Treatment of Flue Gas in a CO2 Capture Pilot Plant for a Commercial CFB Boiler
Abstract
:1. Introduction
2. Experimental Section
2.1. Pre-Treatment Section in a Pilot-Scale DR-VPSA Carbon Capture Unit
2.2. Characterization of the Adsorbent Used in the deSOx and deNOx Adsorber
3. Results and Discussion
3.1. Chemical Composition of the Spent Activated Carbon
3.2. Porous Structure of the Spent Activated Carbon
3.3. Microstructure of the Spent Activated Carbon
3.4. Surface Chemistry of the Spent Activated Carbon
3.5. Stability of the Spent Activated Carbon
3.6. Analysis of Flue Gas Constitution before and after Leaving the Adsorber
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhown, A.B.; Freeman, B.C. Analysis and Status of Post-Combustion Carbon Dioxide, Capture Technologies. Environ. Sci. Technol. 2011, 45, 8624–8632. [Google Scholar] [CrossRef]
- International Energy Agency. Carbon Capture, Utilization and Storage, a Critical Tool in the Climate Energy Toolbox. Available online: https://www.iea.org/topics/carbon-capture-and-storage/ (accessed on 25 February 2021).
- Webley, P.A. Adsorption technology for CO2 separation and capture: A perspective. Adsorption 2014, 20, 225–231. [Google Scholar] [CrossRef]
- Ishibashi, M.; Ota, H.; Akutsu, N.; Umeda, S.; Tajika, M.; Izumi, J.; Yasutake, A.; Kabata, T.; Kageyama, Y. Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method. Energy Convers. Manag. 1996, 37, 929–933. [Google Scholar] [CrossRef]
- Ishibashi, M.; Otake, K.; Kanamori, S.; Yasutake, A. Study on CO2 removal technology from flue gas of thermal power plant by physical adsorption method. In Greenhouse Gas Control Technologies, Proceedings of the 4th International Conference, Interlaken, Switzerland, 30 August–2 September 1998; Eliasson, B., Riemer, P., Wokaun, A., Eds.; Elsevier Science Ltd.: Oxford, UK, 1998; pp. 131–136. [Google Scholar]
- Wang, L.; Yang, Y.; Shen, W.; Kong, X.; Li, P.; Yu, J.; Rodrigues, A.E. CO2 capture from flue gas in an existing coal-fired power plant by two successive pilot-scale VPSA units. Ind. Eng. Chem. Res. 2013, 52, 7947–7955. [Google Scholar] [CrossRef]
- Qader, A.; Hoopera, B.; Innocenzib, T.; Stevensc, G.; Kentishc, S.; Scholesc, C.; Mumfordc, K.; Smithc, K.; Webley, P.A.; Zhangd, J. Novel post-combustion capture technologies on a lignite fired power plant-results of the CO2CRC/H3 capture project. Energy Procedia 2011, 4, 1668–1675. [Google Scholar] [CrossRef] [Green Version]
- Wawrzyńczak, D.; Majchrzak-Kucęba, I.; Srokosz, K.; Kozak, M.; Nowak, W.; Zdeb, J.; Smółka, W.; Zajchowski, A. The pilot dual-reflux vacuum pressure swing adsorption unit for CO2 capture from flue gas. Sep. Purif. Technol. 2019, 209, 560–570. [Google Scholar] [CrossRef]
- Majchrzak-Kucęba, I.; Wawrzyńczak, D.; Ściubidło, A.; Zdeb, J.; Smółka, W.; Zajchowski, A. Stability and regenerability of acivated carbon used for CO2 removal in pilot DR-VPSA unit in real power plant conditions. J. CO₂ Util. 2019, 29, 1–11. [Google Scholar] [CrossRef]
- Chapel, D.G.; Ernest, J.; Mariz, C.L. Recovery of CO2 from Flue Gases: Commercial Trends. In Proceedings of the Canadian Society of Chemical Engineers annual meeting, Saskatoon, SK, Canada, 4–6 October 1999. [Google Scholar]
