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Abstract: In recent years, wind power systems have been used extensively, which not only improve
the efficiency of current conventional power generation systems, but also can save traditional fossil
fuel resources. However, considering the instability of wind power, after being grid connected, it can
easily cause an impact on the stability of the grid operation. Considering the above problems, this
paper considers to make full use of the energy storage part of electric vehicles (EVs) to increase the
stability of grid operation. Based on the mathematical model, this paper studies the load frequency
control (LFC) problem of a multi-region interconnected power system with wind power and EVs.
First, since the system states are difficult to be monitored, a state observer is designed to estimate
the state. Based on this, the integral sliding mode controller (SMC) is designed to realize the LFC
of the interconnected power system. Meanwhile, to obtain better control performance, this paper
further analyzes and optimizes the controller parameters based on Lyapunov stability theory. At last,
simulations are carried out for the power systems with two regions in Simulink. The results show
that the designed controllers are effective to compensate the load demand disturbances. In addition,
it is demonstrated that the battery storage of EVs can play the role of peak-shaving and valley-filling
in LFC.

Keywords: multi-region interconnected power system; frequency control; state observer; integrated
sliding mode control

1. Introduction

With the development of grid technology, communication technology is gradually
integrated into the grid. As the connection between different regions is strengthened, a
multi-regional interconnected power system is gradually formed in [1,2]. Multi-region
interconnection can realize the economic operation of power system by coordinating
different generation costs among different regions. Meanwhile, the interconnected areas
can support each other with the help of tie-line, which improves the reliability of power
supply. However, the multi-regional interconnection of power systems also has some
unavoidable problems. Failures in the operation of power generation equipment and
instability of renewable energy sources tend to cause fluctuations in the generation process.
The fluctuations may affect the stability of the entire power system frequency through
the tie-line [3,4]. Therefore, under the complex environment, more stringent standards
are proposed for the stable operation of modern power systems. For power generation,
integration of various energy sources is to be accomplished. Meanwhile, it is essential to
ensure the safety and the efficiency of the transmission in electricity. More importantly, to
ensure the control performance, it demands higher requirements for LFC in interconnected
power systems.

Energies 2021, 14, 2288. https://doi.org/10.3390/en14082288 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-8785-2326
https://orcid.org/0000-0003-3626-8845
https://doi.org/10.3390/en14082288
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14082288
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14082288?type=check_update&version=1


Energies 2021, 14, 2288 2 of 15

With the increasing maturity of the wind power technology, wind power has been
widely used in many forms of renewable energy power generation. However, the random-
ness and uncertainty of wind energy tends to cause wind abandonment and load shedding.
This phenomenon causes the imbalance of supply and demand of the system power, which
may bring in the deviation of the power system frequency. With the large-scale wind
power integration into the grid, it will affect the stability of the grid frequency from a
certain extent [5–7]. Therefore, some scholars have researched the LFC of the power system
after the grid connection of wind power in recent years. In order to track the stochastic
fluctuations of wind power output, a model for decentralized load frequency prediction
control of interconnected grids containing the wind farms was proposed in [8]. In [9], a
decentralized SMC is designed to suppress the fluctuation of load frequency based on the
construction of a power system model containing wind power. A robust LFC strategy
based on event-driven communication is proposed in [10]. While reducing the transmission
volume of network communication, the frequency stability of the power system is ensured.
In [11], an online reinforcement learning method based on an adaptive dynamic model
is proposed. It is shown that the method can suppresses the uncertainty caused by the
large-scale access of wind power effectively.

Considering the uncertainty of wind power forecasting, a distributed demand-side
management approach for smart grids is proposed in [12]. Through game-theoretic ap-
proach, the cost of consumer participation in demand-side management programs is
minimized. According to the research mentioned in the above literature, it is mainly to
adopt appropriate control strategies to solve the effect of wind power uncertainty on the
system load frequency. However, considering the limitations of only relying on the con-
troller to ensure system stability, we further consider supplementing the energy storage
component to improve the robustness of the control system.

