibbs’ definitions [3], where S̄BG is the entropy per molecule and n is the local molecu-
lar number density. For the lowest set s = 1, we recover Boltzmann’s definition [7]

nS̄1(r, t) = −kB

∫
f1
(
r, p′, t

)
ln
(

h̄3 f1

)
dp′ (28)

where h̄ is Planck’s constant Extensions to other orders can also be shown. Specifically,
for the set s = 2, we have

nS̄BG = nS̄1 + nS̄2 (29)

where nS̄1 is given by Equation (28) and

nS̄2(r, t) = − kB
2!

∫ ∫
f2(r, r2, p1, p2, t)z2(r, r2, p1, p2, t)dr2dp1dp2 (30)

Note that various multiparticle expansions for the s-order density functions have
been presented and reviewed by Singer [6]. By definition, entropy in these expressions
represents the relative uncertainty in finding the group of s molecules in the set of N
molecules. Typically, the lowest set s = 1 corresponds to dilute gases, the set s = 2 to dense
gases, and so-forth for higher order sets.

Now, to obtain the entropy conservation equation following the IK approach given
above for mass, momentum, and energy, we can multiply Equation (1) by

−kB ∑
s

1
(N − s)!s!

zsδ
(
rj − r

)
,

where z1, z2, .. are given by Equations (25) and (26), etc., and integrating over all (rN , pN)
space gives the following entropy conservation equation [4,8]

n
∂S̄BG

∂t
+ nv0 ·

∂S̄BG
∂r

= − ∂

∂r
· s + ns̄g (31)

where the entropy flux vector s is defined according to

s(r, t) ≡ −kB ∑
s

1
s!

∫ ∫ p
′
1

m
fs(r, r2, .., rs, p1, p2, .., ps, t)zs(r, r2, .., rs, p1, p2, .., ps, t)drs−1dps (32)

which is the entropy flux relative to v0, where p
′
1/m = p1/m− v0.

The last term on the right-hand side of Equation (31) is called the entropy generation
term, specifically

ns̄g ≡ −kB

N

∑
i=1

∫ ∫ [ N

∑
k 6=i

∂φ(ri,k)

∂ri
· ∂ fN

∂pi

]
[∑

s

1
(N − s)!s!

zsδ
(
rj − r

)
]drNdpN (33)

Expanding the set s, the entropy generation term can thus be written generally as

ns̄g ≡ ns̄g1 + ns̄g2 + ns̄g3 + · · · (34)
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where for the lowest set s = 1, we obtain the well-known Boltzmann’s entropy generation
term [7,9],

ns̄g1(r, t) = kB

∫ ∫
ln
[

h̄3 f1(r, p1, t)
][∂Φ(r2, r)

∂r2
· ∂ f2(r, r2, p1, p2, t)

∂p1

]
dr2dp1p2 (35)

and Newton’s Third Law has been used in obtaining Equation (35). Higher orders can also
be obtained straightforwardly.

In order to proceed further with elaboration of the above relations for entropy flux and
generation, specific asymptotic expansions are needed [4,8]. For example, it can be formally
shown that the entropy flux s = q/T, which confirms the well-known phenomenological
result [4,8]. These expansions also verify that the entropy generation terms are always
positive, thus providing a molecular basis for the Second Law [4,8], although the exact
molecular theoretic origins of the Second Law outside of willful approximations [2,3]
remains elusive.

The general forms of the balance equations given here are sufficient for us to examine
simplified forms of the entropy conservation alongside their mass, momentum, and energy
counterparts to help ensure consistency in their combined, practical use.

