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Abstract: Tire normal forces are difficult to measure, but information on the vehicle normal force can
be used in many automotive engineering applications, e.g., rollover detection and vehicle and wheel
stability. Previous papers use algebraic equations to estimate the tire normal force. In this article,
the estimation of tire normal force is formulated as an input estimation problem. Two observers are
proposed to solve this problem by using a quarter-car suspension model. First, the Youla Controller
Output Observer framework is presented. It converts the estimation problem into a control problem
and produces a Youla parameterized controller as observer. Second, a Kalman filter approach is
taken and the input estimation problem is addressed with an Unbiased Minimum Variance Filter.
Both methods use accelerometer and suspension deflection sensors to determine the vehicle normal
force. The design of the observers is validated in simulation and a sensitivity analysis is performed
to evaluate their robustness.

Keywords: normal force estimation; unbiased minimum variance estimation; controller output
observer; youla parameterization

1. Introduction

The automotive industry has made significant improvements in vehicle safety and
driving performance in the last decades thanks to active control systems. These control
systems rely on the measurement and estimation of several parameters and signals such as
the wheel slip, sideslip angle. Tire normal forces can also be used to improve the vehicle
safety and performance. Indeed, the longitudinal and lateral tire forces are coupled with
the wheel loads [1]. Cho [2] showed that the estimate of tire forces, including tire loads,
can be used to implement Global Chassis Control (GCC) systems and to further improve
vehicle stability. Another practical application of tire normal force estimation is roll-over
avoidance and understeering or oversteering prevention [3].

Tire loads are permanently changing when the vehicle is moving. Loads are transferred
between wheels during accelerating, braking, and cornering. The position of the center
of gravity, the road grade and irregularities on the road also impact the distribution of
wheel normal forces making the estimation task a complex problem [4]. Due to the lack of
low-cost sensors to measure the vehicle vertical force, a common approach is to consider
the normal forces as constant parameters or to use an algebraic expression based on the
vehicle longitudinal and lateral accelerations [5]. These open-loop estimation schemes,
albeit simple, are not able to give a precise representation of the normal forces.

Doumiati et al. [6,7] provided a cascaded observer to estimate the tire normal forces.
The first step of the algorithm estimates the lateral load transfer using a linear Kalman filter
from the suspension deflection and accelerometer measurements and an estimate of the
vehicle mass. A second observer is then used to infer the normal tire force from the lateral
load transfer and a formulation of the normal force algebraic expression with coupling
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between longitudinal and lateral acceleration. This yields an Extended Kalman Filter.
Jiang [8] extended the application of this estimation framework by adding the vehicle pitch
dynamics to take in account the road angle and the road irregularities.

Ozkan [9] used a Controller Output Observer (COO) to estimate lateral and normal tire
forces. The estimation model is a half-car model which includes the vehicle lateral, heave,
roll, and yaw motion. The model does not include pitch dynamics. Moreover, it assumes a
constant vehicle velocity and a perfectly flat road. The COO has been successfully used
in other automotive applications, e.g., to estimate the vehicle states [10] or to estimate
longitudinal tire forces [11].

The goal of the paper is to provide a framework capable of delivering a reliable
estimate of the wheel normal forces using low-calibration estimation methods. Contrary
to previous work, the estimation of the wheel force will not be derived from algebraic
expressions which estimate the normal forces from the vehicle acceleration. Instead, we
intend to integrate the suspension dynamics in the normal force estimator to truly capture
the tire force generation using suspension deflection sensors and accelerometers. This
manuscript also illustrates the application of a recently developed estimation methodology
called Youla Controller Output Observer (YCOO). This new approach is compared to the
established method for signal estimation: Kalman filtering. Since the estimation problem
is not formulated as a state estimation but an input estimation problem, the Unbiased
Minimum Variance Filter (UMVF) is used in place of the standard state-estimation Kalman
Filter. The comparison between the two estimation methods is based on several criteria:
estimation performance, robustness to uncertainties, and ease of design. The performance
is evaluated based on simulation results. In these simulations, we cover the major ways
normal force can be generated (load transfer, disturbance from the road profile, and inclined
road). The robustness is analyzed by conducting a sensitivity study of the suspension
parameters, by introducing discrepancies between the estimation model and the simulation
model, and by introducing noise in the measurements. Finally, by considering the different
requirements to implement the YCOO and UMVF and the different approaches used by
each observer (the UMVF uses a stochastic approach in the time domain while the YCOO
relies on a deterministic approach in the frequency domain), we aim to highlight that the
YCOO estimation framework is easily implementable with a low-calibration burden to
guarantee robustness.

