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Abstract: With the large-scale grid connection of renewable energy sources, the frequency stability
problem of the power system has become increasingly prominent. At the same time, the development
of cloud computing and its applications has attracted people’s attention to the high energy consump-
tion characteristics of datacenters. Therefore, it was proposed to use the characteristics of the high
power consumption and high flexibility of datacenters to respond to the demand response signal
of the smart grid to maintain the stability of the power system. Specifically, this paper establishes a
synthetic model that integrates multiple methods to precisely control and regulate the power con-
sumption of the datacenter while minimizing the total adjustment cost. First, according to the overall
characteristics of the datacenter, the power consumption models of servers and cooling systems
were established. Secondly, by controlling the temperature, different kinds of energy storage devices,
load characteristics and server characteristics, the working process of various regulation methods
and the corresponding adjustment cost models were obtained. Then, the cost and penalty of each
power regulation method were incorporated. Finally, the proposed dynamic synthetic approach was
used to achieve the goal of accurately adjusting the power consumption of the datacenter with least
adjustment cost. Through comparative analysis of evaluation experiment results, it can be observed
that the proposed approach can better regulate the power consumption of the datacenter with lower
adjustment cost than other alternative methods.

Keywords: datacenter; smart grid; demand response (DR); power regulation; operating cost; energy
storage devices

1. Introduction

The rise and development of cloud computing has made it one of the current hot
technical topics in academic and industry research fields in recent years. Datacenters in
the cloud computing environment are high-performance computing platforms comprising
computing resources and massive data storage. Datacenters are usually huge scale, which
leads to high energy consumption and wide distribution, while at the same time they
have the flexibility to be scheduled and controlled. According to a relevant study [1], the
consumption of datacenters is increasing at a rate of doubling every 5 years [2]. The energy
consumption of computing systems with a computing speed of 10PFLOPS will reach more
than 10 MW, and the energy consumption of the next generation of larger-scale computing
systems will exceed 27 MW. Hence, datacenters have become veritable “power-consuming
consumers”. Large-scale datacenters are more energy intensive, and their energy cost often
accounts for more than 50% of the total management cost [3].

On the other hand, with the development and utilization of renewable energy, smart
grids have developed rapidly [4]. Since new energy sources (e.g., wind, solar, tidal energy,
etc.) are usually intermittent and randomly variable, it is still challenging for renewable
power generation to be connected to the grid system. According to a relevant study [5],
before the construction of a large number of energy storage power stations, the proportion
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of renewable energy in the grid is relatively small. In recent years, with the establishment
of energy storage power stations, the capacity of the grid to accommodate new renewable
energy sources has gradually increased, reaching more than 40%, and even reaching 70%
in some areas [6]. The increasing capacity of renewable sources pushed the grid system
to become more flexible and intelligent to balance the power supply and demand in
order to maintain stable running. Secondly, due to the continuous increase in many new
consumer devices (personal electronic devices, electric vehicles, etc.), the rapid increase
in power demand has threatened the reliability of the grid, such as power outages and
other emergencies [7]. In addition, after the large-scale integration of renewable energy
sources into the grid, the frequency stability problem of the power system will become
increasingly critical.

To solve this problem, the traditional grid usually adopts passive regulation methods
in which the supply of electric energy changes with the demand for electric energy. For
example, large-scale battery arrays and super capacitors are used as energy storage ele-
ments, combined with corresponding control strategies to achieve grid stability [8–10]. It is
difficult for the power system to solve the real-time supply and demand balance problem
after large-scale renewable energy integration by relying only on the regulation capability
from the generation side. Therefore, in the smart grid system, the interaction capability
between the demand side and the power grid has been strengthened, and the regulation
potential of the demand side has received more attention. In other words, it is promising
and necessary to make full use of the demand response (DR) load in the power system,
adjust the load-side power, and balance the relationship of power supply and demand in
the grid system in order to guarantee the stability [9].

According to prior relevant research [9], the power consumption of a datacenter is
adjustable through certain management methods. Such feature makes the datacenter a
good potential participant for DR programs in the smart grid. Therefore, datacenters can
be integrated into the smart grid as DR loads by participating in the energy market and
the ancillary service market via the regulation of their power consumption in time. This
could not only help the smart grid to stabilize the voltage, but also could greatly reduce the
management cost of the smart grid [9]. Thus, it is crucial and important for the datacenter
as a power load to accurately adjust its own power consumption during its operation
process for both the optimization and stabilization of the smart grid system. With this
motivation, this paper proposes a synthetic approach to regulate the power consumption of
the datacenter towards a specific target while minimizing the adjustment cost based on the
DR requirements. First, we established a synthetic model on the basis of comprehensive
consideration of temperature control, energy storage devices (ESDs), and the characteristics
of IT devices to characterize the power consumption of the datacenter. Secondly, the
action costs of various power consumption control methods and the inaccurate penalties
for power regulation were also incorporated into the holistic model, which was used to
calculate the total cost spent on datacenter power adjustment. Finally, we utilized the
proposed synthetic management approach to achieve the target, combining hybrid methods
while minimizing the adjustment cost, and also evaluated the feasibility and the effect
of our approach. This paper is an extended version of our prior work [11], with several
main contributions, including: (1) the calibration of the power regulation cost model of the
datacenter by incorporating the adjustment cost of the cooling systems; (2) implementation
of more alternative methods for further comparison with our approach; (3) more detailed
results and comprehensive analysis of the experiments which were re-conducted under
calibrated models.

The remainder of this paper is organized as follows. Section 2 introduces some related
work about datacenter power management. Section 3 shows the system architecture and
relevant models. Section 4 describes the optimization problem formulated according to
the power regulation objective and presents the approach to solve the problem. Section 5
analyzes the evaluation results by comparing different approaches. Finally, Section 6
concludes the whole paper and discusses future work.
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2. Related Work

In recent years, energy management of datacenters and the DR of smart grid systems
have attracted a lot of attention in both academic and industrial fields. Demand-side
management and the optimal allocation of power resources was promoted, showing that
potential DR resources have become an important means to alleviate the contradiction
between power supply and demand. Since the implementation of DR must rely on specific
load adjustment capabilities, in recent years, some researchers noticed that datacenters had
the characteristics of real-time power response, transferability, and controllability. They
could also actively participate in DR in the smart grid in a variety of ways. Aiming at the
problem of datacenter power consumption management, Zhang et al. [12] classified and
compared the currently used typical energy-saving algorithms, such as the energy-saving
algorithm based on dynamic voltage and frequency scaling (DVFS), the algorithm based on
virtualization, and the algorithm based on host shutdown and opening. Wu et al. [13] and
Huai et al. [14] gave a typical application of using DVFS technology to reduce server power
consumption. On the basis of these classic algorithms, Wu et al. [15] proposed an energy
efficiency optimization strategy based on the dynamic combination of DVFS perception
and a virtual machine. The strategy could reduce the overall energy consumption of
the datacenter on the premise of not reducing the user’s quality of service (QoS) and
not violating the service level agreement (SLA). Xu et al. [2] also used virtualization
technology and DVFS technology in cloud computing to reduce the power consumption of
a datacenter, but this combined adjustment method would not guarantee the QoS. Instead,
it evaluated the performance loss by establishing a virtual machine (VM) migration cost
model and SLA measurement model. In addition to these classic energy-saving algorithms,
Bahrami et al. [4], Celik et al. [7], and Tang et al. [16] used the characteristics of large load
and high flexibility of datacenters to study in the power market for datacenters to manage
their own energy consumption according to different workload distribution algorithms.
They showed that even under the premise of ensuring QoS, the datacenter could still
achieve better energy management goals by dispatching controllable loads.

