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Abstract: This study analyzed the performance decline of wind turbine with age using the SCADA
(Supervisory Control And Data Acquisition) data and the short-term in situ LiDAR (Light Detection
and Ranging) measurements taken at the Shinan wind farm located on the coast of Bigeumdo Island
in the southwestern sea of South Korea. Existing methods have generally attempted to estimate
performance aging through long-term trend analysis of a normalized capacity factor in which wind
speed variability is calibrated. However, this study proposes a new method using SCADA data for
wind farms whose total operation period is short (less than a decade). That is, the trend of power
output deficit between predicted and actual power generation was analyzed in order to estimate
performance aging, wherein a theoretically predicted level of power generation was calculated by
substituting a free stream wind speed projecting to a wind turbine into its power curve. To calibrate
a distorted wind speed measurement in a nacelle anemometer caused by the wake effect resulting
from the rotation of wind-turbine blades and the shape of the nacelle, the free stream wind speed
was measured using LiDAR remote sensing as the reference data; and the nacelle transfer function,
which converts nacelle wind speed into free stream wind speed, was derived. A four-year analysis of
the Shinan wind farm showed that the rate of performance aging of the wind turbines was estimated
to be −0.52%p/year.

Keywords: performance aging; normalized capacity factor; nacelle transfer function (NTF); LiDAR;
Shinan wind farm

1. Introduction

According to IEC 61400-1, which explains the design condition of wind turbines, the
design life-span of wind turbines should be more than twenty years [1]. Since a wind
turbine is a machine that operates continuously under repetitive fatigue load conditions,
its performance inevitably deteriorates as a result of aging during its twenty-year life cycle
(blade erosion, efficiency reduction of gearbox, bearing, generator, etc.) [2].

The results of a comprehensive analysis of 5600 wind turbines in the UK and 7600 wind
turbines in Denmark [3] verified that performance due to aging deteriorated to a significant
extent. Nonetheless, performance aging has not been taken into consideration during
evaluations of the economic feasibility of wind farm projects due to a lack of reliable
estimation data.

According to the results of another study on thirty years of operational records of
3200 wind turbines in Denmark [4], the rate of reduction of their capacity was calculated
to be −0.32%p (percent point) per year, but the report did not specify whether this rate
was due purely to a deterioration of the wind turbines or to variations in the annual wind
resources. The results of an analysis of wind farms located in Ontario, Canada, for five
years [5] showed that if the annual wind speed change is calibrated every year, the rate
of reduction of their capacity was −1.0%p per year, which is a much higher rate than
that reported in Denmark. The estimation by Hughes (2012) [3] and that by Staffell and
Green (2014) [6], who calibrated wind resource variability using MERRA (Modern-Era
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Retrospective analysis for Research and Applications) reanalysis data, showed that the
normalized load factor (or capacity factor) in onshore wind farms in the UK had fallen
steadily by −0.48%p per year for a decade. Here, the normalized load factor is the total
power output over a certain period of time divided by the maximum potential power
output adjusted for monthly variations of wind speed.

Byrne et al. (2020) [7] and Astolfi et al. (2020) [8] demonstrated the wind turbine
aging of Vestas V52 using the support vector machine regression of operation curves, and
found that the performance decline over ten years was about 5%. Hamilton et al. (2020) [9]
analyzed fleet-wide performance with age with 917 wind farms installed before 2008 in the
US and showed the performance decline of −0.54%p per year.

In South Korea, the rate of deterioration in the capacity of Sungsan wind farm in Jeju
was reported to be −0.12%p per year for five years [10], but the reliability of the result is
suspicious because it was obtained by a trend analysis that used only five values for the
annual average capacity factor.

Most previous studies have estimated the deterioration of wind farm capacity by con-
ducting a trend analysis of the normalized capacity factor, which was calibrated according
to monthly wind speed variability. However, according to one analysis of wind resource
variability off the western coast of South Korea [11], the uncertainty of the yearly capacity
factor decreased to 0.7% when the analysis period was set to ten years or longer, while
the monthly capacity factor fell to 2.7% when the analysis period was set to 36 months or
longer. This implies that, since the uncertainty of the capacity factor due to wind resource
variability is comparable or higher than that of the wind turbine deterioration rate, a long-
term trend analysis of more than ten years would be needed to obtain a reliable qualitative
estimate of the rate of deterioration by a monthly trend analysis.

