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Abstract: This paper investigates the possibility of converting vibrations to electricity. A numerical
and an experimental study of a magnetic levitation harvester are proposed. The system can be highly
efficient when the electrical parameters are correctly tuned. Mechanical and electrical interaction
of the harvester is described by an electromechanical coupling. Fixed value, linear and nonlinear
electromechanical coupling models are presented and compared. It has been shown that the non-
linear electromechanical coupling model is more suitable for higher oscillations of the magnet. The
obtained results show that nonlinear resonance and recovered energy can be controlled by the simple
configuration of the magnet coil position. The recovered energy from the top branch is significantly
higher, but this solution is much harder to obtain.

Keywords: electromechanical coupling; magnetic levitation; energy harvesting; frequency response

1. Introduction
1.1. Energy Harvesting

With an increase in the demand for electricity, there are increased requirements for
alternative energy sources. One of the options for meeting this demand is to harvest energy
from ambient vibrations. The literature referencing the systems that convert mechanical
vibrations to usable electrical energy is extremely wide. This process is usually known
as energy harvesting (EH) or energy scavenging (ES). Increasing solutions developed by
scientists lead to frequent use of harvester devices in practice; for example, information
and communication technologies [1], the Internet of Things [2,3], wireless technology [4]
and powered electronic devices [5,6]).

Vibration energy harvesters (VEHs) require a transduction mechanism that couples
the mechanical system with the electrical part. The conversion techniques are usually
based on electromagnetic, piezoelectric or electrostatic effects. However, as reported in [7],
two methods are dominant in vibration harvesters: piezoelectric and electromagnetic.
VEHs usually differ in architecture, size, excitation method, and output performance. They
are preferable in some engineering applications for their smaller internal impedance and
larger current output when compared to other ones [8]. One of the popular harvesters
belonging to an electromagnetic group is a cylindrical magnet that oscillates in a coil. The
magnet motion can be achieved through mechanical or magnetic springs, or can be freely
moving (magnetic levitation harvester) [9,10]. Saha [11] et al. showed magnetic levitation
generator for harvesting energy from human motion. The harvester was placed inside
a rucksack and the power was measured during walking and running. The prototype
harvester generated about 2.5 mW during walking and slow running. Rome et al. [12]
analyzed a similar harvester and an electromagnetic suspended load back was applied
for vertical movement during walking. Large-scale electromagnetic vibration harvesters
are considered a viable source of renewable energy. For example, Zuo et al. [13] showed
that tall buildings can be a source of kilowatts of power due to wind excitation. Different
electromagnetic harvesters have also been applied in vehicles [14], railway systems [15],
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seismic events [16] and on the ocean floor [17]. Rhinefrank et al. [18] proposed a buoy-type
ocean wave magnetic energy harvester, where a permanent magnet generator was used to
harvest the vertical components of ocean waves. Masoumi and Wang [19] have investigated
magnetic levitation energy harvester (called repulsive magnetic scavenger) dedicated to
capable of harvesting ocean wave energy. Their prototype harvester reaches up to 42 V
at the frequency of 9 Hz. A comprehensive review of the state-of-the-art on large-scale
vibration energy harvesting is shown in [20].

1.2. Electromechanical Coupling

The amount of electricity recovered from an electromagnetic harvester depends not
only on the strength of the magnetic field, but also on the velocity of the relative motion
between the magnet and coil and the coil parameters (turns, resistance). A characteristic
feature of energy harvesters is the electromechanical coupling (EC) coefficient. One of
the most common methods of EC modeling is to treat it as a constant electrical damping
value [21–24]. This approach indicates that the electromechanical coupling effect can be
treated as a mechanical force opposing the relative motion due to Lenz’s law. Camarano [25]
showed the analysis of a nonlinear energy harvester with hardening compliance and
electromagnetic transduction under the assumption of negligible inductance and a constant
EC coefficient. The author also proposed a method based on numerical continuation to find
the optimum load for a harvester with fixed sinusoidal excitation. Mann [26] demonstrated
a maglev harvester with a fixed EC coefficient. It has been shown that the nonlinearity of the
harvester could improve the energy recovery bandwidth. Zhu and Zu [27] used a magnetic
levitation harvester, similar to [26], with a changing magnetic field in the magnetoelectric
composite material. As this paper shows, the EC coefficient is not constant but dependent
on the location of the magnet in the coil. The same conclusions have been drawn in the
paper of Lee et al. [28]. The authors showed that the interaction between the magnetic
force and the induced voltage should be modeled as nonlinear damping in contrast to
constant damping. This increases the recovered energy by 18%. Avila Bernal and Linares
Garcia [29] calculated the electromagnetic damping force exerted by an induced current
coil with semi−analytical solutions. Soares dos Santos et al. [30] proposed a fully analytical
study for modeling levitation-based harvesters. The studies were based on an analytical
determination of the magnetic field with a Lorenz force expression. The EC was a function
of the induced current. However, not enough information regarding the solution of the
coupled model was given.