3.2. Simplified Forms of the Mass, Momentum, Energy and Entropy Balance Equations Local
Equilibrium Flows

The first common, simplified form of the transport equations are for so-called local
equilibrium flows. For local equilibrium flows, the density function fN in the Liouville
equation can be shown to follow a particular, locally canonical equilibrium form [10]

fN
loc eq =

nN
(
rN , t

)
[2πmkT(r, t)]

3N
2

exp

{
−

3N

∑
j=1

[
pj − v0(r, t)

]2
2mkT(r, t)

}
(36)

leading to [10]
P = pI
q = 0
s = 0
s̄g = 0

local equilibrium approximation (37)

where, in Equation (36), nN
(
rN , t

)
is the N-particle equilibrium configurational density

function, which is now possibly dependent on space and time through local values of
number density n(r, t), velocity v0(r, t), and/or temperature T(r, t). Note that temperature
here is defined by the classical definition as a quantity proportional to the average molecular
velocity relative to the bulk flow, i.e.,

1
2m
∫

p
′2
k fNdpN∫

fNdpN =
3
2

kT (38)

where p
′
k is the momentum of any kth molecule relative to the local bulk flow. Using the

relationships of Equation (37), the balance equations then simplify to

mass :
∂ρ

∂t
+

∂

∂r
· (ρv0) = 0 (39)

momentum :
∂v0

∂t
+

(
v0 ·

∂

∂r

)
v0 = −1

ρ

∂p
∂r

+
Fext

m
(40)

energy : n
∂Ū
∂t

+ nv0 ·
∂Ū
∂r

= −p
(

∂

∂r
· v0

)
(41)

entropy : n
∂S̄BG

∂t
+ nv0 ·

∂S̄BG
∂r

= 0 (42)
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and p follows from a local thermodynamic equation of state (e.g., a van der Waals equation
of state), p = p(n, T), and n and T are local values of the number density and temperature,
respectively. Thus, from Equation (42), we see that local equilibrium flows are locally
isoentropic flows where entropy stays constant along fluid streamlines.

3.3. Reversible Flows

Reversible flows are defined as flows that are inviscid and do not generate entropy.
However, these flows do include heat.

P = pI
s = q/T

s̄g = 0

local reversible (43)

Thus, for locally reversible flows, we have the set of transport equations:

mass :
∂ρ

∂t
+

∂

∂r
· (ρv0) = 0 (44)

momentum :
∂v0

∂t
+

(
v0 ·

∂

∂r

)
v0 = −1

ρ

∂p
∂r

+
Fext

m
(45)

energy : n
∂Ū
∂t

+ nv0 ·
∂Ū
∂r

= −p
(

∂

∂r
· v0

)
− ∂

∂r
· q (46)

entropy : n
∂S̄BG

∂t
+ nv0 ·

∂S̄BG
∂r

= − ∂

∂r
· q

T
(47)

Any other simplified forms of the transport equations, such as isothermal and incom-
pressible, will follow by the same holistic analysis of the complete set of transport equations.

Another important aspect of the complete and consistent set of transport equations
is that we can combine the basis thermodynamic functions p(V̄, T), Ū(V̄, T), and S(V̄, T),
as done in global equilibrium systems, to obtain derived transport equations that may
simplify applications. For example, we can write a completely general nonequilibrium
Gibbs’ transport equation beginning with Ḡ = Ū − TS̄ + pV̄, using the total derivative
D/Dt = ∂/∂t + v · ∂/∂r, and Equations (8), (9), (23), and (31), to obtain

DḠ
Dt

= S̄
DT
Dt

+ V̄
Dp
Dt

(48)

where V̄ = 1/n. This derived, Gibbs’ transport equation may be of used for a nonequilib-
rium phase change which takes place locally at constant T and p. In general, these type of
derived equations are, of course, not independent of the basis transport equations, but may
simplify analyses and applications.

4. Discussion and Conclusions

Entropy conservation or the Second Law plays a critical role is setting limits on
heat and work that are possible in any given system. It is imperative then that entropy
conservation equations be developed consistently across the transport equations since
these involve a variety of approximations necessary in practice. Irving and Kirkwood’s
molecular theoretical derivations of the conservations equations of mass, momentum,
and energy represent the most rigorous classical theory of transport phenomena and serves
as a basis for more complex systems. We have developed an entropy conservation equation
or the Second Law following the IK method. We formally derive simplified forms of the
complete set of transport equations that will be useful in applications, including local
equilibrium flows and reversible flows. We show that local equilibrium flows are also
locally isoentropic flows. In addition, the complete set of transport equations allows us to
develop derived transport equations, such as a nonequilibrium Gibbs’ transport equation
derived here, which may be useful, for example, in flows with phase change.
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