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Abstract: The aim of the proposed paper is the development of an electro-thermal model of semicon-
ductor component using an indirect modelling approach. The approach is based on the integration of
the component’s electrical properties considering non-linear behavior of a V-A characteristic. In this
way, the identification of semiconductor material properties considering non-linear dependencies and
semiconductor volume is provided. The main aim of the presented approach is simplification of the
electro–thermal interaction within finite-element modelling of the semiconductor components. In this
way, it is possible to omit more complex boundary definitions and the setting of the semiconductor-
based physics. The proposed methodology is presented within the development of a simulation
model based on a small high-frequency rectifying diode, taking into account its geometric dimensions
and the internal arrangement of its structure. Simulation was performed as a transient analysis,
while the results from the steady-state operation for various operational conditions were compared
to experimental measurements. Comparison between simulation and experiments is within 5% of the
relative error. The achieved results represent appropriate accuracy of model behavior compared to
the real operation.

Keywords: electro-thermal modeling; semiconductor; simulation; non-linear characteristic

1. Introduction

Thermal management currently represents a very important design issue, if the safe
and stable operation of any electronic system is required. Focusing on the applications of
power electronic systems, the mentioned phenomena is defined as one of the figures of
merit for the evaluation of the operational characteristics. This is also due to the continuous
increase in the power density of power electronic system and devices [1–4]. If semiconduc-
tor components are analyzed in more detail, it will be discovered that packing technology
is improving from year to year, thus optimizing the operational performance of semicon-
ductor devices. Currently, many types of packages are at the disposal from semiconductor
manufacturers, while they represent a key ability in defining thermal properties. Thermal
management is key design aspect if reliability and operational life of individual electronic
components are considered. Therefore, it is recommended at the preliminary construction
stage of the system that a precise analysis of the thermal performance is provided [5–9].

The ways showing how to optimize thermal management of electronic components,
and thus performance of electronic systems, have been mostly based on experimental
measurements. However, nowadays, more and more designers use the modelling approach
utilizing modern software tools (Finite Element Method (FEM) and Computational Fluid
Dynamics (CFD) analysis tools). Simulation analyses enable modification of various param-
eters and variables of the used materials of the analyzed system, thus reducing validation
time, thus eliminating the need for experiments. Simultaneously, the simulation software
is useful if safe operation conditions and reliability are analyzed [5,6]. The simulation of
thermal performance reduces the potential risks of overheating and enables the develop-
ment of products with more stable functionality under high environmental temperature
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fluctuations. It also eliminates the need for the development of physical prototypes until the
final design stage of an electronic component has been reached before mass production. For
these facts, it is important that we are informed about the component material properties,
because only with proper information is it possible to achieve validated results compared
to experimental verification [10–14].

Currently, there are several experimental instrumentations that are able to precisely
identify the thermal behavior of electronic systems. One of the most used and suitable is
infrared thermography. However, to receive accurate results related to the thermal behavior
of the component during measurements, it is very important to provide experiments
within a controlled environment. Based on this fact, it is important to maintain constant
operational parameters, such as ambient temperature, air humidity, airflow rate, etc. This
puts high demands on laboratory equipment and hardware disposal. For this reason,
the exact and reconfigurable simulation model of electronic components represents an
advantageous and comfortable way for identification of its thermal performance even
before the pre-design stage of the whole system. This approach enables the elimination of
any undesirable behavior during research and development. The Printed Circuit Board
(PCB) design is another factor influencing the thermal performance of the system. It
provides the possibility of dissipating the heat generated in the electronic components.
Therefore, if a single component is under consideration, it is important to define the side
effects of other subsystems that influence the component operation [15–19].

Considering semiconductor components, it is known that they represent devices with
non-linear characteristics. Their shape is formed dependent on the operational conditions,
while variations in the values of electrical and thermal conductivities are the main pa-
rameters affecting the electro-thermal behavior of semiconductors. Therefore, if the exact
electro-thermal model of a semiconductor component is under consideration, the non-linear
behavior of variables must be addressed by the model to obtain accurate results for wide
operational conditions [20–23].