In addition, with the popularization of the concept of environmental protection, the
market share of the electric vehicles (EVs) is rising year by year. According to statistics,
except for the demand of daily traffic, nearly 90% of the EVs are not used. Therefore, LFC
of power system with EVs has become a key research topic for researchers in recent years.
The scale effect of EVs concentration is analyzed in [13]. It is verified that EVs energy
storage can provide backup energy storage for the systems. In [14], a LFC model for the
implementation of the controlled energy dynamic changes in EVs is constructed. The
simulation shows that the EVs are able to switch between power and controllable load.
Although the literature [13,14] has investigated the mode of electric vehicles, the model
of wind power and electric vehicles both connected to the grid is still open. To solve the
problems of inaccurate mode of EVs entry and high anti-interference requirements, a linear
self-interference control method is proposed in [15]. Considering the influence of the droop
control characteristics of EVs, a combined optimization method of EVs-assisted frequency
control and secondary frequency control of conventional units is proposed in [16]. The
literatures [15,16] focus on control performance of electric vehicles after grid integration.
However, in the system that contains wind power and EVs, more effective control strategies
need to be considered to improve the system performance.

Through the above analysis, it is found that when considering the system containing
both wind power and electric vehicle, the problems of system model building and control
strategy selection still need to be paid more attention. Meanwhile, the point should also
be noted that, to reduce fluctuations in the frequency of the load, the traditional energy
storage methods such as batteries are used in general. It not only increases the economic
cost of grid construction, but also fails to make full use of the energy storage capacity of
idle EVs. In addition, when the system suffers from load demand disturbances, the load
frequency is also affected and fluctuates. For complex systems with perturbations, sliding
mode control can effectively overcome effects of perturbations.

Therefore, to reduce the deviation of load frequency after area interconnection, it is
necessary to study the LFC of the complex system containing wind power and EVs using
the sliding mode control.
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Motivated by the above discussion, the contribution of this work is specified as
follows:

i. After the wind power is connected to the grid, to solve the impact of its uncertainty
on the system frequency stability, the energy storage of idle EVs is considered as the
buffer in this paper. To study the LFC of grid, when the system suffers from load
demand perturbation, the model of the system containing wind power and EVs is
developed.

ii. In practice, the state is difficult to be grasped due to the limitation of equipment.
Based on the model built in (I), the state observer is designed in this paper.

iii. SMC is an effective control method to deal with system disturbance. Therefore, in
this paper, to achieve the goal of load frequency control, the integral sliding mode
controller is designed.

iv. By combining the Lyapunov stability theory, the parameters of the controller are
further optimized. In this way, better control performance of both the error system
and the observer is ensured in the paper.

In this paper, the structure of the paper can be organized into five sections. First, we
describe the background and motivation of this paper in Introduction of the Section 1.
Then, the Section 2 presents description of the model building. In the Section 3, we focus
on the theoretical analysis. The Section 4 includes the simulation results and the analysis.
Finally, through simulation verification, we summarize the conclusions in Section 5.

2. System Model and Description
2.1. Wind Power and EVs Model

For wind power systems, the main issue is the active power output. Therefore, the
wind power dynamics model is established as follows [17]:

∆
.
PWTGi =

1
TWTGi

∆Pw−i −
1

TWTGi
∆PWTGi (1)

where ∆PWTGi is the wind turbine output power deviation, TWTGi is the wind turbine time
constant, and ∆Pw−i is the power of wind.

Normally, EVs tend to play the role of getting electricity from the grid. Benefit from
the development of V2G technology, EVs energy storage enables participation in LFC. The
main idea is to make full use of the battery energy when the EVs are non-working; to use it
as a buffer for the fluctuations caused when renewable energy is integrated into the grid.
But EVs cannot be integrated into the grid randomly. It not only needs to be managed
centrally for EVs energy storage, but also combined with intelligent control between the
grid. The control input of the EV part of this paper is expressed as:

uei(t) = αeiu(t) (2)

where αei, u(t) denotes EVs scale factor, control input, respectively.
To model EVs, the literature [18] focuses on the analysis of when EVs are connected

to the grid. Meanwhile, to prevent the EVs charging and discharging simultaneously, the
paper supplements the constraint. Instead, by establishing mathematical models, ref. [19]
adequately equates the output power of EVs as energy storage part. To realize the control
objective, considering the partial output of EVs, the EVs dynamics model is written in the
following form [19]:

∆
.
Pei = −

1
Tei

∆Pei +
αeikei

Tei
u(t) (3)

where ∆Pei is the deviation of EVs output power, kei is EVs gain factor, and Tei is EVs
time instants.