For wind farms whose total operating period is short, any estimate of performance
aging would be unreliable since the uncertainty of wind resource variability is more
dominant than the wind farm deterioration rate. The cumulative installation capacity
of MW-class wind turbines in South Korea is 1512 MW (as of the end of 2019), and the
cumulative number of installations is over 600 turbines, around half of which have a
total operating period of less than five years (Figure 1) [12]. Thus, even if the monthly
wind speed variation is calibrated in the case of wind turbines in South Korea, few of
the available cumulative operational data cover a long enough period to enable a reliable
estimate of the rate of wind turbine deterioration using only the normalized capacity factor.
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This study aims to propose a new method of calculating purely mechanical wind
turbine performance aging rate using SCADA data which is the rawest wind turbine data.
In other words, a theoretical prediction of power generation is calculated through the wind
turbine power curve based on the free stream wind speed, which is incident to a wind
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turbine, and is then compared with the actual power generation data contained in the
SCADA record.

The deficit in power output between the predicted power generation and the actual
power generation is attributable to turbulence effects due to wake, site conditions such
as wind shear caused by climate or terrain, operating effects such as the inflow angle and
yaw misalignment, and the mechanical aging of the wind turbines among other factors [6].
Although most of these are caused by stochastic effects, the dominant long-term cumulative
factor is wind turbine aging. Thus, the rate of mechanical deterioration of wind turbines
can be estimated by conducting a trend analysis of the power output deficit.

In addition, a LiDAR, a ground-based remote sensing device, was deployed and a
short-term campaign was conducted to accurately measure the free stream wind speed
toward the wind turbines. The accuracy of the predicted power output calculation can be
improved by calibrating the nacelle wind speed to the free stream wind speed. To that
end, a correlation equation was derived between the free stream wind speed measured at
the hub height of a wind turbine by LiDAR, and the nacelle wind speed measured by the
nacelle anemometer mounted in the wind turbine. The results from applying the proposed
method to the Shinan wind farm, which has been in commercial operation since 2009, were
compared with those obtained using the conventional method.

2. Analysis Data
2.1. Shinan Wind Farm

The Shinan wind farm is a small-scale wind farm (3 MW) that was built on the
sandy northern shore of Bigeumdo Island, located in the southwestern sea of South Korea
(34◦46′33.8′ ′ N 125◦56′15.3′ ′ E). In the Shinan wind farm, three IEC Class IIA 1 MW wind
turbines (Mitsubishi MWT-1000A of Japan), each with a cut-in wind speed of 3 m/s, a
hub height of 69 m, and a rotor diameter of 61.4 m, are arranged in line in the east-west
direction (Figure 2). This study analyzed four years of SCADA data taken from February
2009 (i.e., the farm’s start of commercial power generation) to April 2013 such as wind
speed, wind direction, power output, yaw misalignment, ambient temperature, etc. During
the operation period, there was no power curtailment, and the Weibull distribution of wind
speed measured at the nacelle-mounted anemometer was the scale factor of c = 6.77 m/s
and the shape factor of k = 1.66.
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Figure 2. Location (left) and layout (right) of the Shinan wind farm (the wind turbines and the LiDAR).

2.2. LiDAR Measurement Campaign

The remote sensing campaign was conducted from November 2009 to March 2010
(4 months) using the Leosphere WindCube LiDAR which uses a pulsed erbium-doped fiber
laser at 1.54 µm wavelength and heterodyne detection. The vertical measurement heights
were designed to include the wind turbine rotor area and the hub height (40 m, 70 m,
100 m, 130 m, ... above ground level). The sampling rate of SCADA and LiDAR is 1 Hz
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and the data were converted into a 10 min average. The accuracy of the WindCube LiDAR
has been verified through a comparative verification with SODAR (SOnic Detection And
Ranging) under various terrains such as plain, hilly terrain, and urban [13]. A measurement
algorithm of the LiDAR and a correction method in complex terrain using computational
fluid dynamics (CFD) are well described in Kim and Meissner (2017) [14].

The LiDAR was deployed between wind turbines #2 and #3 at the Shinan wind
farm in order to measure the sea breeze, which is a main wind, without interruption of
the terrain features (Figure 2). Due to the conical scanning setup of WindCube [14], the
scanning plane at the hub height of the wind turbine (the yellow circle in Figure 2) might be
interfered partially by the blade rotation (the white circle of #2). To prevent this, the LiDAR
is rotated 35◦ clockwise so that the scanning points (four yellow dots) do not overlap in the
rotor plane.