The paper deals with the procedure of electro-thermal modelling of the semiconductor
diode using COMSOL software. The developed model is characterized by multi-physics
behavior, i.e., the electrical domain and thermal domain are evaluated during simulations.
An electrical domain defines operational conditions relevant for the electric circuit in which
the diode is being operated. Then, based on definitions, the variables responsible for
thermal field distribution are identified using results from an electrical domain. The main
feature of the presented modeling approach is that it considers real non-linear behavior
of V-A characteristic, while the values of required variables (conductivities) are indirectly
extracted from V-A dependencies, while also considering temperature influence. The pro-
posed methodology and simulation model design is supported here by the description of
subdomains settings. It means that geometrical, material, and structural properties of indi-
vidual component´s parts are given. At the end of the paper, the evaluation of simulation
model performance is obtained by way of comparisons to experimental measurements.

2. Non-Linear VA Characteristic Simulation

The Simulation model is created in the form of equivalence with complex models
using boundary conditions defined by semiconductor physics. This approach is based
on the simple electrical interface, where the semiconductor part (in this case diode) is
described by conductivity function for an electrical interface, and by thermal parameters of
pure silicon material. This approach can be also easily used for simulation of multiple parts
within the PCB and, thus, for the overall thermal performance of the electronic system.

The proposed approach (Figure 1) is composed of the following steps:
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Figure 1. Simplified block diagram of the proposed approach (ε is electrical permittivity).

1. In the first step, it is important to have VA characteristics (Figure 2a) of specific
semiconductor diode (considering thermal dependency). It can be easily extracted
from the datasheet of given part. The obtained VA characteristics are then refined to
conductivity characteristics (1) that can be seen in Figure 2b.

Ii(Ti, V)→ Gi(Ti; I) =
I(Ti, V)

V
(1)

where Ii is i-th sample of the value of current, Ti is the i-th sample of temperature, Gi
is the i-th sample of the value of conductivity and V is voltage.
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2. The next step is the determination of the thermal coefficient of the given semicon-
ductor diode based on the conductivity characteristics from the first step (Figure 2b).
The thermal coefficient can be determined based on the temperatures limits for a
given application (semiconductor part) using Equation (2). The thermally adjusted
conductivity is then given be (3). In order to reach higher accuracy, the temperature
coefficient can by determined for more temperature intervals independently. Within
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the final result more dependencies are available, which can be added to the simulation
model for each temperature interval.

kT(I )
[

S
◦C

]
=

G2(T2; I2 )[S]−G1(T1; I1 )[S]
T2[
◦C]− T1[

◦C]
(2)

G (Treal; I )[S] =
I25◦C[A]

V[V]
+ kT(I )

[
S
◦C

]
∗ (Treal [

◦C]− 25[◦C]) (3)

where kT is the thermal coefficient, G2 is the higher value of diode conductivity for
given temperature, T2 is the higher temperature from chosen temperature interval,
I2 is higher current from chosen temperature interval, G1 is the lower value of diode
conductivity for a given temperature, T1 is the lower temperature from chosen tem-
perature interval, I1 is lower current from chosen temperature interval, and Treal is
the actual temperature of the material.

3. Within the third step, the mechanical dimensions of the package, pads, and ideally
also DIE size and bonding diagram, are identified. Receiving the information on DIE
size and bonding diagram can be complicated because mostly this is confidential
information. Otherwise, it is possible to estimate it from a similar part. The second
approach is to consider it as a main part of the heat that is transferred through the
contacts of the part (these are in most cases described within the datasheet) (Figure 3).
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Figure 3. X-ray of semiconductor diode in SMA Package for the DIE size estimation.