Energies 2021, 14, 2288 4 of 15

2.2. Load Frequency Control Model with Wind Power and EVs

Interconnected power systems usually consist of multiple control areas. Each area is
connected to another area by tie lines to overcome the mismatch between generation and
demand. In traditional LFC systems, automatic generation control acts as the secondary
controller to control the grid frequency. To solve the instability caused by the wind power in
the grid in recent years, some new topology structure of the interconnected power system
is established after the introduction of electric vehicles, which is shown in Figure 1.

Figure 1. Topology of two-region power system including wind power and electric vehicles (EVs).

Under the stable operation of the power system, the system is linearized and simplified.
In this model, a generator is used to represent the overall performance of the generator
set. In addition, the time delay phenomenon of the control signal is ignored. Therefore,
mathematical models containing the wind power and EVs power systems are shown in
Figure 2.

Figure 2. System load frequency control (LFC) model including wind power and EVs.

According to the system model established in Figure 2, the mathematical model of the
system can be expressed as:

∆
.
f i = −

Di
Mi

∆ fi +
1

Mi
∆Pmi − 1

Mi
∆Ptie−i +

1
Mi

∆PWTGi +
1

Mi
∆Pei − 1

Mi
∆Pdi

∆
.
Pmi = − 1

Tchi
∆Pmi +

1
Tchi

∆Pvi

∆
.
Pvi = − 1

RiTgi
∆ fi − 1

Tgi
∆Pvi +

αgi
Tgi

u(t)

∆
.
Ptie−i = 2π

N
∑

j=1,i 6=1
Tij∆ fi

δi = βi∆ fi + ∆Ptie−i

∆
.
PWTGi =

1
TWTGi

∆Pw−i − 1
TWTGi

∆PWTGi

∆
.
Pei = − 1

Tei
∆Pei +

αeikei
Tei

u(t)

(4)

where ∆ fi is the frequency deviation, ∆Pmi is the generator power deviation, ∆Pvi is the
control valve position deviation, ∆Ptie−i is the tie-line power exchange, δi is the area control
deviation, Mi is the rotational inertia of the generator set, Di is the load damping coefficient,
Tgi is the governor time constant, Tchi is the turbine time constant, Ri is the governor droop
characteristic, βi is the frequency deviation factor, ∆Pdi is the load demand disturbance,
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and αgi is the turbine proportionality factor. The summary table of nomenclature is shown
in Appendix A.

By simplifying the above equation of state, the system can be further expressed as:

.
x(t) = Ax(t) + Bu(t) + Df(t),
y(t) = Cx(t),

(5)

with
x(t) = [x1(t) x2(t) x3(t) · · · xn(t)]

T,
y(t) = [y1(t) y2(t) y3(t) · · · yn(t)]

T,

xi(t) = [∆ fi ∆Pmi ∆Pvi ∆Ptie−i
∫

δi ∆PWTGi ∆Pei]
T,

yi(t) = [∆ fi
∫

δi]
T,

f(t) = [∆Pdi ∆Pw−i]
T,

Aii =



− Di
Mi

1
Mi

0 − 1
Mi

0 1
Mi

1
Mi

0 − 1
Tchi

1
Tchi

0 0 0 0
− 1

RiTgi
0 − 1

Tgi
0 0 0 0

2π
N
∑

j=1,i 6=1
Tij 0 0 0 0 0 0

βi 0 0 0 0 0 0
0 0 0 0 0 − 1

TWTGi
0

0 0 0 0 0 0 1
Tei


,Aij =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

2π
N
∑

j=1,i 6=1
Tij 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

B =



0
0

αgi
Tgi

0
0
0

αeikei
Tei


,C =

[
1 0 0 0 0 0 0
0 0 0 0 1 0 0

]
,D =



− 1
Mi
0
0
0
0
0
0

0
0
0
0
0
1

TWTGi
0


,

where x(t) is system state,A is state matrix,B is system input matrix,C is output matrix,
y(t) is system output matrix,u(t) is control signal, and D is coefficient matrix.

In this paper, we consider the effect of the disturbance component on the system.
The disturbance part mainly has two parts: load demand disturbance and wind power
magnitude. To help the derivation of the subsequent theory, assume that the perturbation
considered in this paper is bounded, and it can be written as:

‖f(t)‖ ≤ Li,

where Li is a known constant.

