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Abstract: With the development of autonomous driving technology, the requirements for machine
perception have increased significantly. In particular, camera-based lane detection plays an essential
role in autonomous vehicle trajectory planning. However, lane detection is subject to high complexity,
and it is sensitive to illumination variation, appearance, and age of lane marking. In addition, the
sheer infinite number of test cases for highly automated vehicles requires an increasing portion of test
and validation to be performed in simulation and X-in-the-loop testing. To model the complexity of
camera-based lane detection, physical models are often used, which consider the optical properties of
the imager as well as image processing itself. This complexity results in high efforts for the simulation
in terms of modelling as well as computational costs. This paper presents a Phenomenological
Lane Detection Model (PLDM) to simulate camera performance. The innovation of the approach is
the modelling technique using Multi-Layer Perceptron (MLP), which is a class of Neural Network
(NN). In order to prepare input data for our neural network model, massive driving tests have been
performed on the M86 highway road in Hungary. The model’s inputs include vehicle dynamics
signals (such as speed and acceleration, etc.). In addition, the difference between the reference
output from the digital-twin map of the highway and camera lane detection results is considered
as the target of the NN. The network consists of four hidden layers, and scaled conjugate gradient
backpropagation is used for training the network. The results demonstrate that PLDM can sufficiently
replicate camera detection performance in the simulation. The modelling approach improves the
realism of camera sensor simulation as well as computational effort for X-in-the-loop applications
and thereby supports safety validation of camera-based functionality in automated driving, which
decreases the energy consumption of vehicles.

Keywords: lane detection; simulation and modelling; multi-layer perceptron

1. Introduction

The traffic safety problem is severe with an increasing number of vehicles on the road.
According to [1], approximately 11 percent of road accidents result from lane departures
caused by inattentive, distracted, or drowsy drivers. According to statistics from [2], in 2015
nearly 13,000 people died in single-vehicle run-off-road, head-on, and sideswipe crashes
where a passenger vehicle left the lane without warning. Lane Keeping Assist (LKA) and
lane departure warnings are designed to reduce potential risk and improve driving safety.
They support more effective driving tasks that maintain safe lateral vehicle control. The
study that investigated the safety potential of Lane Keeping Assist systems shows that the

Energies 2022, 15, 194. https://doi.org/10.3390/en15010194 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15010194
https://doi.org/10.3390/en15010194
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-1116-4989
https://orcid.org/0000-0003-2031-8959
https://orcid.org/0000-0003-4381-1674
https://orcid.org/0000-0001-8246-8085
https://doi.org/10.3390/en15010194
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15010194?type=check_update&version=2


Energies 2022, 15, 194 2 of 17

possibility to avoid fatal accidents is between 16.4% and 29.2%, depending on the capability
of the system [3]. For passenger vehicles, these values even went up to 23.2% to 40.9%

Nowadays, almost every installed system relies on vision-based technologies to detect
and trace lane marking. For most conventional methods [4–6], the lane edge is detected
in the region of interest by image filtering and thresholding. With the development of
artificial intelligence, the convolutional NN-based approach has stimulated a promising
research direction for the extraction of lane marking from acquired images [7–9]. In contrast,
Kim et al. [10] uses an MLP in the fully connected layer to manually extract the Region of
Interest as the input of convolutional NN and directly outputs lane marking candidates.
This approach ultimately outputs the detected lane marking by fitting a function. Thus,
the camera’s computational performance and the algorithm’s detection efficiency affect
the accuracy of the detection results. An appropriate lane marking detection model is
required to analyze and validate vision-based lane marking detection systems. This model
is developed based on the ground truth of the digital twin maps, which provides an
excellent setting for detecting and reading a list of lane marking points to validate the
performance of the lane marking model.