Martin Saravia [31] presented two formulations of the EC. He suggested that the
classical formulation in terms of the electromechanical damping coefficient leads to an
inconsistent description because of neglecting the electrical circuit’s reactance and injecting
the electromechanical coupling as a mechanical dissipative force. Kecik [32] proposed that
the EC can be described as a nonlinear function of the levitating magnet position in the
coil terminal. However, he assumed that the floating magnet oscillates in the coil’s center.
These analyses were expanded in [33], where the electrical parameters were additionally
optimized. Other nonlinear forms of the EC coefficient have been considered as sum of the
EC coefficient of each coil turn [34,35]. Several measurement methods for the estimation of
the EC coefficient are presented in [36]. The average deviations between different methods
and simulations were about 5%. The authors estimated EC coefficients by calculation of
electrical damping (neglecting the coil’s inductance) by finite element analysis (Ansys
electromagnetics software) using the measured optimum load resistance, based on the
linear variation of the current through the coil and using the voltage spectrum near to the
main resonance.

One of the best review papers on major breakthroughs in the scope of electromagnetic
levitation harvesters and critical discussion is [37]. The authors compared twenty-one dif-
ferent configurations, their geometric and constructive parameters, optimization methods
and harvesting performances. Only in 15% of cases was very good agreement found be-
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tween experimental and numerical analyses. This means that this problem is still important
and has not been fully explored.

1.3. Motivation

The impetus for this research was to explore and evaluate how to describe the elec-
tromechanical coupling which characterizes the interaction between mechanical and elec-
trical components. As shown in the literature analysis, most papers have not received suffi-
cient attention on the electromechanical coupling. Usually small oscillations are assumed
and the electromechanical coupling effect as the constant damping force is simplified.

This paper aims at shedding some light and suggestions on electromechanical coupling
modelling. The originality of the paper is the proposals of new EC models and their
comparison. Additionally, frequency response, bifurcation analysis and multistability
analysis are shown. The motivation is the real application of the proposed harvester.
This system is used as the tuned mass absorber in the autoparametric vibration absorber–
harvester system [38].

2. Materials and Methods
2.1. Electromagnetic Harvester Design

Figure 1a shows photo of the nonlinear electromagnetic harvester proposed in this
paper. It is mainly composed of two fixed magnets mounted in the plexiglass tube ends, a
freely moving cylindrical magnet and an induction coil. A floating magnet is suspended
through the magnetic repelling force. The design allows the levitating magnet to effectively
oscillate in the coil. The harvester system is mounted in the shaker TIRA and connected
to the data acquisition system. To reduce the mechanical friction between the tube and
magnet, a Teflon surface and air holes are applied. The magnets are arranged with op-
posite polarities introducing hardening-type nonlinearity into the system. Moreover, this
design causes the response of the system to be wider than a linear resonant system under
harmonic excitation. The detailed description of the electromagnetic levitation harvester
and identification of the magnetic suspension model in papers [32,39] are presented.

(a) (b)

Figure 1. Laboratory rig. (a) Prototype nonlinear magnetic harvester mounted on the shaker;
(b) equivalent electromechanical system model of the harvester.

The magnetic levitation harvester can be simplified as a lumped-parameter model,
as shown in Figure 1b. The magnet has a mass m, the magnetic force in this case is
represented through a nonlinear Duffing spring with stiffness k and k1, and the linear term
c represents the viscous damping and the magnet’s friction. The spring constants will
depend on the size and strength of the fixed and moving magnets in the harvester. The
generalized coordinates are represented by x, y and z (where z is the relative displacement
z(t) = x(t)− y(t)). A harmonic displacement represented by y = Acos(ωt) is applied to the
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base, where A represents the shaker’s amplitude, ω is the excitation frequency and t is the
time. The equations of motion for the system are:

mz̈(t) + cż(t) + kz(t) + k1z3(t) + mg + α(z)i = mω2 Acos(ωt), (1)

Li̇(t) + (RL + RC)i(t) = α(z)ż(t). (2)

The first equation represents the magnet motion and the second one the induced
current. The electrical circuit consists of the coil with internal inductance L and internal
RC and load RL resistances, respectively. The parameter g denotes the gravitational accel-
eration and i(t) is the induced current in the coil. α(z) is the electromechanical coupling
coefficient (also called the electromagnetic coupling factor or transduction coefficient). This
parameter describes the relationship between the mechanical and electrical domains of the
electromagnetic energy harvester.