3. Model Characterization

In this section, based on the model, we focus on the theoretical analysis of the state
observer, the SMC, and the stability of the system. The flow chart is shown in Figure 3.
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Figure 3. Flow chart of Section 3.

3.1. Observer Design

Since the integration of wind power and EVs, the complexity of the system model
becomes complex. Meanwhile, due to the limitation of monitoring equipment and cost
in engineering, the system state variable may not be accurately measured. To solve this
problem, the state observer is designed as follows:

.
^
x(t) = Ax(t) + Bu(t) + O(y(t)− ^

y(t)),
^
y(t) = C

^
x(t),

(6)

where O is the observer gain matrix.
Considering state observer (6), the following observer-based integral sliding surface

is designed:

s(t) = S
^
x(t)− S

∫ t

0
(A− BK)x(τ)dτ, (7)

where S and K are matrices of appropriate dimensions to be designed.

Define the error variable e(t) = x(t)− ^
x(t). When the system state reaches the sliding

surface, it can be obtained that:
.
s(t) =0, (8)

.
s(t) = SBu(t) + SOCe(t) + SBK

^
x(t), (9)

Thus, the equivalent control can be written as:

ueq(t) = −Kx(t)− (SB)−1SOCe(t). (10)

Substituting (10) into (6), the dynamic equation of the system is obtained as follows:

.
^
x(t) = (A− BK)

^
x(t) +

^
SOCe(t), (11)

where
^
S = I− B(SB)−1S.

According to (5), (6), and (10), the error system is obtained as follows:

.
e(t) = (A−OC)e(t) + Ff(t) + B(u(t)− ueq(t)). (12)

Based on the above analysis, the controller u(t) is designed such that the LFC of the
system (5) can be achieved.
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3.2. Reachability Analysis

To achieve the reachability of the sliding mode surface, a SMC is designed as follows:

u(t) = −K
^
x(t)− (SB)−1SOCe(t)− µ(SB)−1s(t)− ν(SB)−1sgn(s(t)), (13)

where µ > 0 and ν> 0 are positive control parameters to be designed.
The Lyapunov function is chosen as:

V(t) =
1
2

sT(t)s(t). (14)

The derivative of (14) can be written as:

.
V(t) =

sT(t)
.
s(t)

‖s(t)‖ , (15)

Noting that s(t)sgn(s(t)) = ‖s(t)‖1 ≥ ‖s(t)‖ and sT(t)s(t) ≥ ‖s(t)‖2. It can be
obtained from (15) that

.
V(t) = sT(t)

‖s(t)‖ (S
.
^
x(t)− S(A− BK)

^
x(t))

≤ −µV(t)− ν.
(16)

Considering (16), one further has

V(t) ≤ (V(0) +
ν

µ
)e−µt − ν

µ
. (17)

Therefore, under controller (13), when t ≥ t∗ = µ−1 ln µ‖s(0)‖+ν
ν is satisfied, the

observer system trajectory can reach the sliding surface in finite time and remain there.

3.3. Stability Analysis

The sliding mode dynamics of the systems (5) can be described as an augmented
system as follows:( .

e(t)
.
^
x(t)

)
=

(
A−OC 0

^
SOC A− BK

)(
e(t)
^
x(t)

)
+

(
D
0

)
f(t) +

(
0

−µν(SB)−1

)
s(t) +

(
0

−νB(SB)−1

)
sgn(s(t)). (18)

Ignoring the variable structure part, system (18) can be expressed as:( .
e(t)
.
^
x(t)

)
=

(
A−OC 0

^
SOC A− BK

)(
e(t)
^
x(t)

)
+

(
D
0

)
f(t). (19)

According to the Lyapunov theory, if there exist positive definite matrices Q1, Q2, P1,
and P2 that satisfy the following LMIs:

sym(P1(A−OC)) + Q1 < 0,
sym((A− BK)P2) + Q2 < 0,

(20)

then the stability of the system (19) can be guaranteed.
Considering the system (18), one has

e(t) = e(A−OC)te(0) +
∫ t

0 e(A−OC)(t−τ)Df(τ)dτ,
^
x(t) = e(A−BK)t^

x(0) +
∫ t

0 e(A−BK)(t−τ)(−µB(SB)−1s(t)− νB(SB)−1sgn(s(t))

+
^
SOCe(τ))dτ.