Meanwhile, Kalra et al. [11] and Shladover et al. [12] demonstrated that using Au-
tonomous Driving Systems (ADS) statistically results in fewer collisions. However, hundreds
of millions of kilometres of test drives should be conducted to verify the robustness of ADS
algorithms and software. Furthermore, ADS are subject to different research challenges (tech-
nical, non-technical, social, and policy) [13]. In particular, different driving scenarios related
to traffic and humans bring new system requirements to ADS [14]. These cases induce that
certification of an automated system can only be achieved with the support of modelling
and simulation [15]. More specifically, to realistically capture the complexity and diversity
of the real world in a virtual environment, models that combine virtual scenarios, flexible
simulations, and real measurement data should be considered [16,17].

In order to accommodate different requirements encountered during the vehicle
development process, various camera model types with distinct detection performance
are developed, as demonstrated in the prior studies. For example, Schlager et al. [18]
defined low-fidelity sensor modules for input and output using object lists, which are
filtered according to the sensor specific Field of View (FOV). In [19], and an error-free
camera model is introduced, which can correctly recognize all objects within the FOV.
Based on this sensor model, a more refined sensor model is proposed in [19,20], which
supports arbitrarily shaped FOVs. In order to standardize the modelling process, a modular
architecture was proposed [21], which defines the filtering process for input objects lists
according to different sensor effects and occlusion situations [20]. A significant advantage
of the described model is that it only considers detection results within the FOV of the
sensor, which results in lower computing complexity.

However, due to the low-fidelity provided by the model, the detection performance of
a specific sensor cannot be accurately replicated. Therefore, a stochastic model for errors in
the position measurement is constructed based on an ideal sensor in [21] where the variation
is a random Gaussian white noise. The real detection behaviour is still not reflected by
a random error distribution. In order to improve the reality of sensor simulation and
approximate the distribution of given measurements or a dataset, non-parametric machine
learning approaches can be used. It estimates the outputs and ensures that the shape of the
distribution will be learned from the data automatically [22–24]. Furthermore, the details of
the perception function are usually not accessible to the developer of the automated driving
system, i.e., the vehicle manufacturer. The measurement process of a comprehensive
physical model is also computationally expensive. Accordingly, a statistical model of the
perception process is proposed. Examples of statistical models can be found in [25,26]. In
these models, the measurement and reference data drive the construction of the sensor
model, where errors are calculated between data and the probability functions map the
errors to reference data as the outputs of the model [27]. This approach can implicitly depict
several sources of error. In contrast to previous techniques, the resulting sensor output
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distribution is no longer limited to a specific set of distributions. This statistical model
was also employed in [28] as a lane marking detection model, where a direct relationship
between sensing distance and error was developed by measuring errors of a real camera
system [22]. These models only take the measurement error of the camera and ignore
the impact of environmental and vehicle dynamic movement on the results. Hence, it is
impossible to predict the output correctly based on the vehicle’s current status.

In order to enhance the fidelity of camera simulation, a complex camera model is proposed
that mimics the physics of imaging processes in [29,30] optical situations (e.g., optical distortion,
blur, and vignetting) and additionally the image processing modules (e.g., signal amplifica-
tion, objects or features identification, and detection) are modelled. In [31], an optical model
was presented to validate the functional and safety limits of camera-based ADAS, which is
based on the real, measured lens used in the product. In addition, Carlson et al. [32] pro-
posed an efficient, automatic, and physically based augmentation pipeline to vary sensor
effects to augment camera simulation performance. As more or changing requirements
emerge, the model must be updated with optical characterization models, which results in
increasing effort. Therefore, the main design paradigm of the model presents a barrier to
allowing iterative development cycles.

Additionally, a semi-physical approach combining geometric and stochastic approaches
to simulate dedicated short-range communication was developed in [33] and calibrated for
different environmental conditions with on-road measurements.

This paper aims to remove the drawbacks and limitations of these previous research
studies by fitting lane marking detection errors. It is based on statistical models using
real-time vehicle measurement data collected in real-world tests. As the camera sensing
algorithm is highly confidential, it is impossible to determine primary factors driving the
detection error from extensive vehicle data. Therefore, feature selection is introduced,
removing the data containing redundant or irrelevant features without losing informative
features. In this study, the lane detection error model is constructed from the MLP. One of
the main advantages of the MLP is the capability of simulating both linear and nonlinear
relationships between the parameters. Meanwhile, the trained MLP is applied to estimate
the output from new input data in the virtual simulation environment.