- Hu, J.; Liu, Y.; Liu, J.; Gu, C. Effects of water vapor and trace gas impurities in flue gas on CO2 capture in zeolitic imidazolate frameworks: The significant role of functional groups. Fuel 2017, 200, 244–251. [Google Scholar] [CrossRef]
- Schallert, B.; Satterley, C.; Neuhaus, S. The impact of NO2 on post-combustion capture: What concentration of NO2 is expected in front of the absorber and what is its fate in the capture proces? In Proceedings of the 2nd Post Combustion Capture Conference (PCCC2), Bergen, Norway, 7–20 September 2013. [Google Scholar]
- Zhang, J.; Xiao, P.; Li, G.; Webley, P.A. Effect of Flue gas impurities on CO2 capture performance from flue gas at coal-fired power stations by Vacuum Swing adsorption. Energy Procedia 2009, 1, 115–1122. [Google Scholar] [CrossRef] [Green Version]
- Sayari, A.; Belmabkhout, Y.; Serna-Guerrero, R. Flue gas treatment via CO2 adsorption. Chem. Eng. J. 2011, 171, 760–774. [Google Scholar] [CrossRef]
- Sass, B.; Ricci, S.; Gupta, A.; Hindin, B.; Gupta, N. Impact od SOx and NOx in flue gas on CO2 separation, compression and pipeline transmission. In Carbon Dioxide Capture and Storage in Deep Geologic Formations—Results from the CO2 Capture Project; Thomas, D.C., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 955–981. [Google Scholar]
- Porter, R.T.J.; Fairwether, M.; Pourkashanian, M. The range and level of impurities in CO2 streams from different carbon capture sources. Int. J. Greenh. Gas Control. 2015, 36, 161–174. [Google Scholar] [CrossRef]
- Cao, A.; Zhao, H.; Hu, D.; Wang, J.; Li, M.; Zhou, Z.; Shen, Q.; Sun, N.; Wei, W. Preparation of potassium intercalated carbons by in-situ activation and speciation for CO2 capture from flue gas. J. CO2 Util. 2020, 35, 59–66. [Google Scholar] [CrossRef]
- Labus, K.; Grygiewicz, K.; Machnikowski, J. Granular KOH-activated carbons from coal-based cokes and their CO2 adsorption capacity. Fuel 2014, 118, 9–15. [Google Scholar] [CrossRef]
- Li, D.; Zhou, J.; Wang, Y.; Tian, Y.; Wei, L.; Zhang, Z.; Qiao, Y.; Li, J. Effects of activation temperature on densities and volumetric CO2 adsorption performance of alkali-activated carbons. Fuel 2019, 238, 232–239. [Google Scholar] [CrossRef]
- Sabouni, R.; Kazemian, H.; Rohani, S. Carbon dioxide capturing technologies: A review focusing on metal organic framework materials (MOFs). Environ. Sci. Pollut. Res. 2014, 21, 5427–5449. [Google Scholar] [CrossRef] [PubMed]
- Gargiulo, V.; Alfe, M.; Raganati, F.; Lisi, L.; Chirone, R.; Ammendola, P. BTC-based metal-organic frameworks: Correlation between relevant structural features and CO2 adsorption performances. Fuel 2018, 222, 319–326. [Google Scholar] [CrossRef]
- Zelenak, V.; Halamowa, D.; Gaberowa, L.; Bloch, E.; Lewellyn, P. Amine-modified SBA-12 mesoporous silica for carbon dioxide capture: Effect of amine basicity on sorption properties. Micropor. Mesopor. Mater 2008, 116, 358–364. [Google Scholar] [CrossRef]
- Wappel, D.; Khan, A.; Shallcross, D.; Joswig, S.; Kentish, S.; Stevens, G. The effect of SO2 on CO2 absorption in an aqueous potassium carbonate solvent. Energy Procedia 2009, 1, 125–131. [Google Scholar] [CrossRef] [Green Version]
- Directive 2010/75/EU of the European Parliament and the Council on Industrial Emissions (the Industrial Emissions Directive or IED). Available online: http://data.europa.eu/eli/dir/2010/75/oj (accessed on 20 February 2021).