(21)
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Since A−OC and A−BK are Hurwitz matrix, there exist positive values λe > 0,λo >
0,M1 and M2 such that (22) holds. Moreover, the equation (21) can be rewritten as:

‖e(t)‖ ≤ M1e−λet + M1
∫ t

0 e−λe(t−τ)‖D‖‖f(τ)‖dτ,∥∥∥∥^
x(t)

∥∥∥∥ ≤ M2e−λot + M2
∫ t

0 e−λo(t−τ)(
∥∥∥µB(SB)−1

∥∥∥(∥∥∥s(0) + ν
µ

∥∥∥e−µτ − ν
µ )

+
∥∥∥νB(SB)−1

∥∥∥+ ∥∥∥∥^
SOC

∥∥∥∥‖e(τ)‖)dτ.

(22)

Considering ‖f(t)‖ ≤ Li. By combing (17) with (22), one further has

‖e(t)‖ ≤ M1e−λet + M1
∫ t

0 e−λe(t−τ)‖D‖‖f(τ)‖dτ,∥∥∥∥^
x(t)

∥∥∥∥ ≤ M2e−λot + M2
∫ t

0 e−λo(t−τ)(
∥∥∥µB(SB)−1

∥∥∥(∥∥∥s(0) + ν
µ

∥∥∥e−µτ − ν
µ )

+
∥∥∥νB(SB)−1

∥∥∥+ ∥∥∥∥^
SOC

∥∥∥∥‖e(τ)‖)dτ.

(23)

Taking the limit of (23), one has

lim
t→∞
‖e(t)‖ ≤ M1‖D‖L

λe
,

lim
t→∞

∥∥∥∥^
x(t)

∥∥∥∥ =
M1 M2

∥∥∥∥^
SOC

∥∥∥∥‖D‖L

λoλe
.

(24)

From the definition e(t) = x(t)− ^
x(t), (24) can be expressed as:

lim
t→∞
‖x(t)‖ = M1‖D‖L

λe
(1 +

M2

∥∥∥∥^
SOC

∥∥∥∥
λo

). (25)

Therefore, when LMI (20) is satisfied, the SMC (13) can guarantee the asymptotic
stability of the closed-loop system (18). Moreover, the system state is within the region of

the equilibrium with the radius M1‖D‖L
λe

(1 +
M2

∥∥∥∥^
SOC

∥∥∥∥
λo

).

3.4. Optimize the Control Parameters

Considering the SMC (13), when selecting larger values of µ and β, the system state
can reach the sliding mode surface faster. At the same time, it is able to reduce the time
of load frequency oscillation. However, when the system state reaches the sliding surface
with a high speed, the deviation of the load frequency will become larger simultaneously.

In addition, the Lyapunov function of the system (19) is designed as:

V(t) = eT(t)P1e(t), (26)

Taking the derivative of (26), one has

.
V(t) = eT(t)(sym(P1(A−OC)) + Q1)e(t). (27)

According to the Lyapunov stability theory, when the eigenvalue of Q1 take larger
values, it will enable the error system to converge quickly and improve the dynamic
performance of the error system. However, a larger value of the eigenvalue λe of Q1 will
contribute to larger parameter for the observer gain O. It is seen from the observer

.
^
x(t) = (A− BK)

^
x(t) +

^
SOCe(t)
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that the dynamic performance of the observer will be damaged. To improve the dynamic
performance of the closed-loop system, a compromise solution is proposed.

Combining (17) and (26), it can be obtained that

.
V(t) ≤ −eT(t)Q1e(t)

≤ −λmin(Q1)‖e(t)‖
2.

(28)

Considering the LMIs (20), with the increasing eigenvalues of Q1, λe also increases.
The parameters Q2 and λo have the same property. Therefore, by optimizing the trace of
Q1 and Q2, the larger λe and λo can be obtained. At the same time, the smaller value of∥∥∥∥^

SOC
∥∥∥∥ can be guaranteed by optimizing the trace of the matrix OC.