The following section analyzes a vehicle model and provides a model that can be used
for closed-loop estimation. Sections 3 and 4 introduce the YCOO and UMVF estimation
frameworks. As the normal force estimation is dependent on the vehicle mass estimation
problem, Section 5 explains the computation of the vehicle mass estimate, which is used by
the two frameworks. Finally, both the YCOO and UMVF are tested in simulation.

2. System Modeling

The generation of vertical forces of a rigid vehicle is linked with the compliance of the
suspensions [12]. To develop the estimation frameworks and evaluate the effectiveness,
a vehicle model with realistic heave, roll, and pitch dynamics is indispensable. Fortunately,
the literature is filled with such vehicle models. Shim [13] described a 14 degrees of
freedom vehicle model and validated it against the commercial vehicle models Carsim and
ADAMS/Car. Figure 1 shows a schematic of the vehicle model. The degrees of freedom
are the longitudinal, lateral, heave, roll, pitch, and yaw motion of the chassis, the vertical
dynamics of each unsprung masses, and the wheels spin. The model assumes rigid bodies
for the sprung and unsprung masses and neglects the compliance between the chassis and
the unsprung mass in the vehicle longitudinal and lateral directions.

The model described in Figure 1 gives an accurate representation of the vehicle.
However, it is highly complex which limits its usage to implement vehicle observers.
Before beginning the observer development, a linear system analysis of the vehicle is
performed. Its purpose is to determine the cross-coupling effects between the input–output
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pairs to facilitate the observer design. The inputs of the model are the tire loads and the
outputs are the suspension deflections.

kt

ksbs

kt

ksbs kt

ksbs

kt

ksbs

xy
zlr

l fwl

wr

Figure 1. Fourteen degrees of freedom vehicle model. The x, y, and z axes indicate, respectively,
the longitudinal, lateral, and vertical directions of the vehicle. Parameters ks, bs, and kt denote the
suspension stiffness, damping, and the tire stiffness.

The coupling between input-output pairs of the plant G is analyzed using the Relative
Gain Array (RGA) Λ = (G(0)−1)T × G(0) where G(0) is the plant gain [14]. Since
RGA is a linear analysis tool, the model mapping the tire loads fFLz, fFRz, and fRLz,
fRRz to the suspension deflections qFLs, qFRs, qRLs, and qRRs must first be linearized. The
operating point is chosen to be a steady-state cornering such that the vehicle velocity is
vx = 90 km h−1 and the vehicle lateral acceleration is ay = 0.4 g (i.e., the vehicle lateral
velocity is vy = 0.2 m s−1; the heave velocity is vz = 0 m s−1; and the roll, pitch, and roll
angular velocities are wx = wy = 0 rad s−1 and wz = 0.15 rad s−1). The matrices Λ1 and
Λ2 correspond, respectively, to the RGA of a vehicle without an anti-roll bar and with an
anti-roll bar on the rear axle. The inputs are uT =

[
fFLz fFRz fRLz fRRz

]
.

Λ1 =

0.9560 −0.0527 0.0474 0.0493
−0.0527 0.9604 0.0452 0.0471
0.0474 0.0452 0.9497 −0.0423
0.0493 0.0471 −0.0423 0.9459



, Λ2 =

0.9560 −0.0527 0.0474 0.0493
−0.0527 0.9604 0.0452 0.0471
0.0478 0.0457 1.2118 −0.3053
0.0488 0.0466 −0.3043 1.2089



 (1)

The matrix Λ1 is almost equivalent to an identity matrix which indicates that there is
almost no coupling between the four corners of the vehicle without anti-roll bar. Concerning
the vehicle equipped with anti-roll bar, the two axles decoupled as the bottom left and
upper right 2× 2 submatrices of Λ2 are almost zero. However, the anti-roll bar introduces
a coupling between the left and right rear normal loads fRLz and fRRz, as can be seen in the
bottom right corner of Λ2.