2.2. Electromechanical Coupling Determination

As shown in the introduction, there exists a considerable amount of literature re-
garding the determination of the electromechanical coupling as a constant value. In our
prototype electromechanical harvester, the magnet oscillation can be large, including the
magnet exit from the coil. In this study, the electromechanical coefficient was determined
by giving a known value of the induced current from the dynamic test (Figure 2a).
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Figure 2. Methodology of the dynamic magnet coil test. (a) Scheme of the dynamic test. (b) The
two cycles of the dynamic test of the magnet moving through the coil with harmonic excitation; the
exemplary measured current (red line) and the magnet’s displacement (blue line) were obtained for
frequency ν = 1.7698 rad/s and amplitude B = 0.11 m.

The magnet was harmonically moved through the coil and the induced current i(t)
and magnet displacement z(t) were measured. The exemplary results for induced current
and the magnet displacement in Figure 2b are presented. The blue line denotes the magnet’s
displacement, while the red line is the induced current. The test was performed for a fixed
tube (y(t) = 0), meaning that the relative displacement z(t) = y(t). As we can see, the
induced current is a strongly nonlinear function and a description of the electromechanical
coupling by other functions seems to be justified.

2.3. Electromechanical Coupling Models
2.3.1. Constant EC Model

The electromechanical harvester is based on Faraday’s law of electromagnetic induc-
tion. When an electric part is moved through a magnetic field, then the electromotive force
is induced. Generally, the induced voltage is the so-called electromotive force (emf) is
proportional to the magnetic flux linkage change

u(t) = −dφ

dt
, (3)



Energies 2021, 14, 2715 5 of 16

where u(t) is the induced voltage and φ is magnetic flux. In the case of relative motion
between the coil and the magnet in the z direction, Equation (3) for a coil with N turns can
be modified to [36]

u(t) = −N
dφ

dt
= −N

dφ

dz
dz
dt

= −NBlw ż(t) := αż(t), (4)

where φ can be interpreted as the average flux linkage per turn, B is the magnetic flux
density and lw is the average length of a spiral coil. The parameter α (Equation (5)) is the
electromechanical coupling coefficient that depends on the coil geometry and the magnetic
circuit and is expressed as

α = NBlw. (5)

The standard approach for the description of the coupling between the electrical
and mechanical domains is the constant value. This approach follows the fact that some
research has treated the magnetic flux density as uniform over the coil volume and constant
for the total range of motion (usually a small magnet’s oscillation). Note that the constant
flux density assumption is not permissible for a large amplitude of the magnet’s motion.
The high oscillation of the magnet in the coil causes strong variations in the magnetic flux
density. Therefore, the coupling coefficient must be determined in a more accurate fashion.

2.3.2. Linear EC Model

In our harvester, the magnet can execute large amplitude oscillations (a few centime-
ters). Moreover, the magnet may move beyond the coil module. Therefore, the constant
value of the electromechanical coupling will not describe the system behavior sufficiently.
For these reasons the other coupling models have been proposed. First, a simple linear
model of the electromechanical coupling function depending on the magnet’s position in
the coil is proposed. This model is dedicated to the magnet oscillation in the vicinity of the
coil center.

Using Kirchhoff’s law, the measured signals of induced current i(t) and the magnet
velocity ż(t), the experimental electromechanical coupling function has been calculated
and plotted in Figure 3.

α(z) =
Li̇(t) + Ri(t)

ż(t)
, (6)

Next, the linear model of the electromechanical linear coupling function (red line) was
fitted to the experimental data (black points).

Figure 3. The electromechanical coupling function (dots) and the proposed linear model (red line).
This model is dedicated to magnet oscillation close to the coil’s center with magnet amplitudes not
exceeding of 0.01 m.

In Equation (6) the first derivative of the current is numerically calculated from
the signal i(t). The parameters L and R are the coil inductance and total coil resistance
(RL + RC), respectively. Note that the coil inductance is usually negligibly small (L << R);
therefore, this practically does not influence the value of α(z). As reported in [39], in this
harvester a coil inductance above 1 H begins to affect the dynamics.
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Summarizing, the linear EC model α can be mathematically written as

α = α(z) = α1z, (7)

where the parameter α1 means the slope of the red line. As we can see in Figure 3, the
proposed EC model is convergent with the experimental data if the magnet oscillates in
the coil center and the magnet’s amplitude does not exceed 0.01 m. For higher oscillation,
a nonlinear model is proposed in the next section.