The structure of the subsequent sections of this paper is as follows: The problem is
defined in Section 2. Section 3 represents the method for data collection and ground truth
definition. Section 4 describes the methodology and structure of the designed MLP for
lane marking detection using vehicle-based data. Experimental results are presented and
discussed in Section 5. Finally, a conclusion is provided in Section 6.

2. Problem Definition

Numerical models of cameras can be used for simulation and digital twin-based
testing for automated vehicles. In prior studies [28,34,35], varieties of sensor models with a
distinct performance and detail profile were introduced that can replicate the performance
of real cameras in simulation. These camera models can be adapted to accommodate
specific simulation requirements. Three camera models that are frequently utilized in a
simulation scenario can be categorized as follows:

• Ideal Sensor Model: This model provides the most accurate detection results from
the geometric space of sensor coverage. This kind of model is frequently employed
in multibody simulation software. However, the ideal sensor model is not able
to measure and estimate perception errors. Hence, reliability is reduced during
the simulation.

• Physical Sensor Model: This model is more numerically complicated and often pro-
duces higher accuracy. Since the model parameters correspond to the physical imaging
process of the sensors, the output can be used to replicate physical effects and prin-
ciples correctly. However, developing a physical sensor model requires knowledge
about the physical characteristics and internal imaging algorithm. In our study, a MO-
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BILEYE camera series 630 [36] is used, which includes complicated and confidential
perception algorithms that are difficult to be simulated in software.

• Phenomenological Sensor Model: It simulates sensor performance, whereas phe-
nomenological output effects are modelled without consideration for internal pro-
cesses or algorithms of a camera, but with an emphasis on reproducing the real
effects that are the difference between camera outputs and reference data. The phe-
nomenological sensor model places greater emphasis on physical effects to establish
the relationship between input and output of the camera model. While using this
model, it is possible to map the realistic behaviour of lane detection more quickly and
efficiently. Moreover, the camera modelling framework avoids complex algorithms.

Camera recognition is mainly responsible for detecting road marking. For the current
study, our test vehicle is equipped with a MOBILEYE camera series 630, which employs a
third-degree polynomial to estimate detected lane markings. Thus, the stored output of the
image processing unit is four coefficients C ∈ R4, C = [C0, C1, C2, C3] for each detected lane
marking, the polynomial function is presented in Equation (1).

YCam(XCam) =
3

∑
i=0

Ci · XCam (1)

The measurement coordinate is relative to the camera system, where XCam points in a
forwards direction and YCam points to the right side illustrated in Figure 1.

Figure 1. Illustration of lane marking detection.

These coefficients are explained in Table 1. Since our test scenarios are primarily
focused on straight segments of the highway, C2 and C3 are ignored. However, C0 is the
lateral distance to the detection lane marking at the height of the camera. C1 indicates the
vehicle heading relative to the lane heading and the road markings on the measurement
section are symmetrical, implying that C1 values for the left and right lane markings are
identical. As a result, this paper will only focus on C0 and C1 estimation, as shown in
Figure 1.
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Table 1. Lane detection coefficients from MOBILEYE camera.

Parameters Definition

C0: Lane position Lateral distance from the centerline of the host vehicle to the
left/right lane marking

C1: Heading angle The vehicle heading relative to the lane heading
C2: Curvature The curvature of the lane ahead
C3: Curvature derivative Curvature rate

Vision-based lane detection is influenced by different factors that contain external en-
vironmental parameters [37] (e.g., lane line reflectivity, appearance, and lighting conditions,
etc.) as well as vehicle dynamic performance [38] (e.g., speed and heading angle, a depar-
ture from the road centerline, etc.), resulting in discrepancies between detection results
and the ground truth. This phenomenon can be observed by comparing two different road
markings in Figure 1. According to the guide to the expression of uncertainty in measure-
ment, the detection result of the camera can be stated as the best reference quantity plus the
measurement uncertainty [39], where uncertainty can be treated as the detection error, and
it is estimated by using an NN-based approach in this paper. Finally, a phenomenological
camera model is proposed to approximate real-world camera detection performances.