4. The design of the simulation model (electrical domain) considers given geometrical
parameters, which are used to determine the specific conductivity of the electrical path
composed of contacts, bonding, and DIE itself. In this step, the specific conductivity
is determined for the DIE conductivity equal to “σS = 1 [S/m]” (material settings)
(Figure 4) The Forward Current in the initial simulation is set to “IF(AV) = 1[A]”.

5. The conductivity coefficient can be simply determined using Equation (4). During
this step the VA characteristic for this simulation has linear shape, because the value
of the conductivity is constant (Figure 5b).

GS[S] =
I[A]

U[V]
→ gcoeff[1/m] =

σS[S/m]

GS[S]
=

1[S/m]

GS[S]
(4)

where GS is the conductivity of the diode, gcoeff is zhe conductivity coefficient, IF—is
a material specific conductivity.
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6. The thermally adjusted conductivity characteristic, obtained in the second step needs
to be multiplied by the conductivity coefficient (5) found in the fifth step.

σnew(Treal; I)[S/m] = G (Treal ; I )[S]∗gcoeff[1/m] (5)

where σnew is the new specific conductivity of the diode material, Treal is the actual
temperature of the diode.

7. The last step is the design of the simulation model composed of both electrical and
thermal interface, while using the obtained conductivity function for DIE material
settings (this step is described more in detail within Sections 3 and 4).
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Thanks to the previously described approach, the thermal behavior of the system,
considering variations of the value of current, can be determined without the necessity of
the use of complex semiconductor physic settings. The presented modelling approach can
also be used for modelling of the reverse part of VA characteristic, while the final material
settings need to be divided in to two intervals (Maximal reverse Current) IRM to 0 and 0 to
(Maximal Forward Current) IFM.

3. Generalized Simulation Model of Selected Semiconductor Diode

The generalized model with material settings based on Section 2 can be made in vari-
ous simulation environments like ANSYS or COMSOL Multiphysics, etc. For verification
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purposes, we have selected the COMSOL environment. The generalized 3D model of
semiconductor diode is based on the predefined Multiphysics interface “Joule Heating”.
Joule heating interface is composed of “Electrical currents” (EC) physic and “Heat trans-
fer in solid” (HTS) physic. This modelling approach is used instead of “Semiconductor
interface” because of its lower demands on computation power. The simulation itself is
defined within the time domain; thus, the results can be easily compared and verified
with experimental measurements. If only steady-state analysis was considered then the
computational time would be reduced, so it would be possible to determine operational
characteristics of the device more flexibly.

As was mentioned above, the JH interface contains the EC domain, which uses a
predefined set of Equations (6)–(9) to compute power losses within the structure.

∇∗J = Qj (6)

J = σE +
∂D
∂t

+ Je (7)

E = −∇V (8)

Q e = J ∗ E (9)

where “J” is the current density, “Qj” is the current source, “σ” is the linearized resistivity,
“E” is the vector of the electric field, “D” is the vector of electric field displacement, “V” is
the electric potential, and “Qe” is the value of joule loses in given calculation step.

The JH interface then uses the computed power losses from the EC physic as input val-
ues for HTS to calculate the temperature based on the predefined Equations (10) and (11).

ρCP
∂T
∂t

+ ρCPu∗∇T +∇∗q = Qe + Qted (10)

q = −k∇T (11)

where “ρ” is the material density, “CP” is the specific heat capacity, “T” is the temperature,
“q” is the heat flux, “u” is the velocity vector, “Qe” is the external heat source, “Qted” is the
thermoelastic damping, and “k” is the thermal conductivity.

In this case, the simplified equation for the electromagnetic heat source is used, which
can be seen below:

ρCP
∂T
∂t
−∇ ∗ (k∇T) = Qe (12)

The Joule Heating interface also uses the output temperature from the HTS as an input
in the next calculation step of EC, so the thermal characteristics of the material are respected.

The proposed model can be divided into three main domains, which are:

• Environment (in this case Air);
• Contacts (PCB Pads + Package Contacts + Bonding, generally used high electri-

cal/thermal conductivity materials);
• DIE (Silicon chip).