We assume that the vehicle is not equipped with an anti-roll bar. Thus, the wheel load
of each corner of the vehicle can be estimated individually. A simpler model (Figure 2) is
introduced to model the suspension of each wheel of the vehicle. The estimation model is
a quarter-car model [15] with two inputs: a force applied on the sprung mass to represent
the load transfer and another force which represents the tire load. In practice, the anti-roll
bar of the vehicle should be considered and the coupling between the left and right normal
forces should not be ignored. This coupling would appear as a load transfer from one side
to the other when the two wheel loads are not equal, e.g., during cornering. The anti-roll
bar would prevent the use of a quarter-car model and require a half-car model.
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Figure 2. Quarter-car model of the suspension with wheel normal force and load transfer as inputs.

The bond graph of the model in Figure 2 yields the equation of motion of the quarter-
car model

ṗs = ksqs + bs q̇s −msg− ∆ fz (2)

ṗu = −ksqs − bs q̇s −mug + fz (3)

q̇s =
pu

mu
− ps

ms
(4)

where ps and pu are the sprung mass and unsprung mass momentum, qs is the suspension
deflection, fz is the wheel normal load, ∆ fz represents the load transfer applied to the
wheel, ks is the suspension stiffness, bs is the damper coefficient, and ms and mu are the
sprung and unsprung masses of the corner of the vehicle. The states of the model are xT =[

ps pu qs
]
. It is assumed that the vehicle is equipped with suspension deflection sensors

and accelerometers on the sprung mass, hence the measurements are yT =
[

ṗs
ms

qs

]
. The

model inputs are uT =
[

fz ∆ fz
]
.

The equation of motions of the quarter-car model (Equations (2)–(4)) are not linear but
affine. The constant term due to gravity can be eliminated by translating the states, inputs,
and outputs of the system as follows

x̃T =
[

ps pu qs − msg
ks

]
, ũT =

[
fz − (ms + mu)g ∆ fz

]
, and ỹT =

[
ṗs
ms
− g qs − msg

ks

]
(5)

3. Controller Output Observer

The Youla Controller Output Observer, based on the COO framework [9], is a model-
based estimation technique that uses a controller to minimize the error between the mea-
surement and the virtual measured signals of an estimation model. Contrary to the
Luenberger observer, the YCOO does not assume that all system inputs are known; it
is therefore well suited for an input estimation problem. Instead of designing a static
gain controller via pole placement similarly to the Luenberger observer, the YCOO uses
a dynamic controller designed with Youla parameterization [16]. This technique allows
including information about the sensor dynamics and its noise content in the frequency
domain to ensure good robustness and performance. A block diagram of the estimation
concept is given in Figure 3. Measurements y are fed to the YCOO to provide an estimate û
of the signal u. The YCOO is decomposed into two components: an estimation model Ĝp
that maps the estimated signal û to the virtual measurement ŷ and a controller Gc that is
responsible to follow those measurements [17].

The transfer function from the the true signal u and the estimated signal û is given by
(I + Lu)−1GcGp where Lu = GcĜp is the return ratio. If there is no discrepancy between
the estimated plant and the actual one (Gp = Ĝp), then this transfer function corresponds
to the closed-loop transfer function Tu. If the plant has multiplicative uncertainty such
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that Gp = Ĝp(I + ∆), the relation becomes û = (Tu + Y∆)u where Y is the Youla transfer
function. This shows that the YCOO relies on an accurate model of the system. Indeed, to
guarantee good tracking of the measured quantities, Tu ≈ I is needed at low frequencies.
This condition on Tu also constrains the gain of Y to the inverse of the plant gain at low
frequencies since Tu = YGp. If the model is not correct, however, the term Y∆ introduces
a steady-state error that cannot be compensated by the observer unless the plant gain
is very high at low-frequency. Moreover, for the nominal system Gp = Ĝp, the transfer
function mapping the sensor noise to the estimation error is also given by Y. Thanks to its
loop shaping approach, the YCOO directly addresses the trade-off between noise rejection,
bandwidth, and robustness to high-frequency multiplicative uncertainties. Indeed, a higher
bandwidth would increase the gain of Y at higher frequency, making the estimation more
sensitive to noise and less robust to multiplicative uncertainties.