3. Experimental Setup
3.1. Data Collection

The highway was publicly closed during data collection. Lane detection data were
collected using the MOBILEYE 630 system installed in the test car. The MOBILEYE camera
provides real-time image processing to recognize various road objects such as lane markings,
pedestrians, and so on. For this study, the data related to the type of detected longitudinal
marking (continuous or dashed), polynomial coefficient of lane marking, and view range
were recorded. Meanwhile, the six-degree-of-freedom inertial measurement system of
the GENESYS Automotive Dynamic Motion Analyzer (ADMA) for motion analysis is
combined with the NOVATEL RTK-GPS receiver to provide a highly accurate vehicle
kinematic data. Figure 2 shows the measurement setup used for data collection.

Figure 2. Measurement setup for measuring vehicle.

3.2. Ground Truth Definition

ADMA-RTK combination is a strap-down inertial measurement system. The extended-
Kalman filter used in the ADMA can estimate several important sensor errors in order to
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enhance system performance. Depending on the capability of the GPS receiver, the position
accuracy range down to 1 cm. Meanwhile, six inertial sensors provide high accuracy
data [40]. Due to the accurate performance of this combination, it is used as a reference
system. The measurements and data collection were conducted on the M86 highway in
Hungary, see Figure 3. The construction of a close road section facilitates the development
and testing of connected and autonomous vehicles. The total length of the test road section
is 3.4 km [41].

Figure 3. M86 freeway located near Csorna (Hungary) on route E65 (GNSS coordinates: 47.625778,
17.270162).

In order to perfectly duplicate the real-world test scenario in the simulation environ-
ment, the M86 road was converted into an Ultra-High-Definition (UHD) map, a digital twin
of reality that accurately represents every detail of the test environment. The production
workflow that was applied for the production of the UHD map was presented in [41]. A
digital twin-based M86 map was explicitly produced for testing and validating ADAS/AD
driving functions with an absolute precision of +/−2 cm as a quality reference source. The
extreme high precision of the lane marking data in this map will be used as the ground
truth for comparison with the camera detection output. Additionally, this map will also be
used for further virtual testing to duplicate simulation results.

4. Methodology

The camera modelling approach and process are presented in Figure 4. The test vehicle
collects information from mounted experimental equipment, such as vehicle dynamic
data, GPS sensor data and camera data introduced in Section 3. These data will be used
for target determination and feature selection. Depending on modelling requirements,
sensor detection results contain essential information about the modelling target, which
facilitates the calculation of the differences between measured and reference data. This
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error represents both the camera’s performance and uncertainty in lane detection and the
target of the model. In order to improve the performance of the camera model and decrease
the training time of NN, data extraction and input features selection are applied, which
contribute most to the prediction variable or output used in this case. The selected features
based on the ReliefF algorithm are used as input for MLP. The relationships between each
input feature and target are evaluated using ReliefF, which is a feature weighting method
designed for multi-class, noisy, and incomplete dataset classification issue [42,43]. Once
inputs and targets are determined, the MLP-based approach is applied for modelling.

Figure 4. Schematic representation of necessary components for camera model.

4.1. Target Determination

As previously discussed in Section 2, our model primarily focuses on straight high-
way segments. Therefore, C0 Lane Position Error (C0-LPE) and C1 Heading Angel Error
(C1-HAE) are considered as our targets of MLP. Reference data for each target were taken
from M86 road marking coordinates and ADMA-RTK reference system, respectively. In
addition, detection data for each target were taken from the MOBILEYE camera.

C0-LPE is calculated as the difference between M86 road markings coordinates and
detection data. The calculation process is defined in the next steps:

• Replicating trajectory of GPS data on M86 road map;
• For each timestamp of trajectory data, the test car is positioned on the road, and C0 is

calculated for each side of the road, resulting in C0 Left and C0 Right;
• The difference for each side of the road is calculated independently, resulting in C0-LPE

Left and C0-LPE Right;
• Combining results into a two-dimensional vector provides us with C0-LPE as the

target of MLP.