2.3.3. Nonlinear EC Model

For higher amplitudes of magnet vibrations (more than 0.01 m), the experimental
electromechanical coupling curve has a complex shape (dots in Figure 4a). The EC function
has the greatest value near the ends of the coil. Therefore, a polynomial approximation
nonlinear model (red line in Figure 4a) is proposed. The polynomial model is easy to
implement in numerical simulations.

(a) (b)

Figure 4. Nonlinear electromechanical coupling model (a) compared with the experiment; (b) model
including the magnet’s position in the coil. The black dots mean the experimental result, while the
red line is the proposed nonlinear EC model. This model can be used for all ranges of the magnet
motion and its different positions in a coil (parameter d). The highest value of parameter α(z, d)
occurs close to the coil’s end.

A similar electromechanical coupling model has been proposed by Kecik et al. [32].
However, this model is modified by lowering the degree of the polynomial function and
by introducing a new parameter d, which defines the position of the magnet in a coil (see
Figure 2a). It is worth underlining that d influences the value of the electromechanical
coupling. For example, close to d = 0 m (coil’s center), the electromechanical coupling can
be treated as a linear function. As we can see, for other positions like d = 0.016 m (close to
the coil’s end), this function becomes strongly nonlinear (Figure 4b). Therefore, we expect
that this parameter can be important for the recovered energy.

The proposed mathematical nonlinear coupling model has the form

α(z, d) = α2 +
8

∑
i=1

α2i(z − d)i, (8)

where the parameters α2 and α2i are determined by a least-squares curve-fitting technique.

3. Discussion of Electromechanical Coupling Models
3.1. Calculation Methods and Parameters

To explore the dynamics of the harvester, specific parameters were identified from the
laboratory rig. The physical parameters of the laboratory system need to be quantified.
Most of these are readily measurable or estimated: m = 0.1 kg, c = 0.054 Ns/m, k = 400 N/m,
k1 = 560 kN/m3, L = 1.46 H, RC =1 kΩ, RL = 0–20 kΩ and g = 9.81 m/s2. The logarithmic
decrement technique was used to estimate the damping in the energy harvester. The
magnetic stiffness parameters were estimated by fitting the magnetic force−displacement
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curve to a third-order polynomial. These coefficients were estimated by applying the least-
squares method to fit the experimental data (see Figure 3 in paper [32]). The parameters k
and k1 represent the stiffness coefficients. This odd-power polynomial fit has been accepted
and widely used in the literature [26].

The resonance frequency responses were obtained by the pseudo-arclength contin-
uation technique, implemented by Doedel in the program AUTO [40] and verified in
Matlab2020b. This software computes the stable and unstable periodic family solutions
and the Floquet multipliers that determine stability. The solution is considered stable if the
system returns to it after small disturbances. Moreover, the software allows precise compu-
tation of bifurcation points. The basins of attraction were calculated in the Matlab2020b
and were verified in Dynamics software [41].

3.2. Comparing of Harvester with Different Electromechanical Coupling Models

In this section, the comparison of the harvester with different EC models is presented.
Next, the best EC model is chosen and the harvester dynamics and energy recovery are
analyzed in detail.

A comparison of the results of the magnet response and induced currents for the
harvester with various electromechanical coupling models is presented in Figure 5a,b.
The black line shows results from the harvester with the constant EC model, the blue line
denotes results from the harvester with the linear EC model and the red line shows the
harvester response with the nonlinear EC model. The green dots are the experimental
shaker test results.

(a) (b)

Figure 5. Frequency–response curves of the maglev harvester with different electromechanical
coupling models. (a) Relative magnet response. (b) Induced current. The black, blue and red
lines show results from the model with constant, linear and nonlinear electromechanical coupling,
respectively. The green dots are experimental results from the shaker tests. The solid line and
the dashed line are the stable and unstable parts of the resonance branch, respectively. The circle
means saddle-node bifurcation. All curves show nonlinear resonance with a hysteresis effect. The
calculation were made for d = 0 m, A = 0.001 m and R = 10 kΩ.

From both graphs, it can be seen that for all EC models the resonance occurs in the
same place and the hardening effect is observed. The magnet’s oscillations of the harvester
for all EC models are practically similar up to the frequency of 65 rad/s and above 77 rad/s.
However, the recovered current differs in the whole range of frequencies. As reported
in [32], the constant value of the EC can be accepted but must be very accurately estimated.