From the discussion above, the matrix O, K and P1, P2, Q1, Q2 can be solved by the
following optimization problem:

max
Q1, Q2

tr(Q1), tr(Q2); min
O

tr(OC)

s.t. sym(P1(A(k) −OC)) + Q1 < 0,
sym((A(k) − B(k)K)P2) + Q2 < 0,

(29)

where k = 1, 2 , . . . , M.
Through the above analysis, in the process of optimization of the controller parameters,

we have supplemented the maximum values of the trace of Q1 Q2 and the maximum value
of the trace of OC, denoted by max tr(Q1), tr(Q2) and min tr(OC), respectively. In this
case, we can use the minimum value of −tr(Q1), −tr(Q2) equivalent to the maximum
value of tr(Q1), tr(Q2). In this way, after combining min tr(OC), we use the “mincx”
function in the LMI toolbox to solve the controller parameters.

4. Simulation Analysis

In this section, we consider the interconnected power systems with two regions
containing wind power and EVs. The designed SMC is applied to the system model for
LFC. For the conventional PID (Proportion Integral Differential) controller, by comparing
the systems contain EVs or not, the simulations are given.

Assume the system subjected to perturbations from changes in load demand at t ≥ 0.
The magnitudes are ∆Pd1 = 0.01pu and ∆Pd2 = 0.02pu, respectively. In the two regions,
the turbine scale factor is αg1 = 0.9,αg2 = 0.6, EVs scale factor is αe1 = 0.1,αe2 = 0.4,
and wind power is ∆Pw−1 = 0.04pu, ∆Pw−2 = 0.05pu. According to the topology and
the analysis in the mathematical model, the generator units are equivalent in each region
in the simulation process. After idealized values for the model parameters, the system
parameters of the two areas are shown in Table 1.

Table 1. Regional system parameters.

Parameters Region 1 Region 2

Tchi 0.35 s 0.352 s
Tgi 0.08 s 0.08 s
Ri 5 Hz/up 5 Hz/put
βi 0.4 Hz/pu 0.4 Hz/pu
Di 0.02 Hz/pu 0.01Hz/pu
Mi 0.3 pu·s 0.3 pu·s
Tei 1 s 1 s

TWTGi 1.5 s 1.52 s
Tij 0.2 pu/rad 0.22 pu/rad
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4.1. PID Control

The PID controller parameters are shown in Table 2. The simulation results of the two
regional power systems are shown in Figure 3.

Table 2. PID controller parameters.

Symbol Region 1 Region 2

Kp −0.6 −0.6
Ki −1 −1.1
Kd −1.2 −1.3

As shown in Figure 4, the PID controller is able to stabilize the load frequency deviation
at t = 50 s. It is shown from the simulation that the system containing EVs can take less
time to achieve stability. In addition, the system containing EVs also has less fluctuations.
The effectiveness of utilizing energy storage of EVs to participate in frequency control
is demonstrated.

Figure 4. (a) Frequency deviation ∆ fi with and without EVs in region 1; (b) frequency deviation ∆ fi with and without EVs
in region 2.

4.2. Integral Sliding Mode Control

Next, the SMC will be used for simulation. The matrices in the two area controllers
are as follows:

S1 =
[

0 0 1 0 0 0 17
]
S2 =

[
0 0 1 0 0 0 18

]
,µ1= 5,µ2= 9,ν1= 0.1,ν2= 0.1.

By solving (20), the sliding surface for region 1 and region 2 are obtained as:

s1(t) = 53.6373∆ f̂1 − 85.3485∆P̂m1 − 37.1822∆P̂v1 + ∆
.
P̂v1 +−23.6768∆P̂tie−1 − 40.4814

∫
δ̂1 + 99.7098∆P̂WTG1 − 114.8640∆P̂e1 + 17∆

.
P̂e1,

s2(t) = 56.7137∆ f̂1 − 89.5246∆P̂m1 − 39.0279∆P̂v1 + ∆
.
P̂v1 +−24.2960∆P̂tie−1 − 42.6785

∫
δ̂1 + 104.6242∆P̂WTG1 − 120.5132∆P̂e1 + 18∆

.
P̂e1,

The sliding controller for region 1 and region 2 are obtained as:

u1(t) = −3.9488∆ f̂1 − 6.5906∆P̂m1 − 1.9060∆P̂v1 + 1.8283∆P̂tie−1 − 3.1260
∫

δ̂1 − 7.6996∆P̂WTG1 − 7.5571∆P̂e1 − 1.2406(∆ f1 − ∆ f̂1)
+0.0186(

∫
δ1 −

∫
δ̂1)− 0.2066s(t)− 0.0041sgn(s(t)),

u2(t) = −4.1543∆ f̂2 − 6.8601∆P̂m2 − 2.0328∆P̂v2 + 1.8618∆P̂tie−2 − 3.2704
∫

δ̂2 − 8.0172∆P̂WTG2 − 7.8554∆P̂e2 − 1.3495(∆ f2 − ∆ f̂2)
+0.0110(

∫
δ2 −

∫
δ̂2)− 0.3704s(t)− 0.0041sgn(s(t)),

where ∆ f̂i is the estimation of ∆ fi, ∆P̂mi is the estimation of ∆Pmi, ∆P̂vi is the estimation of
∆Pvi, ∆P̂tie−i is the estimation of ∆Ptie−i,