C1-HAE is calculated as the difference between the heading angle data provided by the
reference system and the detection output of the camera. The calculation is conducted in the
same way as mentioned for C0-LPE, resulting in a one-dimension vector as a target of the
MLP. As detailed in the next section, different input features were selected for each target.

4.2. Feature Selection

Various features were collected from different experimental devices and electronic
controllers during the measurement process. However, a mass of data often contains many
irrelevant or redundant features. In this study, the ADMA reference system provides details
on the available data. Some features (ambient temperature, GPS receiver states, altitude,
etc.) were discarded because they did not significantly impact vehicle dynamics or camera
model functionality. Feature selection aims to maximize information associated with the



Energies 2022, 15, 194 8 of 17

target, carried out by the extracted features from raw data. Additionally, considering that
different features have different update cycles, time synchronization is also required during
data processing to align all features on the same timeline. The time synchronization process
is as follows:

• The test car’s ADMA-RTK-based trajectory data are selected as a base timeline. Each
timestamp from it will be used as a reference point.

• Features will be checked with respect to whether the their timestamp aligns with a
reference point within an offset interval from −0.02 s to 0.02 s. They will be saved in a
database aligning values with the reference timestamp.

• The process is repeated until it proceeds through all reference points.

In order to further refine and reduce the parameters input to the predictive model,
features should be selected from extracted data, which minimizes the number of input
features. The benefit of the process is to reduce training time, lower the risk of overfitting,
and improve the model’s performance. The primary notions and applications of ReliefF
are to rate the quality of features based on their ability in order to distinguish samples that
are close to one another. The final weight assigned to each feature is calculated. According
to ReliefF results, the final features with the greatest relevance to each target are selected
and shown in Table 2, while the corresponding arguments are illustrated in Figure 5. Each
set of input chosen features has a defined target. These features are used as inputs to the
corresponding MLP model.

Table 2. Final Feature Selection for each target.

Features C0-LPE C1-HAE Description

dL X X
The distance between real trajectory of the
vehicle and center line of the road

aY X X The lateral acceleration of vehicle
aZ - X The vertical acceleration of vehicle
θ X X Pitch angle
φ - X Roll angle
θ̇Y X - Pitch rate
ψ̇Z X - Yaw rate

All features are connected to the body coordinate system, described in [44].

Figure 5. Illustration of the selected input feature variables on side and top views of the vehicle.
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4.3. Neural Network Modelling

MLP is used here to estimate the performance of the camera. It is widely used in
different fields, such as system modelling, anomaly detection, and classification applications
to solve complex problems in a variety of computer applications [45–49]. Additionally,
the MLP approach has been preferred as a method for state estimation and simulation
implementation [50]. MLP is useful in research for its ability to solve problems stochastically.
Therefore, it is employed here to estimate C0-LPE and C1-HAE.

A typical architecture of MLP has one input layer, one or more hidden layers, and one
output layer. The working principle uses the connecting layers, which are components
of neurons, to transfer normalized input data to the output. The number of layers in the
network and the number of neurons in each layer are typically determined empirically.
The architecture of the used MLP is presented in Figure 6. This architecture is used for
both prediction models, including the estimation of heading angle and lateral position
errors. The data mapping process from input data to the output data is presented in
Equations (2)–(4). Furthermore, the arithmetic process in a node is illustrated in Figure 7.

Figure 6. Proposed MLP architecture.

Figure 7. Data processing in a neural network node.

Ol =
n

∑
j=1

(wi,j,l xj + bi,l) l = 1, 2, ..., m (2)

Each hidden layer contains the associated coefficient weights and bias. The inputs of
each node are calculated from the previous layer or are the initial input of the network,
then the results of the mathematical operation can be provided by Equation (2), where x is
the normalized input variable, w is the weight of each input, i is the input counter, b is the
bias of this node, n is the number of input variables, and k and m are the counters of the
hidden layer and the number of neural network nodes, respectively.