The maximal recovered energy for the harvester with the constant EC model is 0.42 W,
with 0.64 W for the linear EC model and 0.98 W for the nonlinear EC model. The maximal
recovered energy from the experiment was only 0.62 W. However, it should be noted that
in the experimental tests it is very difficult to detect the total resonance curve, because the
small distribution causes jumping of the magnet from the top to the bottom branch. The
hardening effect characterizes two stable solutions and the amplitude jump caused by the
saddle-node bifurcation (SNB) is most obvious for the system with the nonlinear EC model.
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Comparing results of the harvester with different EC models we come to the conclu-
sion that the nonlinear EC model most accurately describes the dynamics of the system.
Therefore, in the next sections of this paper, we focus mainly on the analysis of the harvester
with the nonlinear EC model.

4. Results
4.1. Frequency Response Curve

As we showed earlier, the electromechanical coupling is a strongly nonlinear function.
The position of the oscillating magnet in the coil (parameter d) seems to be important.
Therefore, in this section we evaluate the performance effectiveness of the harvester for
three positions of the moving magnet in the coil.

The relationship between the location of an oscillating magnet in the coil and the
response of a nonlinear harvester is complicated. Unlike in a linear system, the parameter
d affects not only the amplitude of the response but also the shape of the entire frequency
response. Figure 6a,b show the frequency response curves of the magnet and recovered
current for different positions of the oscillating magnet. The red line presents the classical
case, e.g., the magnet oscillates in the vicinity of center of the coil (d = 0 m). The blue line
shows results for the oscillation of the magnet close to the coil’s end (d = 0.016 m) and the
black line means the magnet position near to a quarter of the coil height (d = −0.008 m).
The stable fixed points (branches) are marked by the solid line and dashed lines denote
unstable ones. The unstable solution is caused by SNB point. This bifurcation is a typical
mechanism for the creation/annihilation of fixed points. In this bifurcation point, an
arbitrary small perturbation may lead to a sudden amplitude jump.

(a) (b)

Figure 6. Frequency–response curves of the maglev harvester. (a) Relative magnet response. (b) In-
duced current. The black, blue and red lines show results from the harvester with the nonlinear EC
model for different magnet coil configurations. The solid line and the dashed line are stable and
unstable solutions, respectively. The circle means saddle-node bifurcation. The calculations were
made for A = 0.001 m. All response curves show nonlinear resonance with a foldover effect.

It can be seen that for d = 0.016 m, the hardening effect and the induced current
are highest. The maximal recovered energy equals 2.4 W (for d = 0.016 m), 1.2 W (for
d = −0.008 m) and 1 W (for d = 0 m). This clearly shows that the proper configuration of the
magnet coil causes significantly higher recovered energy. Additionally, the multistability
region can be wider (for d = 0 m: ω ≈ 70–76 rad/s, but for d = 0.016 m: ω ≈ 69–82 rad/s).
This means that the recovered power during magnet oscillation close to the coil’s end is
more effective. It results from the fact that the EC function reaches the highest value close
to the coil’s end (see Figure 4). This leads to the real question of what happens with the
harvester with the EC nonlinear function for other parameters and how the magnet coil
configuration influences the multistability and basin of attraction.
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4.2. Multistability Analysis

As previously discussed, the multistability depends on the EC function and it is
therefore interesting to consider. For the basins of attraction in this paper, each simulation
was performed for 1000 cycles to identify the final state of the harvester (the first 500 cycles
were rejected as the transition time).

Figure 7a–d show the basins of attraction and coexistence of the two stable solutions
under different positions of the oscillating magnet. These calculations were performed for
frequency ω = 75 rad/s. Figure 7a presents the basin of attraction for d = 0 m, Figure 7b for
d = −0.008 m, Figure 7c for d = 0.012 m, Figure 7d for d = 0.016 m, Figure 7e for d = 0.02 m
and Figure 7f for d = 0.024 m.
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Figure 7. Basins of attraction for the coexisting attractors for the frequency ω = 75 rad/s and resistance
R = 10 kΩ and with the increasing magnet position in the coil: (a) d = 0 m, (b) d = −0.008 m,
(c) d = 0.012 m, (d) d = 0.016 m, (e) d = 0.02 m and (f) d = 0.024 m. The basins were constructed
numerically. Here, the purple regions are the basins of attraction with attractor no. 1 corresponding
to the bottom branch (low energy harvesting) and the blue region representing the basins of attraction
with attractor no. 2 corresponding to the top branch (high energy harvesting). The probability of
solution no. 2 decreases with a change in the magnet position from 42% (a), 36% (b), 10% (c), 6% (d),
20% (e) and 25% (f). The calculations were made for A = 0.001 m.