Plant Gp

Estimation
model Ĝp

Controller Gc

u

−
ŷ

y

û

Figure 3. Block diagram of the YCOO estimation concept.

The quarter-car model described in the last section is used as the estimation model
Ĝp. The Youla parameterization technique is applied to design the controller Gc from the
estimation model. The plant model can be written as a transfer function Ĝp = P

δ mapping
the signals û to ŷ.

Ĝp =

[ ṗs
fz

ṗs
∆ fzqs

fz

qs
∆ fz

]
=

1
msmus2 + (ms + mu)bss + (ms + mu)ks

[
ks + bss −(mus2 + bss + ks)

ms mu

]
(6)

The first step in deriving a controller using the Youla parameterization technique
is to find the Smith–McMillan form MP of the plant Gp such that MP = ULGpUR. The
Smith–McMillan form [18] is useful in multi-variable control as it gives a realization of the
plant in a basis where the plant is decoupled (i.e., its transfer function matrix is a diagonal
matrix). The poles and transmission zeros of the Smith–McMillan form correspond to the
poles and zero of the original system and the unimodular matrices UL and UR describe the
transformation from the original basis to the basis used by the Smith–McMillan form. The
Smith–McMillan form of the plant and its unimodular matrices UL and UR are

MP =

[
1

msmus2+(ms+mu)bss+(ms+mu)ks
0

0 1
msmu

]
, UL =

[
0 1

mu mus2 + bss + ks

]
, UR =

[
0 1

msmu
1

mu
− 1

m2
u

]
(7)

The controller is designed such that the decoupled system is a second-order Butter-
worth filter of unit gain with additional poles to make the controller proper, see Equation (8).
The damping ratio ζ is set to 1√

2
as it offer good trade-off between fast transient and small

oscillations. A large enough bandwidth is necessary for the wheel load estimate to be used
by the control system. Moreover, the frequency response of a suspension mapping the road
disturbance to tire force is shaped as a band-pass filter [12] whose high cutoff frequency
is the wheelhop frequency (typically located at 10 Hz). Thus, to capture the tire force
response, the closed-loop bandwidth should be faster than the wheelhop frequency. The
controller is designed such that ζ = 1/

√
2 and the bandwidth of the closed-loop system is

30 Hz. Singular values of the closed-loop transfer function and of the controller are given
in Figure 4. At frequencies below the bandwidth, Tu is 0 dB and Su has low gain, ensuring
a good tracking. At higher frequencies, the gain of Tu decreases to reject sensor noise and
make the estimate robust against high-frequencies model mismatch.
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MT =
ω2

0
s2 + 2ζω0s + ω2

0

1
(τs + 1)2 (8)

Let MY such that MT = MY MP, the closed-loop transfer function and the controller
transfer function matrix is obtained from the following equations which are derived
from [17]

Tu = UR MTU−1
R (9)

Su = I − Tu (10)

Y = UR MYUL (11)

Gc = S−1
u Y (12)

This yields the controller

Gc =
ω2

0
(s2 + 2ζω0s + ω2

0)(τs + 1)2 −ω2
0

[
mu mus2 + bss + ks
−ms ks + bss

]
(13)

Figure 4. Singular values of the closed-loop transfer function Tu, Su, and Y and of the return ratio Lu,
Gc, and Gp.

The transfer function from the measured signal y to the estimated input û is given

Y =
ω2

0
(τs + 1)2(s2 + 2ζω0s + ω2

0)

[
mu mus2 + bss + ks
−ms bss + ks

]
(14)

Hence, the estimate of the normal force given by the YCOO is

f̂z(s) =
[
mus×

( ps(s)
ms

+ sqs(s)
)
+ bssqs(s) + ksqs(s)

] ω2
0

(s2 + 2ζω0s + ω2
0)(τs + 1)2

(15)

The same equation can be obtained by combining (3) and (4) and by adding a filter
with unit gain. Moschuk et al. [19] patented a concept to estimate wheel normal force using
only suspension deflection sensors. The invention uses derivative filters to compute the
suspension deflection velocity and the unsprung mass velocity (assuming the sprung mass
vertical acceleration is null). It then uses damper and spring force maps to compute the tire
normal force. Writing the derivative filter as Fd, the estimation in Reference [19] is

f̂z(s) = muFd
(

Fd(qs)
)
+ bs

(
Fd(qs)