Fl(Ol) =
2

1 + e−2Ol
− 1 (3)
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Subsequently, the results of Ol are applied to function Fl . Here, the hyperbolic tangent
sigmoid function is used as an activation function calculated by Equation (3), which defines
the output of that node given an input or set of inputs.

ŷ =

(
m

∑
l=1

wout,lFl

)
+ bout (4)

Finally, multiple nodes and hidden layers build up the MLP, as shown in the Figure 6.
The output of each node is forwarded to the next layer to continue the same operations.
The output layer of the entire network is defined by Equation (4), where output ŷ calculates
the weighted sum of the signals provided by the hidden layer. The coefficients associated
with them are grouped into matrices wout,l and bout.

The most critical step in MLP modelling is training. Backpropagation is the most
often used training algorithm, which is described as a process for adjusting the network
parameters (weights and biases) to minimize the error function between the estimated and
real outputs. In comparison to other back-propagation algorithms, a supervised learning
algorithm called Scaled Conjugate Gradient (SCG) was selected [51].

The number of layers in the network and the number of neurons in each layer are
typically determined empirically. By comparing training result performances, four hid-
den layers were decided to be utilized in the MLP model, with the number of neurons
distributed as 50, 30, 10, and 10 in each layer. The architecture of hidden layers and the
number of neurons in each layer are used for both prediction models (C0-LPE and C1-HAE
estimation). As shown in Section 4.2, the number of inputs for each target is shown in
Table 2.

After the definition of the MLP architecture, its performance is evaluated using three
different metrics: Mean Squared Error (MSE), Root Mean Square Error (RMSE), and corre-
lation coefficient (R2). MSE is used to represent the average squared difference between
the estimated values and the actual value (see Equation (5)). On the other hand, RMSE is a
typical metric for regression models and is used to quantify the model’s prediction error,
with a larger error resulting in a higher value (see Equation (6)). Finally, R2 represents the
proportion of real output dynamics that could be caught by the MLP model. R2 varies be-
tween 0 and 1. A higher number indicates that the model is more accurate in its predictions
(see Equation (7)).

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (5)

RMSE =

(
1
n

n

∑
i=1

(yi − ŷi)
2

) 1
2

(6)

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)2 (7)

In Equations (5)–(7), y is the target (observe) value, yi is the average value of the target,
and n is the number of the MLP output data samples.

5. Results and Discussion

Real-world collected road test data are utilized to train the network model in order to
evaluate the accuracy of PLDM better. This section explains MLP training results. Moreover,
in order to verify the accuracy of model predictions and the validity of the approach, the
employed MLP model results are compared with five other algorithms. Finally, this model
will be deployed in the vehicle simulation software CarMaker from IPG Automotive
GmbH [52].
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5.1. Training Results

In order to train the MLP model, the data gathered by the various devices are synchro-
nized, and 9010 samples were selected from collected data to optimize the model. Input
data are randomly separated into three sets: training (70%), validation (15%), and test (15%).
The configuration of the MLP model is discussed in Section 4.3 and presented in Table 3.
Supervised training is performed on the model using the training set. The validation set is
also used to mitigate the issue of overfitting. Finally, the test set is used to evaluate model
performance on unseen data.

Table 3. MLP network model configuration for C0 and C1 estimation.

Hyper Parameter MLP Configuration

Learning rate Adaptive
Hidden layer 4

Hidden units for each layer [50 30 10 10]
Training function SCG

Activation function Hyperbolic tangent sigmoid

As discussed in Sections 4.1 and 4.2, the MLP model is used to estimate C0-LPE,
which consists of five features and a two-dimension target. The combination of five input
features and a one-dimension target is used to estimate C1-HAE. The regression graphs
obtained as results of the MLP training are given in Figure 8. The models are evaluated
for the test set after convergence, and regression accuracy can achieve 94.0% and 95.5%,
respectively, for C0-LPE and C1-HAE estimation in order to further evaluate the estimation
model, where evaluation metrics (MSE, RMSE, and R2) measure regression performance.
As a result, MLP training performance is provided in Table 4. The results show good
agreement between actual and estimated values, and the prediction errors of the results
are within an acceptable range. The models are more consistent with the trend of real
values in terms of the predicted value. Therefore, the training of the network has been
successfully provided.