In these figures, the purple area represents the stable solution for the bottom branch
(low energy output), while the blue area is for the top branch (high energy input). The
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attractors are marked by yellow dots and numbered 1 (for purple basins of attraction) and
2 (for blue basins of attraction). One can easily see that the basins represented by the blue
color (high energy output) decrease if the position of the magnet moves away from the
center of the coil. Then the low energy output (purple color) becomes dominant. For the
magnet position d = 0 m, the probability of the high energy output equals 42%, for d =
−0.008 m the probability decreases to 36 %, for d = 0.012 m the probability reduces to 10%
and for d = 0.016 m the probability is the lowest 6%. Moreover, the probability of a high
solution also increases just behind the coil (see Figure 7e,f).

This clearly indicates that the initial conditions for solutions no. 1 and no. 2 strongly
depend on the position of the oscillating magnet in the coil. The probability of the solution
was calculated based on the pixels of the basins of attraction (all basins were plotted in the
same resolution). Note that the border between the two basins is cleared (not fractal). This
could indicate the appearance of regular responses in the harvester.

To gain a better insight into the high energy output solutions, the probability versus
parameter d was calculated (Figure 8). The higher probability of solution no. 2 occurs
close to d = −0.025 m and in the vicinity of d = 0 m. Interestingly, this relationship is
not symmetric. This is probably caused by the gravitational force and the nonlinearity of
the system.
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Figure 8. Probability of high energy output versus the parameter d. The highest probability of
solution no. 2 is located close to d = 0.025 m and close to the coil center. The calculations were made
for A = 0.001 m.

Figures 9 and 10 show the exemplary time histories of the magnet oscillation and the
induced current close to the coil center (Figure 9a,b) and close to the coil’s end (Figure 10a,b).
The purple color indicates the solution from the bottom branch, while the blue line shows
the time response from the top branch. These solutions correspond to the attractors no. 1
and no. 2 from Figure 6, respectively.

Analysis of the obtained time responses leads to the conclusion that the amplitudes of
the magnet vibrations are very similar for d = 0 m and d = 0.016 m for the solution from the
bottom and top branches. This confirmed the result from Figure 6a, where the resonance
curves were overlapping, and the parameter d mainly influenced the resonance bandwidth.

The recovered current from the top branch and d = 0 m equals 0.0095 A (power of
0.9 W), while when setting d = 0.016 m the recovered current was 0.011 A (power of 1.21 W).
This means that the shift of the magnet close to the coil’s end causes an increase in the
harvested energy of 15%. Analyzing the results from the bottom branch, we may conclude
that the recovered power can increase fourfold (from 0.01 W to 0.04 W) due to the magnet
coil settings. To sum up, as it can be seen, the parameter d configurations produce different
results in energy harvesting with a similar magnet vibration.
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Figure 9. Time series of a vibrating magnet close to the coil center at a frequency of ω = 75 rad/s and
d = 0 m. (a) Magnet time response, (b) induced current time response. The blue color denotes the
high energy solution (top branch) while purple means the low energy solution (bottom branch). The
calculations were made for A = 0.001 m.
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Figure 10. Time series of a vibrating magnet close to the coil center at a frequency of ω = 75 rad/s
and d = 0.016 m. (a) Magnet time response, (b) induced current time response. The blue color denotes
the high energy solution (top branch) while purple means the low energy solution (bottom branch).
The calculations were made for A = 0.001 m.

4.3. Bifurcation Analysis

Bifurcations mean topological changes in the parameter–dependent phase spaces.
The nonlinear systems characterize multiplicity of solutions, hysteresis, amplitude jump
and bifurcations. Therefore, bifurcation analysis is a very useful tool as it allows one to
identify bifurcation points, stable and unstable regions and aids in the understanding of a
nonlinear system.