∫
δ̂i is the estimation of

∫
δi, ∆P̂ei is the estimation

of ∆Pei, ∆P̂WTGi is the estimation of ∆PWTGi.
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The simulation results under the SMC are shown in Figures 5–7.

Figure 5. (a) Frequency deviation ∆ fi and observed frequency deviation ∆ f̂i in region 1; (b) frequency deviation ∆ fi and
observed frequency deviation ∆ f̂i in region 2.

Figure 6. (a) Estimated error of frequency deviation e1 in region 1; (b) estimated error of frequency deviation e1 in region 2.

Figure 7. (a) Frequency deviation ∆ fi with and without EVs in region 1; (b) frequency deviation ∆ fi with and without EVs
in region 2.

As can be seen from Figure 5, the integrated SMC enables the stabilization of the
load frequency deviation in both regions. Additionally, from Figure 5, it is shown that the
observed value ∆ f̂i tracks the parameter ∆ fi effectively. Further combined with Figure 6,
the observer proposed can achieve the estimation of the unknown state system.
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In SMC, we consider the LFC problem of system including EV and without EV. To
compare the system performance between PID and SMC, we summarized the data from
the simulation results, which is shown in Table 3, compared with the results of PID,
SMC designed can reach stability in shorter time. Also, the fluctuation phenomenon is
smoother. In addition, through Figure 7, it is seen that SMC reduce the stable time for
system containing EVs. According to the above analysis, better control performance of the
SMC and the effectiveness of EVs participation in frequency control is verified.

Table 3. Summary of simulation results data of sliding mode controller (SMC) and PID.

PID SMC
Overshoot

(Hz)
Stable

Time(s)
Overshoot

(Hz)
Stable Time

(s)

without EVs
region 1 0.0215 49.70 0.0152 45.20
region 2 0.0219 48.60 0.0202 43.50

with EVs
region 1 0.0190 47.60 0.0130 40.30
region 2 0.0205 45.30 0.0212 39.80

4.3. Optimize the SMC

In this part, the simulation of the optimized SMC will be carried out. The matrix in
the controllers is selected as follows:

S1 =
[

0 0 1 0 0 0 17
]
, S2 =

[
0 0 1 0 0 0 18

]
, µ1= 5, µ2= 9, ν1= 0.1, ν2= 0.1

By solving (29), the optimized sliding surfaces of region 1 and region 2 are obtained
as follows:

s1(t) = 2.4957∆ f̂1 − 0.0002∆P̂m1 − 12.5012∆P̂v1 + ∆
.
P̂v1 − 0.0512∆P̂tie−1 − 0.9015

∫
δ̂1 + 0.0005∆P̂WTG1 + 17.0251∆P̂e1 + 17∆

.
P̂e1,

s2(t) = 2.5102∆ f̂1 − 0.0004∆P̂m1 + 12.4598∆P̂v1 − ∆
.
P̂v1 − 0.0450∆P̂tie−1 − 0.8845

∫
δ̂1 − 0.0004∆P̂WTG1 + 17.9895∆P̂e1 + 18∆

.
P̂e1.

The optimized sliding controllers of region 1 and region 2 are obtained as follows:

u1(t) = −0.2445∆ f̂1 − 0.0152∆P̂m1 − 0.0814∆P̂v1 + 0.0054∆P̂tie−1 − 0.0907
∫

δ̂1 − 1.3501∆P̂WTG1 − 0.1491∆P̂e1 − 4.5103(∆ f1 − ∆ f̂1)
−0.0021(

∫
δ1 −

∫
δ̂1)− 0.2066s(t)− 0.0041sgn(s(t)),

u2(t) = −1.2105∆ f̂2 − 0.0135∆P̂m2 − 0.1437∆P̂v2 + 0.0098∆P̂tie−2 − 0.1592
∫

δ̂2 − 0.7510∆P̂WTG2 − 0.2619∆P̂e2 − 2.5012(∆ f2 − ∆ f̂2)
−0.1511(

∫
δ2 −

∫
δ̂2)− 0.3704s(t)− 0.0041sgn(s(t)),

The simulation results under the optimized SMC are shown in Figures 8–10.