Table 4. Performance evaluation of MLP for C0-LPE and C1-HAE estimation.

Metrics C0-LPE C1-HAE

MSE 0.085 m2 0.008 rad2

RMSE 0.092 m 0.089 rad
R2 95.5% 94.0%

(a) (b)

Figure 8. MLP training regression graph. (a) Training regression result for C0-LPE (b) Training
regression result for C1-HAE.
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5.2. Comparing with Other Approaches

The proposed method can be used for C0-LPE and C1-HAE predictions and for com-
paring the effectiveness and accuracy of this method. Moreover, five other machine learning
methods are introduced in [53,54], and these algorithms are categorized and introduced
as follows:

• Support Vector Machine (SVM): It is a widely utilized soft computing method in
various fields. The fundamental idea is to fit data in specific areas by using non-linear
mappings and to apply linear methods in function space, which has been applied for
a regression problem and demonstrates superior generalization performance [55].

• Linear Regression (LR): It attempts to model the connection between two variables by
fitting a linear equation to the observed data. One is the explanatory variable, and the
other is the dependent variable. This algorithm is a fundamental regression method
introduced in [56].

• Gaussian Regression of Process (GPR): It combines the structural properties of Bayesian
NN with the nonparametric flexibility of Gaussian processes [57]. This model con-
siders the input-dependent signal and noise correlations between various response
variables. It performs well on small datasets and can also be used to measure predic-
tion uncertainty.

• Ensemble Boosting (EB): The idea of an EB is presented in [58], and it fits a wide
range of regression problems, and the architecture is the generation of sequential
hypotheses, where each hypothesis tries to improve the previous one. General bias
errors are eliminated throughout the sequencing process, and good predictive models
are generated.

• Stepwise regression (SR): It is the iterative process of building a regression model by
selecting independent variables to be used in a final model, which is introduced and
applied in [59]. It entails gradually increasing or decreasing the number of putative
explanatory factors and evaluating statistical significance after each cycle.

Finally, these five algorithms and MLP model are compared with performance metrics,
as shown in Table 5. In comparison, the suggested MLP achieves outstanding results while
outperforming alternative approaches. Additionally, the GPR demonstrated a rather good
regression result, with an accuracy of 83% and 86% for C0-LPE and C1-HAE estimation,
respectively; this is probably because the GPR kernel can extract sequential data from
complex temporal structures. All three models, SVM, LR, and SR showed comparable
performance and underfitting for C0-LPE. Furthermore, two other neural network models
based on data-driven approaches are introduced in [23,24], which include Mixture Density
Network (MDN) and deep Gaussian Process (GP). MDN outputs a Gaussian mixture
through a multilayer perceptron. Each Gaussian distribution is assigned a corresponding
weight, which predicts the entire probability distribution. Deep GP is a deep belief network
based on GP mappings. The data are modelled as the outputs of a multivariate GP. Both
models can accurately represent uncertainty between camera detection and measurement
results, but they do not produce an accurate estimate compared to MLP. Therefore, driven
by the goal of the digital twin, MLP can more accurately represent the behaviour of sensors
in real environments and still show substantial advantages.



Energies 2022, 15, 194 13 of 17

Table 5. Performance comparison between several regression algorithms.

Output Metrics
Regression Algorithm

MLP SVM LR GPR EB SR

C0-LPE estimation
MSE 0.085 0.077 0.075 0.022 0.035 0.075
RMSE 0.092 0.278 0.274 0.15 0.187 0.274
R2 95.50% 40% 42% 83% 73% 42.40%

C1-HAE estimation
MSE 0.008 0.023 0.022 0.012 0.012 0.021
RMSE 0.089 0.151 0.148 0.11 0.11 0.148
R2 94.00% 73% 74% 86% 86% 74.30%