As pointed out in Section 4.1, the magnet coil configuration may significantly modify
the shape of the resonance curves and hysteresis effects. The bifurcation diagrams were
made by a one–parameter and two–parameter continuation methods. Figure 11a,b show
the bifurcation diagrams, depicted in (max(z), A) and (max(i), A) space, for various pa-
rameters d and the frequency of excitation of ω = 70 rad/s. In these figures, the region
with two stable solutions (continuous lines) and one unstable solution (dashed lines) are
observed. When the magnet coil displacement is relatively small (d = 0 m), the multista-
bility phenomenon occurs in the range of A ≈ 0.00054–0.00092 m, for d = −0.008 m the
multistability is observed for A ≈ 0.00064–0.00095 m and for d = 0.016 m multistability is
located for A ≈ 0.00094–0.00114 m. Note that the magnet oscillations are practically the
same outside the multistability area (Figure 11a). However, the bifurcation analysis shows
that the recovered current differs in the total resonance region (Figure 11b). The loss of
stability is caused by SNB points (circle points).

As the frequency increases to ω = 75 rad/s, the system’s multistability region is
expanded (Figure 12). For the magnet coil configuration of d = 0 m the multistability
appears for A ≈ 0.00093–0.00207 m, for d = −0.008 m: A ≈ 0.00093–0.00209 m and for
d = 0.016 m: A ≈ 0.00097–0.00219 m. Of course, after crossing the critical value of excitation
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ACR ≈ 0.00114 m (for ω = 70 rad/s) and ACR ≈ 0.00219 m (for ω = 75 rad/s) the harvester
becomes monostable and only one solution appears.

(a) (b)

Figure 11. One–parameter bifurcation diagrams for fixed excitation frequency of ω = 70 rad/s: (a) A
versus maximal amplitude of the magnet, (b) A versus maximal induced current. The continuous
and dashed lines show stable and unstable solutions, respectively. The circle means saddle-node bi-
furcations.

(a) (b)

Figure 12. One–parameter bifurcation diagrams for fixed excitation frequency of ω = 75 rad/s: (a) A
versus maximal amplitude of the magnet, (b) A versus maximal induced current. The continuous
and dashed lines show stable and unstable solutions, respectively. The circle means saddle-node bi-
furcations.

Analyzing the results in all bifurcation diagrams, we can conclude that the parameter d
can be used to control (shift) the multistability region and improve the energy harvesting. It
is possible to change the recovered energy without modifying the mechanical and electrical
parameters. This is essential from a practical point of view.

Next, two–parameter continuation bifurcation diagrams obtained for the total resis-
tance of R = 10 kΩ (Figure 13a) and R = 20 kΩ (Figure 13b) are presented. These diagrams
are obtained when two parameters change simultaneously. In our case, the parameter d and
frequency of excitation ω were chosen as varying. The numerical continuation starts from
the SNB point for d = 0 m. The arrow shows the direction of the numerical continuation.
The red line shows the subsequent locations of the SNB points in each step of simulation.
The blue area shows the multistability region with two stable and one unstable solution(s).

By analyzing the results in Figure 13a we can conclude that the multistability can be
expanded from ω ≈ 70.5–76.5 rad/s for d = 0 m to ω ≈ 68–82 rad/s for d = −0.02 m. This
means that we can easily extend the hardening effect and increase the amount of harvested
energy. The blue region is symmetric and slightly shifted towards the negative values of
parameter d due to the influence of gravity.

It is interesting that the situation is completely reversed if the resistance increases
to R = 20 kΩ (Figure 13b). Now, the multistability region is the widest for d = 0 m
(ω ≈ 70.115 rad/s). If the oscillating magnet moves away from the center of the coil, the
area with two stable solutions strongly decreases. The critical values of the existence of
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multistability equals dCR = 0.035 m and dCR = −0.04 m. This result is clearly observed in
the frequency–amplitude curves (Figure 14a). The red line denotes the harvester response
for d = 0 m and the blue line means the response for d = 0.016 m. The nonlinear resonance
is wider for d = 0 m. These obtained results signify that the multistability region depends
on the resistance as well.

(a) (b)

Figure 13. Two–parameter continuation (ω, d) of saddle-node bifurcation (SNB) point: (a) the total
resistance R = 10 kΩ, (b) the total resistance R = 20 kΩ. The continuation starts from the SNB point
(or from the PDB point) obtained for d = 0 m (circle) and movement agrees with the arrows. The blue
color means the region with two stable solutions, while the green area denotes the period doubling
the bifurcation region. The red and black lines denote successive positions of SNB or PDB points,
respectively. These plots were calculated for an amplitude of A = 0.001 m.

Moreover, for higher resistance a new small resonance region (green color) close to
the frequency of ω = 130 rad/s appears. This region exists only if the magnet oscillates
close to the coil’s center. The response is caused by the period–doubling bifurcation PDB
(Figure 14a). In this location, the magnet oscillation amplitude is very small, which suggests
that experimental verification of the result will be difficult.