The simulation model domains are easily reconfigurable by geometrical parameters
that can be seen in Figure 6. However, for every type of package, a new geometry with
parameters that are best suited for its description needs to be designed. With a wide library
portfolio of reconfigurable models, it is then possible to simulate the whole electronic
system or PCBs thermal performance more flexibly.
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Next part of simulation model design is definitions on the boundary settings, which
are described in Table 1.

Table 1. General Boundary Settings.

Domain Settings for Electrical Currents Physic

Domain Current
Conservation

Electrical
Insulation

Initial Electric
Potential

Applicable
Equations

DIE Yes No 0 5, 6, 7
Package Yes Yes 0 5, 6, 7
Contacts Yes No 0 5, 6, 7

Pads Yes No 0 5, 6, 7
Environment Yes Yes 0 5, 6, 7

Domain Settings for Heat Transfer in Solid Physic

Domain Solid Initial
Values

Outflow
Heat Flux

Applicable
Equations

DIE Yes 25 (◦C) No 10, 11
Package Yes 25 (◦C) No 10, 11
Contacts Yes 25 (◦C) No 10, 11

Pads Yes 25 (◦C) No 10, 11
Environment Yes 25 (◦C) Yes 10, 11

The material parameters can be set through the material interface, where it is important
to correctly define the values of the Electrical Conductivity and the Relative Permittivity for
all of the domains within the Electric Current interface. For the Heat-Transfer simulation
the Heat Capacity, Density, and Thermal Conductivity are required variables. The values of
the individual parameters of the most used materials can be seen in Tables 2 and 3 as well.

Table 2. General Material Settings (Electrical Interface).

Material Parameters (Electrical Interface)

Domain Electrical
Conductivity (S/m)

Relative
Permittivity (-)

DIE (Silicon) σ(T, IF)–(Equation (13)) 11.7
Package (Epoxy) 0 3.6

Contacts (Copper) 5.9987 × 107 1
Pads (Copper) 5.998 × 107 1

Environment (Air) 0 1
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Table 3. General Material Settings (Thermal Interface).

Material Parameters (Thermal Interface)

Domain Heat Capacity (J/(kg ◦C)) Density
(kg/m3)

Thermal Conductivity
(W/(m ◦C))

DIE (Silicon) 700 2329 130
Package (Epoxy) 1000 1250 0.35

Contacts (Copper) 385 8960 400
Pads (Copper) 385 8960 400

Environment (Air) 1000 1.839 0.026

Equation (13) represents the general form of dependency of specific conductivity
written as a fourth order approximation. This approximation can be obtained using
various software (MATLAB or directly in EXCEL, etc.). Considering the shape of the
characteristic, it is sufficient to use mentioned 4-th order approximation of the dependency
of specific conductivity.

σnew(Treal ; I) =
(
(∑5

n=1 an ∗ I5−n
F ) + kT ∗ (Treal − 25)

)
∗ gcoe f f (13)

4. Customized Simulation Model of Semiconductor Diode

The customization process of the proposed model to the specified power diode is
performed by the change in the geometrical parameters of the reconfigurable model. Thus, a
new geometry for different package options, like modification of the conductivity function,
is obtained (see step-by-step approach in Section 2).

For the verification of the proposed procedure, we used the power diode “US1MHE3”.
The basic materials used in these models are mostly the same. Therefore, it is possible
to use general material settings from Table 2, with a specific function for the electrical
conductivity of the DIE.

1. From V-A Characteristics to Conductivity characteristics of selected diode.

The extracted VA characteristic from the datasheet of US1MHE3 [24] can be seen in
Figure 7a, while temperature dependency for 25 (◦C), 100 (◦C), and 150 (◦C) is considered.
The Figure 7b corresponds with the temperature dependency of the conductance character-
istics of the given diode. The fourth order approximation of conductivity dependency on
forward current corresponds to Equation (14).