The comparison of wind speed at the hub height between the SCADA and LiDAR
data is depicted in Figure 3. The frequency distribution of wind direction measured by
LiDAR during the campaign period revealed that the excellent north-northwest sea breeze
with the mean wind speed of 10 m/s is the main wind as shown in Figure 4a. Figure 4b
shows the wind rose of the third-generation reanalysis data, MERRA-2 at the same period
of the campaign. They share very similar characteristics with the LiDAR measurements.
Figure 4c shows the wind rose of MERRA-2 for the last ten years, in which southeasterly
winds blew in summer but north-northwesterly winds were dominant throughout the year,
and the frequencies of easterly and westerly winds where the wake effect occurred were
very few.
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For reference, MERRA-2 refers to third-generation reanalysis data (1 h average) that
extensively assimilates satellite-based remote sensing data, showing a highly accurate
estimate for the southwest offshore of South Korea [15]. The MERRA-2 and LiDAR mea-
surements showed a high correlation of the coefficient of determination, R2 = 0.78 and 0.95
for wind speed and wind direction respectively.

3. Analysis Methods

The method of calculating the rate of deterioration of the capacity factor from the
SCADA data of the wind farm and sort-term LiDAR measurements is presented in Figure 5
in the form of a schematic diagram.
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First, the free stream wind speed was measured through the short-term LiDAR mea-
surement campaign, and the nacelle transfer function (NTF; the correlation between wind
speeds measured at the upstream of wind turbine using a remote sensing device and a
nacelle anemometer on a wind turbine) was derived by analyzing the correlation with
regard to the nacelle wind speed of the SCADA data.

Second, the nacelle wind speed of the SCADA was calibrated to the free stream wind
speed using the derived NTF, and the calibrated speed was substituted into the wind
turbine power curve to calculate the predicted power output.

Third, the difference between the actual power output and the predicted power output
was calculated, and the rate of deterioration of the performance of the wind turbine was
estimated by a monthly trend analysis.

3.1. Derivation of the Nacelle Transfer Function

Since a nacelle anemometer is installed in the rear side of the blade roots on the wind
turbine’s nacelle, it measures wind speed that is deformed by the nacelle geometry and
the wake caused by the blades’ rotation; therefore, the higher the wind speed, the greater
the deficit. In this regard, IEC 61400-12-2 [16], which recommends the guideline for wind
turbine power performance, provides a rule on the creation of the NTF to calibrate the
nacelle wind speed to the free stream wind speed. Kim et al. (2015) [17] verified various
types of NTFs according to the type of wind turbine, blades, nacelle geometry, and sensor
position via an analysis of the literature (Figure 2 of Kim et al., 2015 [17]). They defined the
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NTF as a function of wind speed as well as turbulence intensity, thereby improving the
function fitness [18].

Assuming that the variations of wind flow passing through the wind turbine can be
expressed with the blades’ aerodynamic characteristics, that is, the power coefficient (CP) or
thrust coefficient (CT). This study conducted a regression analysis of the NTF using the CP
-equation (Equation (1)), CT -equation (Equation (2)), and non-linear function (Equation (3)).
Note that Equations (1) and (2) are derived empirically [19,20].

Vcorrected,1 =

(
a1 − 3

√
CP

a2

)
Vnacelle + a3 (1)

Vcorrected,2 = b1

√
(1− CT) Vnacelle + b2 (2)

Vcorrected,3 = c1V3
nacelle + c2V2

nacelle + c3Vnacelle + c4 (3)

where a1, a2, a3, b1, b2, c1, c2, c3, c4 are the fitting coefficients determined by the maximum
likelihood estimation. (a1 = 4.60, a2 = 3.84, a3 = 0.35, b1 = 1.06, b2 = 3.65, c1 = 0.0008,
c2 = 0.0538, c3 = 0.3025, c4 = 2.8041).

The power coefficient is defined as the ratio between rotor power and free stream
wind power, which refers to the fraction of wind power that is absorbed by the rotor. The
thrust coefficient is defined as the ratio between the thrust force and the dynamic force
of free stream wind, which refers to the fraction of wind energy that is absorbed by the
rotor [21]. The power and thrust coefficients of the Mitsubishi MWT-1000A wind turbine
are shown in Figure 6.
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3.2. Trend Analysis of Wind Turbine Deterioration

The difference between actual power generation and predicted power generation can
be calculated using the following sequence.

(1) The nacelle wind speed (Vnacelle) is calibrated to free stream wind speed (Vcorrected)
using the NTF derived in Section 3.1.