On the other hand, the cooling system for the datacenter is very important to prevent
the failure of IT equipment, but at the same time it also consumes a lot of energy [17].
With the development of cooling technology, a variety of different cooling strategies have
emerged on the basis of air conditioning and cooling in datacenters, including natural
wind cooling, liquid cooling [18], etc. These new cooling strategies can use natural cold
sources to absorb energy according to seasonal changes, reduce power consumption, and
improve energy efficiency [19]. Researchers have also designed a hybrid cooling system
that uses indirect natural air cooling and air conditioner refrigeration. Research showed that
hybrid cooling can significantly reduce the cooling power consumption of a datacenter [20].
Through microscopic research on the temperature of a datacenter, Ko et al. [17] proposed
a fuzzy proportional integral controller. The controller compared the performance of
energy consumption and temperature control in a more detailed manner, and reduced
power consumption of a cooling system under the premise of ensuring the performance of
temperature control.

According to relevant research [21], the electricity consumption of datacenters ac-
counts for 3% of the current national electricity consumption. Especially, the energy storage
equipment in the datacenter has played an important role in the process of participating
in the power management program [22]. Although many studies have pointed out that
datacenters can use workloads to respond flexibly to the requests from the grid, its slow
response time severely limits the ability to provide real-time support. Thus, they have
to leverage energy storage equipment to cooperate with workload dispatch to provide
fast frequency adjustment [23]. For example, Guruprasad et al. [23] used the Lyapunov
control mechanism in combination with small batteries to adjust energy consumption and,
according to the grid demand, to provide real-time grid support. Narayanan et al. [22]
compared the impact of different energy storage devices on the energy management of
datacenters, and illustrated the important role of ESDs in the power consumption control of
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datacenters. Longjun et al. [24] and Mamun et al. [25] also gave the performance of energy
storage devices in datacenter application examples in energy consumption management.

In summary, according the prior studies of datacenter power consumption control,
three kinds of techniques of power consumption control have usually been used, including
DVFS, request distribution strategy, and server aggregation. However, such power control
methods had the following shortcomings: (1) the power control effect was often inaccurate,
and the system energy efficiency was relatively low; (2) there were many restrictions,
such as load balancing requirements, etc.; (3) dynamic load could not be effectively dealt
with [26]. In order to improve these shortcomings, Huang et al. [27] proposed to use
the UPS of the datacenter servers to adjust the power load of the grid more accurately.
However, these single-level energy efficiency optimizations might still lead to low overall
efficiency [11]. Only when the IT system layer and the supporting facilities layer (such as:
cooling system, lighting equipment, etc.) are jointly considered can the datacenter energy
saving potential be maximized and the overall energy efficiency of the datacenter can be
improved. How to adjust power accurately is the basis for effective energy management,
and appropriate power models are very crucial for the adjustment. From the perspective
of the datacenter, it should decide whether to participate in a certain DR program by
calculating the total net revenue which might be impacted by various factors, including
the profit from executing user tasks, electricity prices, the penalty for degrading the service
quality, etc. Hence, in this paper, we focused on the scenario that after complex analysis
based on the current situation, the datacenter has decided to participate in the DR program
by meeting the strict requirements coming from the grid side. Our motivation is to find
an optimal way to regulate the datacenter power consumption appropriately to fulfill this
decision. Accordingly, we propose a comprehensive way of combining multiple controlling
methods to accurately adjust the power consumption of the datacenter towards specific
targets while minimizing the adjustment cost to better participate in DR programs and
ensure the stability of the smart grid system.

3. System Model
3.1. System Architecture

The overall system architecture studied in this paper is shown in Figure 1, which
includes the datacenter and the smart grid. In order to participate in the DR programs of the
smart grid, the datacenter will combine multiple methods together, including cooling con-
trol, energy storage device charging/discharging, task scheduling, and DVFS techniques,
to accurately adjust its own power consumption. During the whole regulation process, the
total cost spent on datacenter power consumption adjustment should be minimized. Firstly,
the smart grid sends DR signals specifying the load regulation requirements. Then, the
datacenter receives the DR signal. Then, according to the current outdoor temperature, the
datacenter could conduct an appropriate cooling strategy to adjust the power consumption
of its own cooling system. When the tasks submitted by the users arrive at the datacenter,
they are first classified and then be scheduled under appropriate strategies. During these
procedures, DVFS techniques could be used to adjust the server power consumption. The
datacenter might also charge or discharge the super capacitors and flow batteries to adjust
its own power demand to the grid. Overall, the datacenter can use a variety of different
methods to meet the DR requirements from the smart grid, and at the same time try to
minimize the adjustment cost for performing the power regulation actions.
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Figure 1. System architecture.

3.2. Modeling Datacenter Power Consumption

According to the opinion of Yang et al. [28], the power consumption of IT equipment
is mainly composed of three parts, including server power consumption, storage power
consumption, and communication power consumption. The power consumption of the
datacenter is mainly from the servers and the cooling system [29]. Usually, the energy
consumption of IT equipment accounts for 50% of the energy consumption of the datacenter,
and the cooling system accounts for 40% [18,30,31], as shown in Figure 2. Wang et al. [32]
show that the power cost of the cooling system is usually as high as 30% of the total power
cost of the datacenter. Therefore, in this paper, we ignored the power consumption of
lighting, monitoring, storage, and communication consumption, and mainly considered
and calculated the power consumption of IT equipment and the cooling system.
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Figure 2. Power consumption breakdown of datacenters.

According to related research from Saadi et al. [33], the power consumption of a server
depends on the utilization rate of the CPU, and the power consumed by an idle server
is about 70% that of a fully utilized server. Here, in this paper, we use the power model
related to CPU utilization, server idle power, and peak power [16,28,34–37], as follows:

Ps = α·ucpu + β (1)
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wherein Ps is the power consumption of the server, α is the difference between the peak
power and the idle power of the server, ucpu is the current CPU utilization, and β is the idle
power of the server.

