A Magneto-Mechanical Piezoelectric Energy Harvester Designed to Scavenge AC Magnetic Field from Thermal Power Plant with Power-Line Cables
Abstract
:1. Introduction
2. Experimental Section
2.1. Demonstration of Piezoelectric Energy Harvesting System
2.2. Demonstration of the MPEH around a Power-Line Cable
2.3. Numerical Section
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hosseinimehr, T.; Tabesh, A. Magnetic field energy harvesting from AC lines for powering wireless sensor nodes in smart grids. IEEE Trans. Ind. Electron. 2016, 63, 4947–4954. [Google Scholar] [CrossRef]
- Han, J.C.; Hu, J.; Yang, Y.; Wang, Z.X.; Wang, S.X.; He, J.L. A nonintrusive power supply design for self-powered sensor networks in the smart grid by scavenging energy from AC power line. IEEE Trans. Ind. Electron. 2015, 62, 4398–4407. [Google Scholar] [CrossRef]
- Bowen, C.; Kim, H.; Weaver, P.; Dunn, S. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 2014, 7, 25–44. [Google Scholar] [CrossRef] [Green Version]
- Narendran, K.; Murali, K.; Sundar, V. Investigations into efficiency of vortex induced vibration hydro-kinetic energy device. Energy 2016, 109, 224–235. [Google Scholar] [CrossRef]
- Zhou, Z.; Qin, W.; Zhu, P.; Shang, S. Scavenging wind energy by a Y-shaped bi-stable energy harvester with curved wings. Energy 2018, 153, 400–412. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.; Kang, J.-E.; Zhou, Y.; Choi, S.-Y.; Yoon, W.-H.; Park, D.-S.; Choi, J.-J.; Hahn, B.-D.; Ahn, C.-W.; Kim, J.-W.; et al. Ubiquitous magneto-mechano-electric generator. Energy Environ. Sci. 2015, 8, 2402–2408. [Google Scholar] [CrossRef]
- Junlei, W.; Lihua, T.; Liya, Z.; Zhien, Z. Efficiency investigation on energy harvesting from airflows in HVAC system based on galloping of isosceles triangle sectioned bluff bodies. Energy 2019, 172, 1066–1078. [Google Scholar]
- Larkin, K.; Abdelkefi, A. Neutral axis modeling and effectiveness of functionally graded piezoelectric energy harvesters. Compos. Struct. 2019, 213, 25–36. [Google Scholar] [CrossRef]
- Han, J.C.; Hu, J.; Wang, Z.; Wang, S.X.; He, J.L. Magnetoelectric effect in shear-mode Pb(Zr,Ti)O3/NdFeB composite cantilever. Appl. Phys. Lett. 2015, 106, 182901. [Google Scholar] [CrossRef]
- Kim, K.B.; Cho, J.Y.; Jabbar, H.; Ahn, J.H.; Hong, S.D.; Woo, S.B.; Sung, T.H. Optimized composite piezoelectric energy harvesting floor tile for smart home energy management. Energy Convers. Manag. 2018, 171, 31–37. [Google Scholar] [CrossRef]
- Kausar, A.S.M.Z.; Reza, A.W.; Saleh, M.U.; Ramiah, H. Energizing wireless sensor networks by energy harvesting systems: Scopes, challenges and approaches. Renew. Sustain. Energy Rev. 2014, 38, 973–989. [Google Scholar] [CrossRef]
- Hou, L.; Bergmann, N.W. Novel industrial wireless sensor networks for machine condition monitoring and fault diagnosis. IEEE Trans. Instrum. Meas. 2012, 61, 2787–2798. [Google Scholar] [CrossRef]
- Manic, M.; Wijayasekara, D.; Amarasinghe, K.; Rodriguez-Andina, J.J. Building energy management systems: The age of intelligent and adaptive buildings. IEEE Ind. Electron. Mag. 2016, 10, 25–39. [Google Scholar] [CrossRef]
- Azevedo, J.A.R.; Santos, F.E.S. Energy harvesting from wind and water for autonomous wireless sensor nodes. IET Circuits Devices Syst. 2012, 6, 413–420. [Google Scholar] [CrossRef]
- Ding, Y.; Hong, S.H. CFP scheduling for real-time service and energy efficiency in the industrial applications of IEEE 802.15.4. J. Commun. Netw. 2013, 15, 87–101. [Google Scholar] [CrossRef]
- Wang, C.; Yanlong, C.; Jin, X. Piezoelectric and electromagnetic hybrid energy harvester for powering wireless sensor nodes in smart grid. J. Mech. Sci. Technol. 2015, 29, 4313–4318. [Google Scholar]
- Wei, H.; Ping, L.; Yumei, W.; Jitao, Z.; Aichao, Y.; Caijiang, L.; Jin, Y.; Jing, W.; Jing, Q.; Yong, Z.; et al. Piezoelectric energy harvester scavenging AC magnetic field energy from electric power lines. Sens. Actuators A 2013, 193, 59–68. [Google Scholar]
- Gillette, S.; Geiler, A.; Gray, D.; Viehland, D.; Vittoria, C.; Harris, V. Improved Sensitivity and Noise in Magneto-Electric Magnetic Field Sensors by Use of Modulated AC Magnetostriction. IEEE Magn. Lett. 2011, 2, 2500104. [Google Scholar] [CrossRef]