Figure 8. (a) Frequency deviation ∆ fi and observed frequency deviation ∆ f̂i in region 1; (b) frequency deviation ∆ fi and
observed frequency deviation ∆ f̂i in region 2.
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Figure 9. (a) Frequency deviation ∆ fi with and without EVs in region 1; (b) frequency deviation ∆ fi with and without EVs
in region 2.

Figure 10. (a) Comparison of frequency deviation ∆ fi without EVs in region 1. (b) Comparison of frequency deviation ∆ fi

without EVs in region 2. (c) Comparison of frequency deviation ∆ fi with EVs in region 1. (d) Comparison of frequency
deviation ∆ fi with EVs in region 2.

In this section, we first verify that the optimized observer can observe the state of
the system, which is shown in Figure 8. According to Figure 8, it is shown that the
optimized SMC can enable the load frequency deviation to reach stable values. Similarly,
after optimization, the control performance was verified in system with and without EVs.
By comparing the simulation results in Figure 9, for system containing EVs, it can achieve
stability with smaller fluctuations and shorter time.
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To further verify the effectiveness of the optimized SMC, we compare the control
performance of the controller before and after the optimization. Simulations are performed
in system with and without EVs, the results are shown in Figure 10. To compare the results,
we have summarized the data from the simulation results, as shown in Table 4.

Table 4. Summary of simulation results data of SMC.

Before Optimization After Optimization
Overshoot

(Hz)
Stable

Time(s)
Overshoot

(Hz)
Stable Time

(s)

without EVs
region 1 0.0152 45.20 0.0140 35.40
region 2 0.0202 43.50 0.0242 37.30

with EVs
region 1 0.0130 40.30 0.0080 31.45
region 2 0.0212 39.80 0.0235 30.70

Through comparing the simulation results of in Figure 10a,b, in the case of the system
without EVs, the parameter optimized SMC can make ∆ fi stable in a shorter time. Similarly,
in the case of the system containing EVs, the same conclusion can be obtained from the
simulation results of in Figure 10c,d. From the above analysis, the effectiveness and the
superiority of the parameter optimized controller are also further verified.

5. Conclusions

This paper aims to reduce the frequency fluctuation of systems with wind power and
EVs. Through the above simulation analysis, we have solved the impact of monitoring
equipment limitations, disturbances, and wind power uncertainty on the system. Fur-
ther, the controller parameters have been optimized by combining the Lyapunov stability
principle. The subsequent conclusions are drawn from the presented work:

1. The observer designed in this paper can realize the observation of the system state.
Moreover, the observer-based SMC is designed in this paper. It not only realizes the
stability in a certain time, but also has better control performance.

2. Through the simulation results, the EVs has better suppression effect on the load
frequency fluctuation of the power system. Thus, the effectiveness of the view that
EVs as storage participate in frequency control is also verified.

3. By comparing the figures before and after optimization, it is shown that the optimized
SMC can enable the system load frequency reach stable value in shorter time, which
improves the robustness of the interconnected power system.

With the above analysis, this paper realizes the LFC for the system with wind power
and EVs. Also, we found that the energy storage of EVs can effectively participate in the
frequency control. It is noted that through the simulation results of the system with two
regions interconnected, we have verified the research objectives of this paper. In the future
research, simulations of multiple region interconnections may be further considered.
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Appendix A

Table A1. Nomenclature of system model.

∆ fi frequency deviation Di load damping coefficient

∆Pmi generator power deviation Mi inertia constant
∆Pvi control valve position deviation Tgi governor time constant

∆Ptie−i tie-line power exchange Tchi turbine time constant
δi area control deviation Ri governor droop characteristic

∆PWTGi wind turbine power deviation βi frequency deviation factor
∆Pw−i power of wind ∆Pdi load demand disturbance
∆Pei EVs output power deviation αgi turbine proportionality factor
kei EVs gain factor αei EVs proportionality factor
Tei EVs time instants
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