For the cooling system of the datacenter, the energy cost of cooling equipment is related
to its coefficient of performance (CoP) [38], which is defined as the ratio of the cooling
energy provided to the electrical energy consumed for cooling [34]. Akbari et al. [34] give
the relationship between the energy consumption of the server and the corresponding
cooling energy consumption required, as follows:

CoP =
Es

Ec
(2)

wherein Es and Ec denote the energy consumption of the server and the energy consump-
tion of the cooling system, respectively.

According to Equation (2), during the period when the server is working, CoP can be
represented by the power consumption of the server and its corresponding cooling power
consumption, which can be expressed as:

CoP =
Ps

Pc
(3)

wherein Pc is the cooling power of the datacenter.
The value of CoP is not constant. From the model of water-cooled CoP and air

conditioning supply temperature given by HP Laboratory [38–40], it can be seen that CoP
usually increases with the temperature of the cooling air provided. According to the air
conditioning supply temperature, the value of CoP can be calculated as:

CoP = 0.0068Tsup
2 + 0.0008Tsup + 0.458 (4)

wherein Tsup is the air conditioning supply temperature (◦C).
Then, the total power consumption of the datacenter is:

PDC = Ps + Pc (5)

wherein PDC is the total power of the datacenter.

3.3. Modeling Energy Storage Devices

The study [41] indicates that energy storage devices used in datacenters include
lead–acid batteries, lithium batteries, flow batteries, super capacitors, and flywheel energy
storage. Lead–acid batteries and lithium batteries have low power density, short cycle
life, and frequent charging and discharging, which will greatly shorten their lifetime.
Flow batteries (FBs) have high energy conversion efficiency, fast starting speed [42,43],
strong overload capability, and deep discharge capability. Moreover, the cost of FB power
generation is low [44], and the self-discharge rate is low [22]. In addition, the independent
design of power and capacity of FBs [42,45] could avoid cross-contamination between
metals. On the other hand, super capacitors (SCs) are usually divided into high-power
SCs and high-energy SCs [46]. High-power super capacitors can be used as backup power,
while high-energy super capacitors can be used as voltage compensators or energy storage
devices for storing solar energy. In addition, SCs can be integrated into any layer of servers,
racks, and datacenters as the ESD to reduce the energy loss caused by AC/DC conversion.
Both flywheels and SCs can release a large amount of energy in a short period of time.
However, compared to the commonly used lead–acid batteries, the backup time of the
flywheel is extremely short [47].

By comprehensively judging the power density, life cycle, conversion efficiency, and
other characteristics of various energy storage devices [22,48–51], here, in this paper, we
use the combination of FBs and SCs as the backup power of the datacenter. SCs and FBs can
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be employed as an uninterruptible power supply (UPS), and can be combined with wind
turbines, power grids, and solar panels to be used as regenerative power. By considering
the ESD self-discharge rate and energy conversion efficiency, the conversion relationship
between the device capacity and the stored energy could be obtained [49] as follows:

Devre= ESDre/
(

ηD
ESD × (1− εESD)

)
(6)

wherein Devre is the device capacity, ESDre is the energy that needs to be stored by the
energy storage device, and ηD

ESD and εESD are the discharging efficiency and self-discharge
rate of the energy storage device, respectively.

SCs usually have a high self-discharging rate and are not suitable for long-term energy
storage. When SCs and FBs participate in the datacenter DR according to their own charging
and discharging characteristics, in order to ensure the normal operation of the datacenter
under sudden power outages, they need to store a certain amount of energy during the
whole DR procedure. Therefore, hereafter, we assume that FBs keep half of the stored
energy to deal with emergency situations.

When charging energy storage devices, the energy stored by SCs and FBs is always
limited by the capacity of the energy storage device itself. In this paper, the depth of
discharge (DoD) of an ESD is used to constrain the energy stored by the ESD during
charging and discharging, which means the following constraint:

(1− DoDESD)× Devre ≤ Et
ESD ≤ Devre (7)

wherein DoDESD is the depth of discharge of the ESD, and Et
ESD is the energy stored by

the energy storage device at time t.
After the energy storage device has been charged and discharged several times, the

stored energy will be [22]:

Et
ESD = (1− εESD)× Et−1

ESD +
(
rt

ESD − dt
ESD

)
× ∆t (8)

wherein rt
ESD and dt

ESD denote the actual charging power and the discharging power of
the ESD at time t, respectively, and ∆t represents the length of a time interval.

When an ESD is discharged, it should meet following constraints:

dt
ESD × ηD

ESD = Dt
ESD (9)

dt
ESD ≤ Pm

ESD (10)

dt
ESD − dt−1

ESD
∆t

≤
Pm

ESD
Tramp

(11)

wherein Dt
ESD is the effective discharging power of the ESD at time t, Pm

ESD is the maximum
power of the ESD, and Tramp is the ramp rate of the ESD, which reflects the start-up waiting
time of power output. During the usage of some energy storage devices, it takes several
minutes or hours to generate power [52]. For example, compressed air energy storage
devices may take several minutes to meet power requirements [53]. However, for most
ESDs, it takes at most a few milliseconds to start providing necessary power.

When charging an ESD, the following constraints [22,37] should be met:

Rt
ESD × ηC

ESD = rt
ESD (12)

rt
ESD ≤ Rt

ESD (13)

rt
ESD ≤

Pm
ESD

ωESD
(14)
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wherein Rt
ESD denotes the rechargeable power of the ESD at time t, ηC

ESD is the charging
efficiency of the ESD [37], and ωESD is the ratio of the discharging rate to the charging rate
of ESD.

3.4. Task Scheduling and Frequency Scaling Models
3.4.1. Task Scheduling Model

When the datacenter adjusts the power consumed by the server, it can try different
methods to schedule tasks, according to the delay tolerance and time flexibility of the
tasks. Here, two types of load were considered in our study, including delay-sensitive tasks
and delay-tolerant tasks. Delay-sensitive tasks refer to workloads that require immediate
response. Delay-tolerant tasks refer to the workloads submitted which can wait for the
datacenter to have sufficient resources before responding. For a server node, multiple tasks
can be executed simultaneously in one time interval. Here, we assume that a task might
comprise one or more basic tasklets. For each basic tasklet, its processing time unit is ∆tu,
then the execution time of any task is an integer n times the basic tasklet unit. In order to
ensure the QoS, the task processing needs to be completed before the deadline time [28].
For a delay-sensitive task Taskds, the task arrival time is denoted as ta

ds, then the deadline
for finishing the task could be calculated as

td
ds = ta

ds + n× ∆tu (15)

wherein td
ds is the deadline for finishing the delay-sensitive task.