)
+ ks(qs) (16)

This is similar to the estimate of the wheel normal force given by the YCOO in (15).
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4. Unbiased Minimum Variance Filtering

The Unbiased Minimum Variance Filter is a variation of the Kalman filter for systems
with unknown inputs. It gives an unbiased (zero-mean error) estimate of the model states
and unknown inputs [20] with the assumption that the system is strongly observable.
Consider the discrete Linear Time-Invariant (LTI) system

xk+1 = Axk + Buk + Hek

yk = Cxk + Duk + Gek
(17)

where xk are the model states, uk the known inputs, and ek the unknown inputs. The
states and inputs of the estimation model are xT

k =
[

ps pu qs − msg
ks

]
, uT

k = ∅, and eT
k =[

fz − (ms + mu)g ∆ fz
]
. The LTI system (17) is strongly observable if the matrix Ψ has full

column rank [21] (Gd is the G matrix considering only feedthrough unknown inputs, i.e.,
with all zero-columns removed).

Ψ =


C G

CA CH
. . .

...
...

. . . G
CAn−1 CAn−2H . . . CH Gd

 (18)

Since the first column of Ψ corresponds to the observability matrix, observability is
a necessary condition for strong observability. Unfortunately, the system representing
the quarter-car model with unknown force inputs (Equations (2)–(4)) is not observable.
Indeed, similarity transformation shows that the state associated to the direction (ms p̃s +
mu p̃u) does not produce any observable output. The system is reduced to eliminate
the unobservable states. Moreover, it is necessary to use additional measurements to
make the system strongly observable. The measured signals used by the UMVF is ỹT =[

ṗs
ms
− g qs −msg/ks q̇s

]
. Note that suspension deflection sensors such as linear variable

transformers which defines an electrical signal based on the position of an objected it is
connected to can only measure deflection [22]. The measurement of the suspension relative
velocity q̇s needed by the UMVF requires differentiating the signal qs, which requires
additional signal processing.

Similar to the Kalman filter, the estimated states is computed in two steps. First, the
estimated signals are computed based on the plant model.

x̂k+1|k = Ax̂k|k + Buk (19)

Pk+1|k = APk|k AT + Qk (20)

Second, the gain Lk+1 is computed to guarantee an unbiased estimate of the model states.

R̃k+1 = CPk+1|kCT + Rk+1 (21)

Φk+1 =
[
−G CH

]
(22)

Ωk+1 =
[
0n×p H

]
− Pk+1|kCT R̃−1

k+1Φk+1 (23)

Lk+1 = Pk+1|kCT R̃−1
k+1 −Ωk+1(Φ

T
k+1R̃−1

k+1Φk+1)
−1ΦT

k+1R̃−1
k+1 (24)

x̂k+1|k+1 = x̂k+1|k + Lk+1(yk+1 − Cx̂k+1|k − Duk+1) (25)

Pk+1|k+1 = Lk+1R̃k+1LT
k+1 − Pk+1|kCT LT

k+1 − Lk+1CPT
k+1|k + Pk+1|k (26)

with n the number of states and p the number of unknown input ek. Given an unbiased
estimate x̂k|, Palanthandalam-Madapusi [23] showed that an unbiased estimate of unknown
inputs can be obtained from the following equations
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êk = H†Lk+1(yk+1 − Cx̂k+1|k − Duk+1) (27)

êk = G†(yk − Cx̂k|k − Duk) (28)

where † denotes the Moore–Penrose pseudo-inverse. Computing the unknown inputs
using Equations (27) and (28) guarantees that E[êk] = G†GE[ek] and E[êk] = H† HE[ek],
respectively. If H or G have full column rank, then this translates to E[êk] = E[ek]. In the
general case where both H and G are not full column rank, it is necessary to combine
Equations (27) and (28) to compute an unbiased estimate êk. In this article, we propose to
compute the unknown input by solving a linear system. Let VT

H and VT
G be the matrices of

left eigenvectors associated to non-zero eigenvalues of H†H and G†G. The unknown input
is the solution of: [

VT
H

VT
G

]
êk =

[
VT

H H†Lk+1(yk+1 − Cx̂k+1|k − Duk+1)

VT
G G†(yk − Cx̂k|k − Duk)

]
(29)

Without loss of generality, we can assume that rank
[
HT GT] = p, and it is possible

to obtain at least p left eigenvectors of H† H and G†G associated to non-zero eigenvalues.