5.3. Virtual Validation in CarMaker

In this section, a test run is randomly selected from the test set samples carried out in
the co-simulation based on the Carmaker-Simulink software, which provides a multi-body
simulation environment that includes vehicle dynamics control and sensor modules. These
modules can support custom modifications. Thus, PLDM replaces the default camera
model in CarMaker and tests detection performance in a virtual environment. As illus-
trated in Figure 9, the entire model is integrated into the co-simulation platform. Realistic
reproduction of the virtual scenario is produced using the digital twin-based M86 map.
Subsequently, at each time step, the ideal CarMaker object sensor detects the object from the
map and provides precise information feedback in list format. In particular, test run data
from previous tests conducted in a real-world environment, such as vehicle dynamics and
positioning information, are stored in an external file that could be utilized as input for free
movement in CarMaker. This module is mainly responsible for real measurement playback,
and necessary data are transmitted to the MLP-based error estimation module, where the
estimator predicts the corresponding error values for C0-LPE and CC1-HAE, respectively,
based on the current vehicle state. Due to the fact that the MLP model was trained on prior
training data successfully, ground-truth lane marking data are manipulated according to
the model’s output. In this case, two polynomial coefficients (C0-LPE and CC1 -HAE) of lane
marking detection can be determined.

Figure 9. The procedure of the phenomenological lane detection model in simulation.

As shown in Figure 10, the estimated value and real value of the randomly selected
samples are generally consistent with the trend of the sample change. Affected by real
factors, the method to make predictions for certain samples still contains certain errors.
A larger C0 of the left lane estimation error greater than the right lane estimation can be
observed, probably because the left lane line is dashed and the right lane line is continuously
solid. Namely, a dashed lane marking is usually more challenging to determine from the
background in a captured image, as explained in [60]. Overall, the predicted peak and
valley space corresponding to the estimated values still contains some errors compared
to the actual values. However, the maximum error value of 0.05 m is still acceptable. The
reason is that this method takes into account many more factors than traditional regression
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forecasting methods, and it is hard to avoid errors in the weights of some secondary factors.
However, in terms of the overall trend, the effectiveness of the chosen model is proven.

(a)

(b)

(c)

Figure 10. Simulation result for C0 and C1 estimation. (a) C1 estimation comparison between camera
detection data and MLP based output. (b) C0 of left lane estimation comparison between camera
detection data and MLP based output. (c) C0 of right lane estimation comparison between camera
detection data and MLP-based output.
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6. Conclusions

In order to support efficient virtual test and validation of LKA systems, this study
developed an MLP model to determine lane detection C0-LPE and C1-HAE estimation
based on the relationship of vehicle dynamic data. This relationship is complex for an
actual dataset derived from real-world measurements and requires an artificial intelligence
method to create a reliable model to analyze the problem. This approach was divided into
three parts. Firstly, the measurements and data collection were carried out for the testing
procedure, and digital twin-based data were defined as ground truth. The second part was
to extract data and select features from the actual collected data to find input data that had
greater influences on the model, thus improving training efficiency. In the third part of
the study, an MLP model was developed, and the selected features were used as inputs to
train the model. The results also showed that MLP can produce higher accuracy than other
regression approaches. Finally, the technique was employed to reproduce lane detection
behaviour of an automotive camera system in a simulation platform. Combined with the
analysis of the simulation results, we found that the best regression is achieved for a given
non-linear dataset. Due to the fact that existing data and tests were conducted primarily on
straight roads, lane marking detection on curved roads will be taken into account to refine
the model further and improve our approach.

The model fits the detection error of the sensor output by using selected features,
which enables fast and efficient sensor modelling. Compared to the physical model, this
approach simplifies the modelling process by ignoring physical performance modelling
of the camera components as well as the perception algorithm and focusing only on the
inputs and outputs of the camera system, thus improving computational performance.
Moreover, in contrast to the ideal models previously mentioned, ideal sensor models
provide only ground truth information without any specific post-processing function.
Therefore, physical effects do not influence these models. However, PLDM models based
on the MLP approach can provide more details about sensor detection performance than
an ideal model, enhancing the simulation’s realism. Although there is a strong correlation
between modelling complexity, training time, data composition and volume, modelling
efficiency is improved, and this approach is generic. It can be applied to various sensors
with low efforts after initial development.
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