For a delay-tolerant task Taskdt, the arrival time is denoted as ta
dt, and the maximum

tolerable delay time length as tmaxi, then, in order to ensure the QoS, the latest start time tm
dt

should be:
tm
dt = ta

dt + tmaxi (16)

wherein tm
dt is the latest start time of the delay-tolerant task.

Then, the deadline for finishing the task should be calculated as

td
dt = tm

dt + n× ∆tu (17)

wherein td
dt is the deadline for finishing the delay-tolerant task.

In order to use the task delay scheduling method to achieve the power control purpose
of the datacenter, here, we use the number of tasks executed to calculate the server resource
utilization as [28]:

ucpu,i =
tbusy,i

∆t
=

[(λi + imi − emi)]/(cheadle·M)

∆t
(18)

wherein ∆t represents the length of the time slot, ucpu,i is the average resource utilization of
the server in the i-th time slot, tbusy,i is the busy time of the server in the i-th time slot, and
cheadle is the maximum processing capacity of the server which is also the maximum number
of basic tasks processed by the server in one time slot. M is the number of active servers
in the datacenter. λi is the initial average number of tasks in the i-th time slot. Taking
into account the time-shift characteristics of delay-tolerant tasks, imi and emi represent the
number of tasks moving in and out in the i-th time slot, respectively. Then, (λi + imi − emi)
represents the number of tasks actually processed in the i-th time slot.

The number of tasks imi migrating in the i-th time slot is determined by the number
of tasks emi−1 migrating out during the previous time slot as

imi = emi−1 (19)

wherein emi refers to the number of tasks that can be postponed in the i-th time slot, and it
should not be greater than the total number of delay-tolerant tasks at the current moment,
calculated as

emi ≤ (λi + imi) (20)
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3.4.2. Frequency Scaling Model

By using DVFS techniques, a datacenter could dynamically adjust the frequency and
voltage of the server nodes according to the changes in the resource utilization of the
dynamic load, thereby further reducing power consumption [15]. According to related
studies of Zhang et al. [12], when the CPU is not fully utilized, this technique can bring cubic
orders of magnitude of power reduction in the application process of DVFS. Wu et al. [13]
proposed to use the actual voltage and frequency of the CPU to calculate the power
consumption of the server at the current moment. However, there is a certain error in the
model using the approximate linear relationship between voltage and frequency. Therefore,
this paper uses the current server operating frequency and CPU utilization to calculate
power consumption [15] as:

ucpu(m, k) =
fop(m, k)
fmax(m)

(21)

fop(m, k) ∈ { f1(m), f2(m), · · · , fk(m), · · · , fmax(m)} (22)

wherein fop(m, k) is the current operating frequency of server node m, k refers to a specific
DVFS operation mode, fmax(m) is the highest operating frequency of node m, ucpu(m, k) is
the CPU utilization of the node m. If the value of fop(m, k) is in the valid frequency set, it
means that no SLA violation will occur.

3.5. Modeling the Cooling System
3.5.1. Air Conditioning Cooling Model

The server continuously generates heat when it is working. Therefore, the inlet
temperature of the server is not only affected by the supplying temperature of the cooling
system, but also by the power consumption of the server itself. Here, the server chassis is
used as the heat source, and then its inlet temperature could be expressed as [34]:

Tin = Tsup − D·Ps (23)

wherein Tin is the inlet temperature of the server and D is the heat distribution matrix. D
can be calculated as follows:

D =
(

K− AT ·K
)−1
− K−1 (24)

K = m f ·Cp (25)

wherein m f is the mass flow rate of air between racks [40], Cp is the specific heat capacity
of air [38], K is the product of m f and Cp, and the matrix A is a constant matrix which
represents the interference of heat flow between server nodes [40].

The server continuously generates heat during the working process, which increases
the temperature in the computer room. In order to ensure that the server can work normally,
the supplying temperature of the air conditioner needs to be adjusted according to the inlet
temperature of the server [39] as follows:

Tsup = Tsup + Tadj (26)

Tadj = Tinsa f e − Tinmax (27)

Tlsa f e ≤ Tinsa f e ≤ Thsa f e (28)

wherein Tinsa f e is the safe temperature of the server entrance, Tlsa f e and Thsa f e are the
critical values of the safe temperature at the entrance of the server, Tinsa f e is the maximum
temperature of the server entrance, and Tadj represents the difference between the safe
temperature and the maximum temperature of the server entrance. When the difference is
less than zero, the air conditioner needs to lower the supplying temperature, and vice versa.
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3.5.2. Direct Airside Free Cooling Model

Many studies have shown that the direct airside free cooling has a significant effect on
saving datacenter energy costs [18,54], and hence it has already been applied in the data-
centers of Google, Facebook, and Alibaba Zhangbei [30]. A direct airside free cooling system
uses a fan to compress cold air into the computer room through blinds [55]. Generally, it
can be used when the temperature difference between indoor and outdoor areas is less than
1 ◦C [56]. However, if the dew point temperature in this area exceeds the recommended
threshold [57] by 20 ◦C, then a backup system needs to be considered [58].

Considering the influence of air humidity, here, we establish a dual-source cooling
system for the datacenter in hybrid cooling mode [15]. The working principle of this mode
includes: (1) when the outdoor air temperature is greater than Thigh, all the cooling capacity
is generated by the air conditioning cooling model. (2) When the outdoor air temperature
is higher than Tlow and lower than Thigh, the cooling system uses direct airside free cooling.
At this time, a lot of power of the datacenter cooling system could be saved [59]. According
to [59], the expression of the mass flow of cold air G (kg/s) is calculated as:

G =
Pc

Cp × (Tmax − To)
(29)

wherein Tmax is the temperature after the air is heated, and To is the value of the outdoor
temperature at the current moment. Therefore, the power consumption of the fan in the
direct airside free cooling system can be expressed as:

Pm f an = ∆p× G
ρ× ηm f an

(30)

wherein Pm f an is the power of the fan (W), ∆p is the pressure drop (Pa), ρ is the air density
(kg/m3), and ηm f an is working efficiency of the fan.

3.6. Cost Model
3.6.1. Operating Cost Model

An energy storage device is affected by the energy conversion efficiency and self-
discharge rate. When the datacenter uses ESDs to adjust its own power for DR, certain
management costs will be incurred. This is defined as the operating cost [22,44,49,60],
which is determined by the electricity price and the energy loss of the energy storage device
itself, as follows:

OpExESD = price× Eloss (31)

wherein OpExESD is the operating cost of the ESD, price is the electricity price provided by
the smart grid.