- Guo, Y.; Li, Y.; Zhu, T.; Ye, M. Investigation of SO2 and NO adsorption species on activated carbon and the mechanism of NO promotion effect on SO2. Fuel 2015, 143, 536–542. [Google Scholar] [CrossRef]
- Qiang, T.; Zhigang, Z.; Wenpei, Z.; Zidong, C. SO2 and NO selective adsorption properties of coal-based activated carbons. Fuel 2005, 84, 461–465. [Google Scholar] [CrossRef]
- Abdulrasheed, A.A.; Jalil, A.A.; Triwahyono, S.; Zaini, M.A.A.; Gambo, Y.; Ibrahim, M. Surface modification of activated carbon for adsorption of SO2 and NOx: A review of existing and emerging technologies. Renew. Sustain. Energy Rev. 2018, 94, 1067–1085. [Google Scholar] [CrossRef]
- Lee, Y.W.; Park, J.W.; Choung, J.H.; Choi, D.K. Adsorption Characteristics of SO2 on Activated Carbon Prepared from Coconut Shell with Potassium Hydroxide Activation. Environ. Sci. Technol. 2002, 36, 1086–1092. [Google Scholar] [CrossRef]
- Lee, Y.W.; Kim, H.J.; Park, J.W.; Choi, B.U.; Choi, D.K. Adsorption and reaction behaviour for the simultaneous adsorption of NO–NO2 and SO2 on activated carbon impregnated with KOH. Carbon 2003, 41, 1881–1888. [Google Scholar] [CrossRef]
- Neathery, J.K.; Rubel, A.M.; Stencel, J.M. Uptake of NOx by activated carbons: Bench-scale and pilot-plant testing. Carbon 1997, 35, 1321–1327. [Google Scholar] [CrossRef]
Adsorbent | Elemental Composition | ||||
---|---|---|---|---|---|
C, wt.% | H, wt.% | N, wt.% | S, wt.% | Other, O wt.% | |
fresh AC-P | 72.34 | 1.80 | 0.86 | 0.29 | 24.71 |
used AC-P (1)—bottom | 63.16 | 2.66 | 0.67 | 4.14 | 29.37 |
used AC-P (2)—middle | 66.81 | 2.56 | 0.53 | 2.75 | 27.35 |
used AC-P (3)—top | 69.86 | 2.44 | 0.73 | 0.98 | 25.99 |
Sample | Textural Properties | ||
---|---|---|---|
BET Surface Area, m2 g−1 | Total Pore Volume, cm3 g−1 | Total Pore Area, m2 g−1 | |
fresh AC-P | 959.00 | 0.41 | 739.30 |
used AC-P (1)—bottom | 555.20 | 0.23 | 459.03 |
used AC-P (2)—middle | 692.13 | 0.31 | 572.67 |
used AC-P (3)—top | 736.46 | 0.33 | 515.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majchrzak-Kucęba, I.; Wawrzyńczak, D.; Zdeb, J.; Smółka, W.; Zajchowski, A. Treatment of Flue Gas in a CO2 Capture Pilot Plant for a Commercial CFB Boiler. Energies 2021, 14, 2458. https://doi.org/10.3390/en14092458
Majchrzak-Kucęba I, Wawrzyńczak D, Zdeb J, Smółka W, Zajchowski A. Treatment of Flue Gas in a CO2 Capture Pilot Plant for a Commercial CFB Boiler. Energies. 2021; 14(9):2458. https://doi.org/10.3390/en14092458
Chicago/Turabian StyleMajchrzak-Kucęba, Izabela, Dariusz Wawrzyńczak, Janusz Zdeb, Wojciech Smółka, and Artur Zajchowski. 2021. "Treatment of Flue Gas in a CO2 Capture Pilot Plant for a Commercial CFB Boiler" Energies 14, no. 9: 2458. https://doi.org/10.3390/en14092458
APA StyleMajchrzak-Kucęba, I., Wawrzyńczak, D., Zdeb, J., Smółka, W., & Zajchowski, A. (2021). Treatment of Flue Gas in a CO2 Capture Pilot Plant for a Commercial CFB Boiler. Energies, 14(9), 2458. https://doi.org/10.3390/en14092458