G25◦C(25◦C, IF) = −0.045I4
F + 0.25I3

F − 0.51I2
F + 1IF + 0.014e−2 (14)Energies 2022, 14, x FOR PEER REVIEW 9 of 16 
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2. Thermal Coefficient Determination.

The thermal coefficient is determined for temperature interval from 25 (◦C) to 150 (◦C)
and its dependency can be seen in Figure 8. The fourth order approximation of thermal
coefficient “kT” in dependency on forward current corresponds to Equation (15).

kT(IF) = −8e−8 I4
F + 4e−6 I3

F − 1e−4 I2
F + 1.4e−3 IF + 5e−4 (15)

Energies 2022, 14, x FOR PEER REVIEW 9 of 16 
 

 

  

(a) (b) 

Figure 7. (a) V-A Characteristic of US1MHE3 diode; (b) Conductance Characteristic of US1MHE3 

diode. 

2. Thermal Coefficient Determination. 

The thermal coefficient is determined for temperature interval from 25 (°C) to 150 

(°C) and its dependency can be seen in Figure 8. The fourth order approximation of ther-

mal coefficient “kT” in dependency on forward current corresponds to Equation (15). 

𝑘𝑇(𝐼𝐹) = −8𝑒−8𝐼𝐹
4 + 4𝑒−6𝐼𝐹

3 − 1𝑒−4𝐼𝐹
2 + 1.4𝑒−3𝐼𝐹

 + 5𝑒−4
 
 
 (15) 

 

Figure 8. Thermal coefficient dependency on the diode forward current. 

3. Package Dimensions + DIE and Bonding size estimation. 
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3. Package Dimensions + DIE and Bonding size estimation.

The diode´s package dimensions are listed in the datasheet (Figure 9). The DIE
dimensions are estimated based on the similar device in the same package (Figure 3).
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The geometrical parameters of the package (SMA) and estimated geometrical parame-
ters of the DIE that are used in the simulation model can be seen in Table 4.

Table 4. Geometrical Parameters of “US1MHE3”.

Domain Width (m) Length (m) Thickness (m)

DIE 1.10 × 10−3 1.20 × 10−3 0.46 × 10−3

Package 2.79 × 10−3 5.28 × 10−3 2.29 × 10−3

Pads 1.2 × 10−3 1 × 10−3 50 × 10−6

Environment 10 × 10−3 10 × 10−3 5 × 10−3

4. Preliminary Simulation Model and Conductivity Coefficient determination.
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The results from the preliminary simulation model using settings described in previous
sections can be seen in Figure 10. From these results, it is possible to determine the
conductivity coefficient as in (16) and (17).

GS[S] =
I[A]

U[V]
= 2.87e−3[S] (16)

gcoeff[1/m] =
σS[S/m]

GS[S]
=

1[S/m]

2.87e−3[S]
= 348.432 [1/m] (17)
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5. New conductivity characteristic and simulation model comparison.

The received conductivity characteristic using the previously described procedures
defined by Equation (18):

σnew(Treal; IF) =
[
−0.045I4

F + 0.25I3
F − 0.51I2

F + 1IF + 0.014e−2

+
(
−8e−8I4

F + 4e−6I3
F − 1e−4I2

F + 1.4e−3IF + 5e−4
)

∗(Treal − 25)] ∗ 348.432

(18)

The accuracy of this approach is evaluated by comparison of the simulated volt–
ampere characteristic (VA) characteristics with VA characteristics given by the datasheet,
while temperature dependency is considered as well (Figure 11). For a given range of
diode forward current, we can say that from an electrical point of view, the relative error
of the proposed model is less than 1% for 25 ◦C characteristic, less than 2% for 100 ◦C
characteristic, and less than 5% for 150 ◦C characteristic.