(2) The effective wind speed (Veff) is calculated to compensate the effect of air density
when the performance curve is applied as follows. In the equation below, ρo refers
to the standard air density when the wind turbine performance curve is derived.
The seasonal temperature change in Korea is about 26 ◦C, so accurate air density
calculation is essential for wind resource assessment. In this study, air density was
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calculated using SCADA data and the nearby weather station data (located 2.5 km
behind) such as air temperature, air pressure, and humidity.

Ve f f = Vcorrected(ρ/ρo)
1/3 (4)

(3) The theoretically predicted power generation (Ppredicted) is calculated by substituting
the effective wind speed (Veff) into the performance curve of the Mitsubishi MWT-
1000A wind turbine (Figure 6). ‘Power output deficit’ (dP) refers to the difference
between predicted and actual (PSCADA) power generation in a 10 min average.

dP = Ppredicted − PSCADA (5)

(4) Statistical outliers that are not included within 95% of the statistical distribution
of the 10 min average power output deficit were eliminated. Note that the special
care is needed when treating outliers if there were power curtailments. In this
study, there was no power curtailment and non-operating period (PSCADA ≤ 0) were
excluded. In addition, data other than the 285–0◦ and 0–35◦ sectors were also excluded.
Figure 7 shows surface roughness length distribution around the LiDAR location
where the disturbed wind directions due to wind turbine tower shading, wake zone,
and topographic effect are identified [22]. The reason behind the selection of northerly
winds (285–0◦ and 0–35◦) only was to single out only sea breeze cases that can exclude
influence factors due to wake and terrain features. The surface roughness length (zo)
was calculated by a linear least square method to fit a logarithmic wind speed profile
(Equation (6)) to measured wind speed data by LiDAR at 40 m, 70 m, and 100 m
heights above ground. In the equation below, u∗ and κ are the friction velocity and
von Kármán constant, respectively.

V(z) =
u∗
κ

ln
(

z
zo

)
(6)

(5) Finally, the wind turbine deterioration rate was determined through the slope in the
analysis of the monthly average of 10 min averaged power output deficit trend.
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4. Results and Discussion
4.1. Derivation of the Nacelle Transfer Function

The curve fitting of the free stream wind speed measured a 10 min average at the hub
height of 69 m during the LiDAR campaign and the 10 min averaged nacelle wind speed
was conducted using three NTFs, i.e., Equations (1)–(3), thereby determining the fitting
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coefficients. The curve fitting results showed that the fittings (R2) of CP-NTF (Equation (1)),
CT-NTF (Equation (2)), and non-linear NTF (Equation (3)) were 0.97, 0.99, and 0.97, respec-
tively, and that CT-NTF had the best fitting result.

The probability distribution of the 10 min averaged wind speed deficit according to
the three NTFs is shown in Figure 8, where the distribution of the wind speed deficit in
CT-NTF was the closest to the normal distribution, as well as showing the smallest variance.
Consequently, R2 of CT-NTF was the smallest. The wind speed deficit is the difference
between the predicted free stream wind speed calculated by substituting the nacelle wind
speed into the NTF and the actual free stream wind speed measured by LiDAR. Finally,
CT-NTF was found to be the best fit function from the evaluation of the curve fit regression
and the probability distribution of the deficit (Figure 8).
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4.2. Analysis of the Wind Turbine Deterioration Trend

The monthly average of normalized capacity factor (CFm) is calculated by the following
equation [5].

CFm =
CFm(

Pm/Pm
) (7)

where m stands for month (1, 2, . . . , 12), Pm and Pm are the monthly average of wind power
for a long-term (over 10 years) period and a short-term (wind farm operation) period,
respectively. In this study, wind power is calculated by hourly wind speed at the hub
height from MERRA-2 data, i.e., P = 1

2 ρV3 A (A: rotor area).
The rate of performance aging is +0.47%p per year when wind resource variability

is not considered and this positive rate does not make sense. However, the rate becomes
−0.01%p per year when wind resource variability is corrected with 10 year reanalysis
data. Moreover, the rate becomes −0.11%p per year when 35 year MERRA-2 data is
used as shown in Figure 9. Consequently, it is conjectured that the short-term capacity
factor data would not be appropriate when estimating the performance aging rate of wind
turbines, even if the wind resource variability were to be corrected with the highly accurate
reanalysis data. The sinusoidal pattern that appears every 12 months in Figure 9 is due to
the seasonal variation of synoptic wind speeds in Korea, i.e., the strongest in winter and
the weakest in summer. Along with wind speed changes, diurnal variations of atmospheric
stability by season makes the difference of power output even larger.
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Figure 9. Trend analysis of wind turbine deterioration rate by normalized capacity factor with the
correction of wind resource variability. (•: monthly capacity factor, black and blue lines: harmonic
regression with 95% confidence limits, dashed line: linear regression).