The difference is that most of the previous studies [22] used constant electricity prices,
but the price in the paper refers to real-time electricity prices. In other words, the price
refers to the electricity price updated by the grid every hour. Eloss is the energy loss of the
ESD, which can be calculated as

Eloss =
(

1− ηD
ESD

)
× dt

ESD × ∆t + εESD × Et
ESD (32)

wherein dt
ESD is the discharging power of ESD at time t, Et

ESD is the energy stored by the
energy storage device at time t.

During the operation of the datacenter, the annual cost of its cooling system (mainly
air conditioning) includes water, electricity, managerial salaries, management fees, sewage
charges, equipment depreciation fees, and equipment maintenance fees. In order to simplify
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the calculation of the operating cost of the cooling system, here, we only consider the cost
of electricity, so the operating cost of the cooling system can be calculated as follows [61]:

OpExair =
Pc

CoP
× ∆t× price (33)

wherein OpExair is the operating cost of the cooling system.

3.6.2. Penalty Model

Datacenters provide services to users and guarantee their QoS, while adjusting their
power usage for DR. In this paper, we use the response time of the datacenter server as a
metric to measure the quality of service. When the datacenter uses task delay scheduling
and DVFS techniques for DR, some tasks need to be postponed. If the execution time of
such a task exceeds the deadline, the SLA will be violated, leading to a certain number of
penalties [62]. Equation (34) gives the penalty model of the datacenter if the execution of a
certain task violates the deadline constraint, as follows:

PeExTD = (texec − tsub)·τTD (34)

wherein PeExTD is the penalty of task delay scheduling, texec and tsub represent the actual
execution time and submission time of the task, respectively, and τTD is the penalty
coefficient factor.

As presented above, when the datacenter uses multiple methods to adjust its own
power for DR, besides violating SLA, it is also possible that the power adjustment target
may not be accurately achieved by combining different methods. If the actual power after
adjustment is too high or low, it will also bring a certain penalty. Therefore, when the
adjusted power of the datacenter deviates from the target power, the penalty is calculated
as follows:

PeExdi f f = ∆Pdi f f × price× ∆t (35)

wherein PeExdi f f is the penalty of inaccurate adjustment, and ∆Pdi f f is the deviation
between the actual achieved power and the target power.

4. Problem Definition and Solution

In this section, we establish the optimization problem for the power regulation issues
of the datacenter towards specific targets for DR, and try to solve the problem.

4.1. Problem Definition

As described previously, the datacenter can combine multiple different methods to reg-
ulate its own power consumption for DR, including task scheduling, charging/discharging
ESDs, and cooling power adjustment. In the entire adjustment process, when the adjusted
power of the datacenter deviates from the target power, a certain penalty will be incurred.
Finally, the adjustment cost of different methods and the penalty of inaccurate adjustment
are incorporated into the total cost of power regulation. Table 1 shows all the notations
used throughout this paper and their corresponding meanings, and Table 2 summarizes
the acronyms used in this paper.

Table 1. Notations of parameters.

Notation Description Unit

Constant
α The difference between peak power and idle power of the server kW
β The idle power of the server kW

ηD
ESD The discharging efficiency of the ESD %

ηC
ESD The charging efficiency of the ESD %

εESD Self-discharge rate of the ESD %
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Table 1. Cont.

Notation Description Unit

Tramp The ramp rate s
ωESD The ratio of discharge rate to recharge rate %
Pm

ESD The maximum power kW
τTD The penalty coefficient −
fmax The highest operating frequency of the server GHz
m f The mass flow rate m3/s
Cp The specific heat capacity of air J/(kg·K)
ρ The air density kg/m3

∆p The pressure drop Pa
ηm f an The fan efficiency %
Tlsa f e The minimum value of safe temperature ◦C
Thsa f e The maximum value of safe temperature ◦C

M The number of servers #
cheadle The maximum processing capacity of the server #(tasks)/s

∆t The length of a time interval s
Variables

PDC The power of the datacenter kW
Ps The power of the server kW
Es The energy consumption of the server kWh

ucpu CPU utilization %
Pc The power consumption of the cooling system kW
Ec The energy consumption of the cooling system kWh

Devre The device capacity kWh
ESDre Needed energy stored by ESD kWh
Et

ESD The energy stored at time t kWh
DoDESD Depth of discharge %

Eloss The energy loss %
ta
ds The task arrival time of delay-sensitive task s

ta
dt The arrival time of delay-tolerant task s

tmaxi The tolerable delay time interval s
tbusy The busy time of the server s

λi The initial average number of tasks in the i-th time slot #
Tin The inlet temperature of the server ◦C
D The heat distribution matrix −
G The mass flow kg/s
To The outdoor temperature ◦C

Pm f an The power of the fan W
price The electricity price $/kWh
Tsup The air conditioning supply temperature ◦C

Tinsa f e The safe temperature of the server entrance ◦C
rt

ESD The actual charging power at time t kW
dt

ESD The discharging power at time t kW
Dt

ESD The effective discharging power kW
Rt

ESD The rechargeable power kW
imi The number of tasks moving in in the i-th time slot #
emi The number of tasks moving out in the i-th time slot #
fop The operating frequency of the host GHz
Pair The adjustable power consumption of the air conditioning cooling kW
Pf an The adjustable power consumption of the direct airside free cooling kW
PSC The adjustable power consumption of the super capacitor kW
PFB The adjustable power consumption of the flow battery kW
PTD The adjustable power consumption of the task scheduling kW

PDVFS The adjustable power consumption of the DVFS method kW
Pdi f f The deviation between the adjusted power and the target power kW

OpExESD The operating cost of ESD $
OpExair The operating cost of the cooling system $
PeExTD The penalty of task delay scheduling $
PeExdi f f The penalty of inaccurate adjustment $
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Table 2. Abbreviations table.

Description Abbreviation

Energy Storage Devices ESD
Demand Response DR

Dynamic Voltage and Frequency Scaling DVFS
Quality of Service QoS

Service Level Agreement SLA
Virtual Machine VM

Coefficient of Performance CoP
Flow Battery FB

Super Capacitor SC
Uninterruptible Power Supply UPS

Depth of Discharge DoD
Dynamic Optimal Scheduling Method DOSM

Based on the power regulation model described in Section 3, when the smart grid
sends out a DR signal, the datacenter can use hybrid methods to regulate its own power
consumption. The key problem is to determine the power consumption allocated to each
regulation method in order to minimize the total cost of such an action. Assume that the DR
signal given by the smart grid requires adjustment of the power consumption to Paims, and
Pair and Pfan are the adjustable power consumption of the air conditioning cooling and the
direct airside free cooling, respectively. Assume that PSC and PFB are the adjustable power
consumption of the super capacitors and the flow batteries as ESDs, respectively. The
adjustable power consumption of the datacenter for task scheduling and DVFS methods
are PTD and PDVFS, respectively, and ∆Pdi f f is the deviation between the adjusted power
and the target power, then:

Paims = Ps + Pc − Pair − Pf an − PSC
−PFB − PDVFS − PTD − ∆Pdi f f

(36)

It should be noted that when the DR signal requires power reduction, the power
amount to be adjusted should be a positive value and vice versa. Finally, incorporating the
adjustment costs of multiple adjustment methods and the inaccurate adjustment penalties
of the datacenter, the objective function can be obtained. Then, the optimization problem
can be formalized as:

Minimize:
OpExESD + OpExair + PeExTD + PeExdi f f (37)

subject to: Equations (7), (9)–(14), (20), (22), (28), wherein Equation (7) limits the energy
stored after the ESD charging and discharging, Equations (9)–(11) and Equations (12)–(14)
limit the discharge power and charging power of the ESD, respectively, Equation (20) limits
the number of delayed tasks, Equation (22) limits the current operating frequency of the
host, and Equation (28) limits the safe temperature of the server entrance.