Main difference is recorded for high operational temperature, i.e., 150 degrees. This
level of the operational temperature represents limiting value of the Si semiconductor
technology, while electro-thermal process and non-linear dependencies are potentially
much higher compared to lower temperatures. Therefore, the highest difference is achieved
for potentially the highest allowed operational temperature.
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5. Comparisons of Simulation Results with Experimental Measurements

The proposed simulation model is verified for different current values (during steady
state operation), while received results were compared with the results from experimental
measurement (Figure 12).
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The investigation of operation within experiments was performed by way of imple-
mentation of the selected diode, within the main circuit of DC-DC converter (boost type).
The three different diode currents were set having the same RMS values as within simula-
tion). Thermal behavior of the diode was evaluated with the use of the FLIR SC600 thermal
camera. The input/output parameters of the converter circuit are listed in Table 5.

Table 5. Operational Parameters of the Boost Converter during the Tests.

Parameter Value

Input converter voltage (V) 12
Output converter voltage (V) 24
Input converter current (A) 0.31, 0.42, 0.53

Output converter current (A) 0.15, 0.2, 0.25
Converter switching frequency (kHz) 100

The experimental setup is shown in Figure 12. The diode voltage and current were
measured by the current and voltage probe while time-waveforms were visualized on the
digital oscilloscope. The input and output voltages and currents were measured with a
precise power analyzer, while the individual settings reflected simulation conditions.

The experiments were made based on the experimental set-up described above. The
focus was given on infrared thermo-vision measurements of the selected power diode.
Figure 13a shows the temperature distribution within the surface of the investigated
component indicating a hot spot during the experimental measurement. This point is
located in the space where a silicon power chip is integrated within the diode package. As
can be seen, the maximum temperature for the situation of IF(RMS) = 300 mA has reached
approximately 120 ◦C.
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Simultaneously, to verify the electro-thermal behavior of the simulation model, Figure 13b
shows the result of the simulation analysis. The evaluation of the temperature at the hot
spot of the component shows that the maximum reached during simulation is 119.4 ◦C.
This value is very close to the result, which was reached during measurement, and it is
seen that temperature distribution is similar comparing both results. The relative error for
this value of current represents −0.5%.

Measurement valid for the second value of the diode´s current is shown in Figure 14,
while IF(RMS) = 410 mA. The temperature distribution within the diode package is the same
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as for the previous situation, while the maximum reached temperature value is 152 ◦C
in the case of measurement (Figure 14a). Simulation analysis was performed at given
conditions according to the second measurement, and results are seen in Figure 14b. The
hot spot, in this case, reached 153.43 ◦C, thus representing a relative error during this
situation on the level of 0.94%.

Energies 2022, 14, x FOR PEER REVIEW 13 of 16 
 

 

and it is seen that temperature distribution is similar comparing both results. The relative 

error for this value of current represents −0.5%. 

 

119.4°C

 

(a) (b) 

Figure 13. The Comparison for 300 (mA) forward current: (a) measurement; (b) simulation result. 

Measurement valid for the second value of the diode ś current is shown in Figure 14, 
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Because the operational maximum of selected power diode, from the thermal perfor-
mance point of view, is defined as 150 ◦C, the last experiment was realized for 500 mA. The
temperature maximum is defined for the body of the diode; therefore, even though the
temperature reached 152 ◦C within the previous experiment, it must be noted here that the
device temperature, considering the whole volume, is around 100 ◦C.

Figure 15a shows thermal distribution during measurement for IF(RMS) = 500 mA.
The temperature hot spot reached over 192 ◦C and this point represents the maximum
operational limit considering the temperature of the device. Consequently, a simulation
experiment was performed for the last value of forward current. The results are shown
in Figure 15b, while it is seen that the hot spot reached a maximum temperature at the
value of 183.67 ◦C. This last comparison represents the highest relative error (−4.3%) from
individual experiments. This is closely related to the V-A characteristic at 150 ◦C shown in
Figure 12, where it is seen that the shape of the characteristic between measurement and
simulation represents the highest deviation.