Figure 10 is a graph representing the monthly trend analysis of the power output
deficit. The power output deficit shows one-year cycle of seasonal variability but a steady
increasing trend is obvious. In other words, as performance deteriorated, the difference
between theoretical and actual power generation tended to increase linearly. The slope
of the trend analysis line in the monthly average of power output deficit for four years is
0.43 kW/month, which can be converted to an output reduction rate of −0.52%p per year
(i.e., the rate of deterioration of the capacity factor). One of the reason of seasonal variation
would be different wind shear patterns by season in Monsoon climatology.
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For reference, the average slope of trend analyses of 1-, 2-, 3-, and 4-year periods was
0.46 ± 0.15 kW/month which is a 6.5% difference (1-year period means each of the four
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years such as 2009, 2010, 2011, and 2012; 2-year period refers to consecutive two years such
as 2009–2010, 2010–2011, and 2011–2012).

The monthly trend analysis without applying the NTF showed the same slope of
0.43 kW/month (R2 = 0.77). However, the power output deficit decreased from 85.5 ± 5.4 kW
to 41.3 ± 2.9 kW after applying the NTF, resulting in a reduction in both of the mean and
the variance for four years by half. In spite of improving the accuracy of power generation
prediction by employing NTF calibration, the effect of NTF calibration was not observed
obviously in the trend analysis. This implies that the wind speed deficit and the power
output deficit are attributable to independent causes. The wind speed deficit is mainly due
to wake effect and nacelle geometry but the causes of power output deficit are not directly
relevant to wake effect. However, it should be noted that a NTF would also be aging due
to blade erosion but it was not considered in this study.

The rate of performance aging (−0.52%p per year) of the wind turbines at the Shinan
wind farm is within the range of −0.48%p per year and −1.0%p per year by month, which
are similar to the performance aging rates of onshore wind farms in the UK, US and Canada.
Note that this value is limited to the Mitsubishi MWT-1000A wind turbines installed at
the Shinan wind farm, whereas the values for the UK, US, Denmark, and Canada are the
results of a comprehensive analysis of wind turbines made in Europe with various machine
types, production years, and operational periods. However, it is of great significance to
quantitatively confirm the performance aging of Asian wind turbines installed in the Asian
region. It also supports that the figures are similar to those around the world.

The aging of the wind turbines was presumed to be the result of a gradual deterioration
in performance due to mechanical aging, and not the result of sudden aging after a given
number of years. The overall trend of performance aging progressed in a linear fashion
which was observed in previous studies in the UK, Denmark, and Canada.

According to South Korea’s carbon-neutral plan, the wind energy should supply
70 TWh of electricity by 2050, and the wind turbine capacity of 24.6 GW is expected to be
installed. However, when considering the performance aging of −0.5%p per year, 1.8 GW
should be added to the total capacity (+7.3%). This means that accurate prediction and anal-
ysis of the performance aging of wind turbines is not only necessary for the development
of control strategy, but is also a significant research field to accelerate carbon neutrality.

5. Conclusions

The reliability of the method of estimating the rate of performance aging in existing
wind farms was somewhat low due to the uncertainty of wind resource variability, when
applied to wind farms with a short total operating period, i.e., less than 5 years. To
overcome this problem, the difference between predicted and actual power generation
using SCADA data, which is a monthly average of power output deficit, was calculated,
and the rate of performance aging was estimated using a trend analysis.

The main conclusions of the study are summarized as follows:

(1) The trend analysis of power output deficit at the Shinan wind farm over 4 years
showed that the rate of performance aging was –0.52%p per year, and that it pro-
gressed linearly. This value was similar to the figure of –0.48%p per year obtained for
onshore wind farms in the UK, and −0.54%p per year in the US. This result implies
that generally about 10% of performance aging occurs over the 20 years of wind farm
operation, and this figure should be reflected when evaluating the cost of wind energy
and setting national target.

(2) It was presumed that the nacelle wind speed is affected nonlinearly depending on
the wind turbine’s control mode and related to the performance aging. Despite that
the prediction accuracy of wind power output was significantly improved when the
nacelle wind speed was corrected using the NTF based on CT curve, it was found
that the performance aging is not directly affected by this correction. Since the wind
turbine aging occurs in the mechanical drive, the nacelle wind speed is not affected by
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the aging of blade control mechanism. Therefore, it is conjectured that the correction
using NTF is not mandatory when analyzing the performance aging of wind turbines.
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