4.2. Solution to the Optimization Problem
4.2.1. Model Simplification

In order to solve the problem, we have to first analyze the objective function and
constraint conditions. We found that in the process of calculating Pair, the air conditioning
supply temperature Tsup can be obtained by Equations (3), (4), (25), and (26), as follows:

Tsup = Tsup +
(

Tinsa f e − Tinmax

)
, (38)

then Pair can be calculated by

Pair = Pc −
Ps(

0.0068Tsup2 + 0.0008Tsup + 0.458
) , (39)
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As Equations (38) and (39) show, the variable Pair is a nonlinear function of the variable
Tinsa f e. In this case, the final optimization problem defined in Section 4.1 becomes a mixed
integer nonlinear problem since it contains both integer and noninteger decision variables.
In order to facilitate the solution, we first linearize the problem to generate a mixed integer
linear optimization problem, and then try to solve it.

Through the above analysis, it is found that the variable Tinsa f e is the cause of the
nonlinearity of the Pair constraint. Since Equation (38) is a linear function of the variable
Tinsa f e, the upper and lower bounds of the variable Tinsa f e can be substituted into Equation
(38). Then, the value range of Pair can be calculated by Equation (39). Since the extreme
value problem of the quadratic function can be solved by eliminating the variable Tinsa f e
and increasing the value constraint of the variable Pair, the final optimization problem
with the objective defined as Equation (37) can be transformed into a mixed integer linear
programming problem.

4.2.2. Design of Solution Approaches

For solving the mixed integer linear programming problem we obtained, as above, a
dynamic optimal scheduling method (DOSM) is proposed here, which aims to achieve the
goal of using multiple methods to regulate the power consumption for DR and minimize
the adjustment cost. In addition, we also compare the proposed approach with other
alternative strategies.

1. Dynamic Optimal Scheduling Method (DOSM)

In Section 3, we present six possible methods for the datacenters to change their
own power consumption in terms of temperature control, charging/discharging energy
storage devices, and server power management, including the use of super capacitors,
flow batteries, air conditioning cooling, direct airside free cooling, task delay scheduling,
and DVFS techniques. In order to adjust the power consumption of the datacenter to the
target power Paims, there are infinite possible combinations of the six different methods.
Hence, it is necessary to find the optimal combination with the least cost. Therefore, we
designed a dynamic optimal scheduling method (DOSM), which attempted to reasonably
allocate the power adjustment amount among multiple methods, so that the total cost
of participating DR could be minimized while satisfying all the constraints. Specifically,
DOSM was implemented based on the solving process of linear optimization.

For constrained optimization problems, methods can be divided into direct methods
and indirect methods, according to different solving principles. The interior point method
is an indirect algorithm for solving optimization problems. It converts the constraint
problem into an unconstrained problem by introducing a utility function, and then uses
the optimization iteration process to continuously update the utility function to make the
algorithm converge. The specific steps of the DOSM are as follows:

(a) Choose an appropriate penalty factor r(0), expected error ξ and decline factor c;
(b) Select the initial point X(0) in the feasible region and set k = 0;

(c) Establish the penalty function ϕ
(

Xk, r(k)
)

, starting from the point X(k−1), and use the
unconstrained optimization method to find the extreme points of the penalty function(

X∗k , r(k)
)

;

(d) Use termination criterion
∣∣∣X∗k ·r(k) − X∗k ·r

(k−1)
∣∣∣ ≤ ε to judge the convergence; if the

conditions are met, stop the iteration, and then the best point of the objective function
is X∗ = X∗k ; otherwise, let X(0) = X∗k ·r

(k), r(k+1) = c·r(k), k = k + 1, and go to (c).

When the termination criterion is met, the extreme point obtained in the iterative
process will be the output as the optimal solution. In this algorithm, the initial point X(0)

is randomly generated. The initial value of the penalty factor r(0) will affect the number
of iterations. The decline factor c plays an important role in making the penalty factor
decrease successively.
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2. Alternative Strategies.

In order to evaluate and compare the effects of our approach, other alternative strate-
gies are also implemented here. Baseline1 means that the datacenter only uses four methods,
including management of air conditioning cooling, direct airside free cooling, task delay
scheduling, and DVFS for DR. For the DR target given by the smart grid, the optimization
method is used to determine the most suitable adjustment method. Similarly, Baseline2
means that the datacenter uses four methods, including managing SC, FB, task delay
scheduling, and DVFS for DR. Under Baseline3, the datacenter uses four methods without
task scheduling and DVFS. We also implemented a heuristic method (Heuristic), which
preferentially uses the direct airside free cooling adjustment method first, and then tries to
manage air conditioning cooling, super capacitors, flow batteries, task delay scheduling,
and DVFS in order until the preset target is met.

5. Evaluation and Analysis

In this section, we conduct a series of experiments to evaluate our synthetic approach
and analyze the corresponding results compared with other alternative strategies.

5.1. Environment and Parameter Setting

In the experiment, the datacenter workload used comes from a load sample data set
published by Alibaba in 2018 [63]. The data set records the detailed load information of
a cluster with 4000 servers over a period of 8 days. According to related research [40],
the control interval was set to one minute in the experiments. Referring to the setting
of Zheng et al. [35], it was assumed that the idle power of each server is 150 W, and the
power was 285 W when running at full load. The effective frequency set of the server in the
experiment was set to {1.73, 1.86, 2.13, 2.26, 2.39, 2.40} GHz, and the safe temperature of the
server entrance was limited to between 18 ◦C and 27 ◦C. Correspondingly, we simulated
a datacenter comprising 4000 servers, in which 10 racks are arranged, and each rack has
8 rows [39]. The mass flow rate mf of the racks was 5.7 m3/s [37], the specific heat capacity
of the air Cp was set to a constant value of 1005 J/(kg·K) [38], the pressure drop ∆p was set
to 500 Pa, the air density ρ was set to 0.96 kg/m3, and the fan efficiency ηmfan was set to
70%. Taking into account the air humidity and other reasons, the critical temperature Tlow
and Thigh of the hybrid cooling mode were set to 5 ◦C and 20 ◦C, respectively.