- Xing, Z.P.; Xu, K.; Dai, G.Y.; Li, J.F.; Viehland, D. Giant magnetoelectric torque effect and multicoupling in two phases ferromagnetic/piezoelectric system. J. Appl. Phys. 2011, 110, 104510. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Zhou, J.E.; Maurya, D.; Wang, Y.U.; Priya, S. Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material. Nat. Commun. 2016, 7, 13089. [Google Scholar] [CrossRef]
- Tadesse, Y.; Zhang, S.; Priya, S. Multimodal Energy Harvesting System: Piezoelectric and Electromagnetic. J. Intell. Mater. Syst. Struct. 2009, 20, 625–632. [Google Scholar] [CrossRef]
- Seo, I.T.; Cha, Y.J.; Kang, I.Y.; Choi, J.H.; Nahm, S.; Seung, T.H.; Paik, J.-H. High energy density piezoelectric ceramics for energy harvesting devices. J. Am. Ceram. Soc. 2011, 94, 3629–3631. [Google Scholar] [CrossRef]
- Ahn, C.-W.; Karmarkar, M.; Viehland, D.; Kang, D.-H.; Bae, K.-S.; Priya, S. Low-temperature sintering and piezoelectric properties of CuO-doped (K0.5Na0.5)NbO3 ceramics. Ferroelectr. Lett. 2008, 35, 66–72. [Google Scholar] [CrossRef]
- Harris, N.R.; Hill, M.; Torah, R.; Townsend, R.; Beeby, S.; White, N.M.; Ding, J. A multilayer thick-film PZT actuator for MEMs applications. Sens. Actuators A Phys. 2006, 132, 311–316. [Google Scholar] [CrossRef] [Green Version]
- Song, H.-C.; Kim, H.-C.; Kang, C.-Y.; Kim, H.-J.; Yoon, S.-J.; Jeong, D.-Y. Multilayer piezoelectric energy scavenger for large current generation. J. Electroceram. 2009, 23, 301–304. [Google Scholar] [CrossRef]
- Song, D.; Yang, C.H.; Hong, S.K.; Kim, S.B.; Woo, M.S.; Sung, T.H. Study on Application of Piezoelectricity to Korea Train eXpress (KTX). Ferroelectrics 2013, 449, 11–23. [Google Scholar] [CrossRef]
- Furlani, E.P. Permanent Magnet & Electromechanical Devices: Materials Analysis and Applications (Electromagnetism); Academic Press: San Diego, CA, USA, 2001. [Google Scholar]
- Annapureddy, V.; Kim, M.; Palneedi, H.; Lee, H.; Choi, S.-Y.; Yoon, W.; Park, D.; Choi, J.; Hahn, B.; Ahn, C.; et al. Low-Loss Piezoelectric Single-Crystal Fibers for Enhanced Magnetic Energy Harvesting with Magnetoelectric Composite. Adv. Energy Mater. 2016, 6, 1601244. [Google Scholar] [CrossRef]
- Annapureddy, V.; Na, S.M.; Hwang, G.-T.; Kang, M.G.; Sriramdas, R.; Palneedi, H.; Yoon, W.-H.; Hahn, B.-D.; Kim, J.-W.; Ahn, C.-W.; et al. Exceeding milli-watt powering magneto-mechano-electric generator for standalone-powered electronics. Energy Environ. Sci. 2018, 11, 818–829. [Google Scholar] [CrossRef]
- Cho, J.Y.; Kim, J.; Kim, K.B.; Ryu, C.H.; Hwang, W.; Lee, T.H.; Sung, T.H. Significant power enhancement method of magneto-piezoelectric energy harvester through directional optimization of magnetization for autonomous IIoT platform. Appl. Energy 2019, 254, 113710. [Google Scholar] [CrossRef]
- Kang, M.G.; Sriramdas, R.; Lee, H.; Chun, J.; Maurya, D.; Hwang, G.T.; Ryu, J.; Priya, S. High Power Magnetic Field Energy Harvesting through Amplified Magneto-Mechanical Vibration. Adv. Energy Mater. 2018, 8, 1703313. [Google Scholar] [CrossRef]
Sample | Dielectric Constant | Capacitance (nF) | (10−12 m/V) | (10−12 m/V) | (10−3 Vm/N) | kp | (10−12 m2/N) |
---|---|---|---|---|---|---|---|
PZT-5H | 3800 | 97 | 650 | −320 | 19 | 0.75 | 12,350 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Kim, K.-B.; Woo, S.-B.; Song, Y.; Sung, T.-H. A Magneto-Mechanical Piezoelectric Energy Harvester Designed to Scavenge AC Magnetic Field from Thermal Power Plant with Power-Line Cables. Energies 2021, 14, 2387. https://doi.org/10.3390/en14092387
Wang Q, Kim K-B, Woo S-B, Song Y, Sung T-H. A Magneto-Mechanical Piezoelectric Energy Harvester Designed to Scavenge AC Magnetic Field from Thermal Power Plant with Power-Line Cables. Energies. 2021; 14(9):2387. https://doi.org/10.3390/en14092387
Chicago/Turabian StyleWang, Quan, Kyung-Bum Kim, Sang-Bum Woo, Yooseob Song, and Tae-Hyun Sung. 2021. "A Magneto-Mechanical Piezoelectric Energy Harvester Designed to Scavenge AC Magnetic Field from Thermal Power Plant with Power-Line Cables" Energies 14, no. 9: 2387. https://doi.org/10.3390/en14092387
APA StyleWang, Q., Kim, K. -B., Woo, S. -B., Song, Y., & Sung, T. -H. (2021). A Magneto-Mechanical Piezoelectric Energy Harvester Designed to Scavenge AC Magnetic Field from Thermal Power Plant with Power-Line Cables. Energies, 14(9), 2387. https://doi.org/10.3390/en14092387