Therefore, the matrix
[

VT
H

VT
G

]
has full column rank. Taking the mean of (29) yields

[
VT

H
VT

G

]
E[êk] =

[
VT

H
VT

G

]
E[ek] (30)

Since the matrix has full column rank, this guarantee that E[êk] = E[ek], i.e., êk is an
unbiased estimate of ek.

5. Vehicle Mass Estimation

Both observers require knowledge of the vehicle mass and the location of the center
of gravity. Indeed, the estimate of signals ũ from the observer, as given in (5), directly
depends on the vehicle mass. The static wheel load must be added to this estimate to
compute the wheel load. This section presents a simple algorithm to obtain the static load
of each wheel. More elaborate algorithms could be applied [24].

Algebraic expressions can be used to describe the wheel load distribution in quasi-
steady-state.

fijz = f 0
ijz ± ∆ f x

j ax ± ∆ f y
i ay, (i, j) ∈ {F, L} × {L, R} (31)

where the static load and the load transfer terms are

f 0
ijz =

mg(L− lj)(W − wi)

LW
(32)

∆ f x
j =

mh(W − wj)

LW
(33)

∆ f y
i =

mh(L− li)
LW

(34)

Variables wL and wR denote the distance from the center of gravity of the vehicle to
the left and ride sides; W = wL + wR is the track width; lF and lR denote the distance from
the center of mass to the front and rear axles; L = lF + lR is the wheelbase; m is the total
vehicle mass; g is the acceleration of gravity; h is the height of the center of mass; and ax
and ay are the longitudinal and lateral acceleration due to vehicle acceleration, which also
include the gravity component on the vehicle longitudinal and lateral axes.

The vehicle mass estimation algorithm is run when the vehicle is not moving. The
wheel load fijz corresponds to the force produced by the suspension deflection ignoring
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the weight of the unsprung mass. Hence, at steady-state, the wheel load in Equation (31) is
replaced by fijz = ksqijs. This yields

ksqijz = f 0
ijz ± ∆ f x

j ax ± ∆ f y
i ay (35)

where ax and ay are the longitudinal and lateral accelerations measured by the sensors
and correspond to the acceleration of gravity in those directions if the vehicle is parked on
a slope.

This corresponds to a system of four equations with four unknowns, m, lF , wL, and
h (replacing lR and wR by l − lF and w− wL with l the vehicle wheelbase and w the axle
track width). Thus, the position of the center of mass and the vehicle mass can be obtained
when the vehicle is not moving.

6. Simulation Results

In this section, the YCOO and UMVF observers developed in Section 3 and 4 are tested
in simulation. The full-car model shown in Figure 1 is assumed to represent the actual
vehicle dynamics and the measured ground-truth signals are extracted from the 14 degrees
of freedom vehicle model. The driving scenarios presented aim to cover all possible ways
to redistribute tire loads, i.e., longitudinal or lateral load transfer, road irregularities, and
sloped road. The results are also compared to the algebraic expression for normal force.

Figure 5a shows the estimates during a braking step of 3000 N m at 1 s from an initial
velocity of 90 km h−1. The two observers provide better estimates than the algebraic expres-
sion which suffers from a steady-state error. Moreover, the two observers are intentionally
not initialized; both observers converge in approximately 0.1 s. Figure 5b shows the estimate
during a double lane change maneuver with a constant velocity of 90 km/h and with
maximum lateral acceleration of 0.6 g. Both estimators provide a good estimate of the
tire vertical force, whereas the estimation from algebraic expression does not capture the
transient response. Figure 5a,b validates the two estimators for situations where the load
transfer is due to longitudinal or lateral acceleration.

(a) Braking step of 3000 N m. (b) Double lane change maneuver with 0.6 g maximum
lateral acceleration.

Figure 5. Vertical tire force estimation on maneuver with longitudinal and lateral only acceleration.