Super capacitors cannot be used to store energy for a long time. Therefore, we assumed
that the super capacitor could fully use its own energy for discharging (DoDSC is 100%).
In order to ensure that the datacenter was not affected in emergencies, the flow battery
always stored the energy that can support the datacenter for 1 h (DoDFB is 50%). Referring
to [64], we assumed that the SC can independently power the datacenter for 5 min, the FB
can independently power the datacenter for 2 h, and the daily self-discharging rate of SC
was set to 20%. In order to reduce the energy loss caused by AC/DC conversion, the SC and
FB were integrated as ESDs into the server layer and datacenter layer [48], respectively.

According to the established power consumption model, the power consumption of
the datacenter server every ten seconds could be obtained. Then, the load sample data
for a day was generated from it, and the average hourly server power and cooling system
power were calculated during the day. The results are shown in Figure 3, where the lower
part of the histogram represents the power of 4000 servers in the datacenter and the upper
part represents the power consumption of the corresponding cooling system.
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Figure 3. Datacenter power consumption in a day.

According to Equation (18), the number of tasks arriving per minute in the server
could be obtained. Combining the characteristics of Alibaba’s task load data in 2018 [63], the
delay-sensitive tasks and the delay-tolerant tasks that met the experimental requirements
were randomly generated. The task distribution is shown in Figure 4, where the higher
part of the column represents the delay-tolerant task, and the lower part of the column
represents the delay-sensitive task. In addition, in the direct airside free cooling model,
the operating cost model, and penalty cost model, we used the outdoor temperature data
of Xining City on 8 July 2018 [65] and the real-time electricity price of one day in Chicago,
Illinois, USA [66], as shown in Figures 5 and 6.
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Figure 4. Number of tasks in the datacenter.
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Figure 5. Changes in outdoor temperature in a day (taking Xining City, Qinghai Province, 8 July
2018 as an example).
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Figure 6. The real-time power price changes in one day (taking Chicago, Illinois, USA, 8 October
2020 as an example).

5.2. Experimental Setup

According to the objectives and constraints of the proposed optimization problem,
MATLab, yalmip, and mosek toolboxes were used to solve the mixed integer linear optimiza-
tion problem. In order to verify the effectiveness of the proposed method, in the following
experiments, three test cases were designed according to the load management measures
issued by the Taiwan power company [67], as shown in Figure 7. Case1 requires adjusting
the original power to 1050 kW for one hour and adjusting to 850 kW for one hour, as shown
in Figure 7a. Case2 requires adjusting to 1100 kW for half an hour and adjusting to 880 kW
for forty minutes, as shown in Figure 7b. Case3 requires adjusting to 1060 kW for half an
hour, and adjusting to 950 kW for fifty-five minutes, as shown in Figure 7c.
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Figure 7. Demand response requirements of different cases.

5.3. Analysis of Experimental Results

The simulation experiment compared the adjustment costs of Baseline1, Baseline2,
Baseline3, Heuristic, and the DOSM strategy proposed in this paper during the DR process
of Case1–3. The results of the three tests are shown in Table 3. It can be seen that, compared
with the other four alternative methods, the approach proposed in this paper has obvious
advantages in accurately adjusting the power of the datacenter while minimizing the adjust-
ment cost. Compared with the other four methods, Baseline1 has the highest adjustment
cost, which shows the important role of energy storage devices in power adjustment.

Table 3. Comparison of adjustment costs under different strategies.

Cost ($) DOSM Baseline1 Baseline2 Baseline3 Heuristic

Case1 1096.07 6455.68 1567.96 2438.27 1372.38
Case2 458.66 3165.08 2360.59 1693.05 864.97
Case3 652.46 5225.01 4700.42 1721.83 1405.42

In order to fully illustrate the advantages and disadvantages of the model proposed in
this paper, Figure 8 shows the distribution of power adjusted by different methods in each
strategy during the DR process of Case1–3 in the datacenter. It can be seen from Figure 8a,c
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that the power consumption regulated under some strategies exceeds the target, which
implies that the power after adjustment is lower than the target power. By analyzing the
results, it is found that when direct airside free cooling is used for adjustment, the power
after adjustment might be lower than the target power due to the low outdoor temperature.
On the contrary, in some situations, the power after adjustment will be higher than the
target if more power has been regulated up or down. In Figure 8b, the target is not reached
under any strategy. By our analysis, the reason is that Case2 has higher requirements for
power regulation. Furthermore, although using DVFS can forcibly reduce the number of
tasks to be executed, it will seriously affect the QoS and increase the penalty. Therefore,
DOSM tries to lower the adjustment cost within the acceptable accuracy error range.
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Figure 8. Distribution of the power regulated under different strategies in Case1–3.

In the process of datacenter work, its power consumption will always fluctuate over
time. In order to illustrate the power adjustment deviation of different strategies during
the DR procedure under different strategies, Figure 9 shows the real-time variation of
datacenter power consumption in Case1–3. In Figure 9a,c,e, Baseline2 could not reach the
target curve as well as other strategies. In Case1 and Case2, the power of the energy storage
device is not saturated at the initial moment. Therefore, after the first DR signal arrives,
Baseline2 could use the energy storage device, task delay scheduling, and DVFS technology
to increase the power of the datacenter. However, the initial power state of ESDs in Case3 is
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saturated, and hence only task delay scheduling and DVFS could be used by Baseline2 to
adjust the power of the datacenter. Therefore, Figure 9e shows a larger deviation from the
target power. In contrast, other adjustment strategies could achieve the target power well.
It can also be seen that the temperature control method plays an important role in changing
the power of the datacenter. Figure 9b,d,f shows the adjustment of datacenter power by
different strategies during the second DR procedure in Case1–3. In this figure, when the
adjusted power value is higher than the target, it indicates that the current strategy cannot
reduce the power to the target power using all kinds of adjustment methods. The adjusted
power below the target is usually due to the outdoor temperature which has an impact on
the power of direct airside free cooling. When the outdoor cold air temperature is low, it
will lead to a greater reduction in the power consumption of the cooling system.

Overall, it can be observed that DOSM meets the target better than other alternative
strategies. Moreover, Heuristic behaves better than Baseline1–3 in adjusting the real-time
power consumption of the datacenter. However, when the outdoor temperature cannot
meet the requirements of direct airside free cooling, or ESDs cannot meet the discharging
constraints, only using task delay scheduling and DVFS technology will not only increase
the penalty cost, but also fail to achieve the target power.