(a) (b)

Figure 14. Resonance curve and two-parameter continuation diagram for the maglev harvester.
(a) Frequency–response curves obtained for the resistance R = 20 kΩ. The red line shows the response
for d = 0 m, the blue line for d = 0.016 m. (b)Two-parameter plot (R, ω) showing the multistability
region. The red color indicates the region obtained for d = 0 m, the blue region for d = 0.016 m.
Interestingly, for higher frequencies, the small period-doubling region appears (green color). The
calculations were made for A = 0.001 m.

Finally, the two–parameter continuation of the resistance R and the frequency of exci-
tation ω is presented in Figure 14b. This diagram unequivocally shows that the resistance
affects the multistability region. Changing the position of the oscillating magnet in the coil
extends the multistability area only within a certain range of resistance (R ≈ 0.9–1.45 kΩ).
For low resistance (below 0.9 kΩ) the multistability occurs only for the magnet position d =
0 m. Below the value of R < 0.4 kΩ the multistability disappears. For high resistance (above
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15 kΩ), the nonlinear resonance is wide ω ≈ 70–115 rad/s. Moreover, a small region of
period–doubling (green area in Figure 14b) exists for resistance greater than 12 kΩ close to
the frequency of 128 rad/s.

Analysis of the basins of attraction for high levels of resistance leads to an interesting
conclusion that the high energy output is much easier to obtain. Now, the nonlinear
resonance is wider for d = 0 m and the probability of solution no. 2 reaches 70% (Figure 15a).
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Figure 15. Basins of attraction for the coexisting attractors for the frequency ω = 75 rad/s and
resistance of R = 20 kΩ, for (a) d = 0 m, (b) d = 0.016 m. Here, the purple regions are the basins
of attraction with attractor no. 1 corresponding to the low energy harvesting and the blue region
represents the basins of attraction with attractor no. 2 corresponding to the high energy harvesting.
The probability of solution no. 2 decreases with a change in the magnet position from 70% (a) to 54%
(b). The calculations were made for A = 0.001 m.

Moving the magnet closer to the edge of the induction coil causes the nonlinear
resonance to become narrower (Figure 14b). However, the decrease in the probability of
solution no. 2 is much less than the case of R = 10 kΩ and equals 54% (Figure 15b). This is
because increasing the resistance reduces the damping in the electrical system.

5. Conclusions

In this paper, an electromagnetic harvester with various models of electromechanical
coupling was presented. The electromechanical coupling characterizes the conversion of
vibration energy to electricity. Firstly, various models of the electromechanical coupling
(constant value, linear and nonlinear functions) were proposed and compared with the
experiment. In the nonlinear model, the position of the magnet oscillation in the coil
was included. The obtained results lead to conclusions that the harvester with nonlinear
electromechanical coupling model is closest to the experimental response. As shown, the
classical modeling of the electromechanical coupling (constant value or linear function)
can be also accepted for small magnet oscillations. In our system, for magnet amplitudes
higher than 0.01 m the nonlinear electromechanical coupling model should be applied.
Due to this, for detailed analysis, the nonlinear electromechanical model was chosen.

The nonlinear model of the electromechanical coupling includes a parameter that
describes the position of the oscillating magnet in the coil. The nonlinear resonance
and recovered energy can be simply controlled by this parameter. With the help of this
parameter the shape of the resonance curves and the multistability can be modified. In
the multistability region, two stable and one unstable solution(s) appear, and one of these
solutions is characterized by a much greater level of energy recovery (even two and a half
times more).

However, the shift of the magnet close to the coil’s end causes difficulties in obtaining
the high energy output. The basin of attraction (i.e., the set of initial conditions) for the
high energy output is significantly reduced. The probability of the high energy solution
close to the coil’s center equals 42%, while in the vicinity of the coil’s end it is only 6%.

Another solution is obtained with the increase in the load resistance. Then, the best
magnet position is close to the coil’s center (Figure 13b) and the probability is very high
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(70%, Figure 15a). However, the magnet shift for this resistance causes the nonlinear
resonance to be reduced but the decrease in the probability of the high output solution
is smaller (54%, Figure 15b). Moreover, for a higher range of resistance, a new solution
caused by period bifurcation is detected.

Summarizing, the shift of the position of vibration of the magnet in the coil improves
the nonlinear resonance only within a certain range of resistance (Figure 14b). The detailed
bifurcation analysis shows that the multistability region can easily be controlled by the
resistance and the proper configuration of the magnet coil components.
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