Figure 6 shows the estimate during a bounce sine sweep test. The vehicle velocity
is maintained at 20%. The road profile corresponds to sinusoidal bumps of decreasing
wavelength with decreasing amplitude. The minimum wavelength is 1.6 m. Thus, the road
excites the suspension over the frequency range 0 Hz to 3.5 Hz. The YCOO and the UMVF
are able to estimate the wheel loads. Both observers reproduce the frequency response of
the suspension: the wheel load amplitude increases when the road excitation get closer
to the the suspension frequency (1 Hz obtained when t ≈ 13 s) and remains constant at
frequencies between the suspension and wheelhop frequencies. Since the longitudinal and
lateral accelerations during this maneuver are almost zero, the algebraic expression is not
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able to provide an accurate estimation of the wheel loads. The effect of road slope on the
estimation scheme is investigated in Figure 7. The vehicle is driven from a flat road to a
slope of 20% gradient. The YCOO and the UMVF capture the load transfer due to the road
gradient and provide a good estimate during transient.

Figure 6. Vertical tire force estimation during a bounce sine sweep test. Vehicle speed is constant at
20 km h−1. The minimum wavelength is 1.6 m at t = 20%. The bottom figure shows the road profile.

Figure 7. Vertical tire force estimation when driving on a 20 % slope.

It is not practical to assume that the estimation model is a perfect representation of the
actual suspension. Figure 8 evaluates the sensitivity of the wheel load estimation against
the suspension stiffness. Uncertainties over this parameter result in an offset between the
real and estimated wheel load. This is due to the wrong calibration of the mass estimation
strategy. The load transfer estimate also suffers from uncertainties in the suspension
stiffness. Indeed, without any uncertainty, both observers yield a correct load transfer
of 700 N, but with a 50% stiffer suspension the load transfer estimate is only 450 N. The
robustness against the damping coefficient bs is investigated in Figure 9a. The YCOO and
the UMVF provide the same estimate, thus only the estimate given by the UMVF is shown
in Figure 9a. The estimation is not robust against the damping coefficient in the transient
but it does not affect the steady-state estimation. Similarly, nonlinearities in the damper
map affect the transient of the wheel load estimate when the suspension operates in the
region approximated by the linear damper map. The linear and nonlinear damper maps
are given in Figure 9b.
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Figure 8. Robustness against suspension stiffness during a braking maneuver. Solid lines show the
ground-truth signals and dashed lines show the estimated ones.

(a) Robustness against damping coefficient (top) and
damping map (bottom).

(b) Suspension linear and nonlinear damper
map.

Figure 9. Robustness against uncertainties in the damping map during a braking maneuver. Solid
lines show the ground-truth signals and dashed lines show the estimated ones.

Finally, Figure 10 shows the estimated signals obtained with the YCOO and the
UMVF when Gaussian white noise of time correlation 10 ms and of power spectral density
10−4 and 10−9 is, respectively, added to the sprung mass vertical acceleration and to
the suspension deflection measurements. The YCOO offers better noise rejection than
the UMVF.

Figure 10. Estimation with noisy measurements.
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7. Conclusions

The estimation of the wheel loads is formulated as an input estimation problem.
A quarter-car model with load transfer and tire normal force is used as the estimation
model. Two observers are designed. A Youla controller is designed to minimize the error
between the measurement and the estimated model output in the Youla Controller Output
Observer framework. Similarly, unobservable states of the quarter-car model are removed
to use the Unbiased Minimum Variance Filter. Since the design of the YCOO is based
on the frequency domain and the closed-loop transfer functions Tu, Su, and Y, it directly
addresses the trade-off among noise rejection, high bandwidth, and good robustness when
tuning the observer.

Both observers were tested in simulation and provide good estimates as long as
the model possesses a good enough representation of the suspension. Moreover, the
anti-roll bar introduces coupling between the two wheels of the same axle. In this case,
the quarter-car estimation model cannot be used and should be replaced by a half-car
model. Despite using different approaches to solve the input estimation problem and
different design methods, both controllers give similar performance and robustness, but
the proposed YCOO provides better noise rejection than the UMVF. The YCOO provides
a much simpler structure and observer tuning than the UMVF as it does not require the
system to be observable and requires only two measurement when the UMVF needs a third
measurement with additional signal processing.
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