Figure 10 shows the changes of the stored energy in the ESDs when the datacenters
uses different adjustment strategies to adjust its own power in Case1–3. In Case1, FBs and
SCs are set to half full and empty in the initial state, respectively. In Case2, FBs and SCs
are set to two-thirds full and half full in the initial state, respectively. When the datacenter
receives an increasing signal of the smart grid, both SCs and FBs start to store energy. On
the contrary, when the datacenter receives the power reduction signal of the smart grid,
both SCs and FBs start to release energy. In Case3, FBs and SCs are set to full in the initial
state. Therefore, when the datacenter receives an increasing signal of the smart grid, the
energy stored by the FBs and SCs does not change. As can be seen in Figure 10a–c, the
energy storage of ESDs changed more under Heuristic than other strategies. The reason
is that Heuristic regulated the power in the preset order of temperature control, energy
storage device, task delay scheduling, and DVFS. In addition, regardless of whether the
datacenter receives a DR signal to increase or decrease power, the energy change in the
energy of SCs is always more than that of FBs. This is determined by the characteristics
of the ESD itself, since the maximum discharging power of SCs is higher than FBs. This
characteristic of SCs can be leveraged to actively participate in the power regulation of
the datacenter.
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Energies 2021, 14, 2602 22 of 25

Energies 2021, 14, x FOR PEER REVIEW 23 of 27 
 

 

Figure 10 shows the changes of the stored energy in the ESDs when the datacenters 
uses different adjustment strategies to adjust its own power in Case1–3. In Case1, FBs and 
SCs are set to half full and empty in the initial state, respectively. In Case2, FBs and SCs 
are set to two-thirds full and half full in the initial state, respectively. When the datacenter 
receives an increasing signal of the smart grid, both SCs and FBs start to store energy. On 
the contrary, when the datacenter receives the power reduction signal of the smart grid, 
both SCs and FBs start to release energy. In Case3, FBs and SCs are set to full in the initial 
state. Therefore, when the datacenter receives an increasing signal of the smart grid, the 
energy stored by the FBs and SCs does not change. As can be seen in Figure 10a–c, the 
energy storage of ESDs changed more under Heuristic than other strategies. The reason is 
that Heuristic regulated the power in the preset order of temperature control, energy stor-
age device, task delay scheduling, and DVFS. In addition, regardless of whether the data-
center receives a DR signal to increase or decrease power, the energy change in the energy 
of SCs is always more than that of FBs. This is determined by the characteristics of the ESD 
itself, since the maximum discharging power of SCs is higher than FBs. This characteristic 
of SCs can be leveraged to actively participate in the power regulation of the datacenter. 

(a) Case1 (b) Case2 

 

 

(c) Case3  

Figure 10. Charging/discharging energy of ESD storage energy in different cases. 

6. Summary and Future Work 
Due to the variable and intermittent characteristics of renewable sources and the un-

certainty of power generation, the sudden increase or decrease in power on the supply 
side increases the requirements for guaranteeing the stability of the power system. Since 

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80  FB
 SC

En
er

gy
 (k

W
h)

DOSM

-DR1

DOSM

-DR2

Base

line2

-DR1

Base

line2

-DR2

Base

line3

-DR1

Base

line3

-DR2

Heuri

stic
-DR1

Heuri

stic

-DR2

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80
 FB
 SC

En
er

gy
 (k

W
h)

DOSM

-DR1

DOSM

-DR2

Base

line2

-DR1

Base

line2

-DR2

Base

line3

-DR1

Base

line3

-DR2

Heuri

stic

-DR1

Heuri

stic

-DR2

-80

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80  FB
 SC

En
er

gy
 (k

W
h)

DOSM

-DR1

DOSM

-DR2

Base

line2

-DR1

Base

line2

-DR2

Base

line3

-DR1

Base

line3

-DR2

Heuri
stic

-DR1

Heuri

stic

-DR2

Figure 10. Charging/discharging energy of ESD storage energy in different cases.

6. Summary and Future Work

Due to the variable and intermittent characteristics of renewable sources and the
uncertainty of power generation, the sudden increase or decrease in power on the supply
side increases the requirements for guaranteeing the stability of the power system. Since
the power consumption of the datacenter is usually variable and controllable, it becomes a
potential load for the smart grid system. Therefore, on the demand side, the datacenter can
adjust its own power consumption to meet the needs of the smart grid, thereby helping the
grid optimize itself. From the perspective of the datacenter, it should decide whether to
participate in the DR program by calculating the total net revenue which might be impacted
by various factors including the profit from executing user tasks, electricity prices, the
penalty for degrading the service quality, etc. On this basis, we proposed a synthetic
datacenter power consumption regulation method towards specific targets in this paper to
instruct the datacenter to fulfill the task of adjusting power consumption towards the grid
requirements. Based on the consideration of temperature control, energy storage device
usage, and the server characteristics, a detailed and precise datacenter power consumption
regulation approach was proposed while minimizing the total adjustment cost. We not only
considered the impact of load changes on cooling system power consumption, but also
used direct airside free cooling technology to save cooling power consumption. The task
scheduling model is formulated by analyzing the type of loads, and the DVFS technique is
also used to reduce the power consumption of the server. Different from the above methods,
it is based on the charging and discharging characteristics the ESDs, and the dependence of
the datacenter on the grid can be adjusted. Finally, the cost of these control methods and the
penalty of inaccurate adjustment are incorporated into the total cost of power adjustment
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operation. In this way, the goal of accurately adjusting the power consumption of the
datacenter while minimizing the adjustment cost could be achieved. The experimental
results showed that the approach proposed in this paper could accurately control the power
consumption of the datacenter while lowering the total cost incurred by the adjustment as
much as possible. Generally, our approach is applicable to all kinds of datacenters which
can use task delay scheduling methods according to the task characteristics. Various kinds
of applications in industrial fields, especially CPU-intensive tasks, could be compatible
here as the controllable load for power regulation of the datacenter on the premise of
guaranteeing the QoS.

At present, the experiment in this paper only considered the cost of precise power
adjustment of a datacenter. With the increase in datacenter energy consumption and wide-
ranging establishment, datacenters in different geographical locations will be integrated
into the smart grid, which might affect the stability of the entire grid and could be jointly
considered in a systematic view. Therefore, in the future, we plan to continue to carry
out related research on the power management of multiple geographically distributed
datacenters and study their interactions with the smart grid. Naturally, in addition to the
distributed datacenters adjusting its own power, we also consider increasing the utilization
ratio of renewable energy supplied to the datacenters through the participation in the DR
process according to the actual power generation of renewable energy in different regions,
thereby reducing local carbon emissions.
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