Energies 2022, 15, 154 14 of 16

Energies 2022, 14, x FOR PEER REVIEW 14 of 16 
 

 

the temperature reached 152 °C within the previous experiment, it must be noted here 

that the device temperature, considering the whole volume, is around 100 °C. 

Figure 15a shows thermal distribution during measurement for IF(RMS) = 500 mA. The 

temperature hot spot reached over 192 °C and this point represents the maximum opera-

tional limit considering the temperature of the device. Consequently, a simulation exper-

iment was performed for the last value of forward current. The results are shown in Figure 

15b, while it is seen that the hot spot reached a maximum temperature at the value of 

183.67 °C. This last comparison represents the highest relative error (−4.3%) from individ-

ual experiments. This is closely related to the V-A characteristic at 150 °C shown in Figure 

12, where it is seen that the shape of the characteristic between measurement and simula-

tion represents the highest deviation. 

 

183.67°C

 

(a) (b) 

Figure 15. The Comparison for 500 (mA) forward current: (a) measurement; (b) simulation result. 

6. Conclusions 

The paper presents a modelling approach based on the indirect identification of key 

variables required for electro-thermal simulation of semiconductor devices. The design 

procedure of the semiconductor diode is discussed here. Initially, the geometrical model 

within the CFD software (COMSOL) was realized based on the X-ray frames received by 

the manufacturer. The definitions of the geometrical parameters given within the paper 

show how it is possible to prepare a fully reconfigurable simulation model. Individual 

parameters of the geometrical part are then related to the physical properties of the model. 

After this, the identification of the parameters, which influence the temperature perfor-

mance of the component, was provided, i.e., physical variables like conductivities of indi-
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6. Conclusions

The paper presents a modelling approach based on the indirect identification of key
variables required for electro-thermal simulation of semiconductor devices. The design
procedure of the semiconductor diode is discussed here. Initially, the geometrical model
within the CFD software (COMSOL) was realized based on the X-ray frames received by the
manufacturer. The definitions of the geometrical parameters given within the paper show
how it is possible to prepare a fully reconfigurable simulation model. Individual parame-
ters of the geometrical part are then related to the physical properties of the model. After
this, the identification of the parameters, which influence the temperature performance
of the component, was provided, i.e., physical variables like conductivities of individual
component´s subdomains were identified. The procedure of the parameter identifications
is indirect, i.e., the designer does not need to receive material properties defined by the
manufacturer [14]. The proposed methodology uses identification based on V-A diode
characteristics. The validation of the proposed model accuracy and validity was evaluated
by the results received from the experimental measurement. The evaluation was based on
an investigation of temperature distribution within the component surface for various oper-
ational conditions considering different power loading of the component. After evaluation,
it was found that the relative error between results from simulation and measurements
varies from 0.94 % to −4.3%. This difference is dependent on the amount of the forward
current flowing through the diode. Increased error reported at the end of the paper were
caused by the unspecified structural component changes at higher temperatures. Generally,
it can be concluded that the presented approach represents a perspective way of electro-
thermal modeling of semiconductor components, thus eliminating the need for the use of
semiconductor physics during the development of simulation models. Moreover, it enables
the improvement of computation time, maintaining adequate accuracy and performance of
simulation model.

Finally, it is important to note that existing methods for thermal field identification
require mostly estimation of power dissipation within the given component. In other words,
a designer needs to calculate power losses for each of the operational conditions to receive
results of thermal performance for a wide operational range (transient or steady state).
The presented method, does not require recalculations of the power dissipation, because
the model uses electro-thermal domain, and automated–indirect extraction of required
variables to identify thermal field distribution. Based on the presented approach more
flexibility related to the automated calculation process should be obtained. Moreover, the
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presented modelling approach enables the analysis of electronic components in transient
as well as in steady-state operations dynamically, without the need to look-up the table of
power dissipation required for various conditions.
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