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Abstract: We examine the critical pore radius that results in critical gas saturation during pure
methane hydrate dissociation within geologic porous media. Critical gas saturation is defined as the
fraction of gas volume inside a pore system when the methane gas phase spans the system. Analytical
solutions for the critical pore radii are obtained for two, simple pore systems consisting of either a
single pore-body or a single pore-body connected with a number of pore-throats. Further, we obtain
critical values for pore sizes above which the production of methane gas is possible. Results shown
in the current study correspond to the case when the depression of the dissociation temperature (due
to the presence of small-sized pores; namely, with a pore radius of less than 100 nm) is considered.
The temperature shift due to confinement in porous media is estimated through the well-known
Gibbs-Thompson equation. The particular results are of interest to geological media and particularly
in the methane production from the dissociation of natural hydrate deposits within off-shore oceanic
or on-shore permafrost locations. It is found that the contribution of the depression of the dissociation
temperature on the calculated values of the critical pore sizes for gas production is limited to less
than 10% when compared to our earlier study where the porous media effects have been ignored.

Keywords: gas hydrates; hydrate equilibrium; porous medium; critical gas saturation; analytical
solutions

1. Introduction

Under appropriate conditions of pressure and temperature, water molecules can self-
assemble into forming cavities/cages that can be stabilized by the enclathration of guest
molecules with size, such that can fit within the cavities (e.g., methane, ethane, propane,
hydrogen sulfide, carbon dioxide, nitrogen, hydrogen, tetrahydrofurane, etc.). Depending
on the size of the enclathrated guest molecule different type of cavities can form (e.g., 512,
435663, 51262, 51264, and 51268, which are formed primarily by pentagonal or hexagonal
rings). By combining different number/type of cavities the formation of different hydrate
structures is possible, with structures sI, sII, and sH being the more common encountered
in nature (Sloan and Koh [1]). The natural hydrate deposits that are found within off-shore
oceanic sediments or on-shore permafrost environments can contain significant amounts
of methane gas, stored in pure or mixed methane hydrates, are the main focus of the
current study. The properties of such systems have been discussed in a number of recent
reviews [2–4].
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Increasing industrial interest in hydrates arises, primarily, from flow-assurance related
problems during oil/gas production and transportation (Kelland [5,6]), where hydrates are
considered a nuisance. Furthermore, hydrates are encountered in worldwide accumulations
(Collet et al. [7]; Chong et al. [8]), containing predominantly methane, both on-shore
(under the permafrost), and off-shore (deposited within marine sediments). Hydrate
accumulations amount to a significant reservoir of carbon. Note, however, that the size of
the carbon reservoir is still under debate among the scientific community (Kvenvolden [9];
Buffet and Archer [10]; Milkov [11]; Klauda and Sandler [12]; Boswell and Collett [13];
Wallman et al. [14]; Pinero et al. [15]; You et al. [16]).

A significant effort has been undertaken during the recent years by the scientific
community in order to delineate, with better accuracy, the amount of methane that is stored
in hydrate deposits. This effort is important, since hydrates could represent in the future an
important potential source of clean gas fuel (Buffet [17]). For the economically viable and
environmentally friendly methane production from hydrate deposits, a number of issues
need to be resolved adequately (Boswell and Collett [13]). Such issues include among
others, the type of hydrate deposit, the amount of hydrate present in the deposit, and
the total amount of hydrate that is accessible with the production approach (Boswell and
Collett [13]; Walsh et al. [18]). Furthermore, the hydrate dissociation scheme should result
in a process where hydrate dissociates under strict control, otherwise the uncontrolled
dissociation can be the source of sever accidents and the possible complete destruction of
the off-shore facilities. The economics of methane production through hydrate dissociation
can be further improved by the simultaneous carbon dioxide sequestration within the
hydrate deposits. In that case we can achieve the simultaneous energy production with
environmental benefits.

On the other hand, the uncontrolled dissociation of oceanic or permafrost hydrates is
also associated with the release of significant amount of methane to the atmosphere (Ruppel
and Kessler [19]). Methane is a gas with a stronger green-house gas potential than carbon
dioxide (Nisbet et al. [20]). According to Environmental Protection Agency (EPA) [21],
methane is estimated to have a Global Warming Potential (GWP) equal to 28–36 over a
period of 100 years, while the GWP becomes equal to 84–87 over a period of 20 years. Note
that the particular values are according to the Intergovernmental Panel on Climate Change
(IPCC) Fifth Assessment Report (IPCC [22]). In addition, the collapse of oceanic floor, due
to uncontrolled dissociation of methane hydrate deposits, can create tsunamis that can be
disastrous for coastal communities (Vanneste et al. [23]), while drilling through hydrate
deposits can pose a serious hazard to offshore oil/gas platforms (McConnell et al. [24]).

The hydrate equilibrium primarily depends on the pressure and temperature con-
ditions and the composition of the system under consideration. The presence of certain
components in a hydrate-forming mixture can act as hydrate inhibitors or promoters,
which can shift the equilibrium curve. Furthermore, the presence of electrolytes or con-
finement (i.e., as a result of hydrate formation within porous sediments) can also result
in a shift in the equilibrium curve. The effect of confinement on the thermodynamic
behavior of dissociation/formation of clathrate hydrates was addressed in a number of
studies. Handa and Stupin [25] were the first to report experimental measurements of
hydrate inhibition inside mesoporous silica. Handa and Stupin showed that for a constant
temperature, the dissociation pressures of methane and propane hydrates in 70-A-radius
pores are higher than the dissociation pressures in the bulk phase. Additional experiments
resulting in similar observations were reported among others by Uchida et al. [26,27],
Wilder et al. [28], Sheshardi et al. [29], Smith et al. [30], and Anderson et al. [31]. Addition-
ally, by Kang et al. [32,33], Aladko et al. [34], Seo et al. [35], Lee et al. [36], Zarifi et al. [37],
Zhang et al. [38], and Liu et al. [39]. Additional experimental references and a detailed
discussion on the quality of the available methane hydrate, three-phase equilibrium (i.e.,
Hydrate–Liquid water–Vapor; H–Lw–V), experimental data under confinement have been
discussed in further detail in Tsimpanogiannis [40]. It should be noted, however, that for
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the case of mixed gas hydrates the inhibition behavior can become more complex, as has
been discussed in more detail in the recent experimental study of Gambelli [41].

Theoretical studies by Clennell et al. [42,43], Henry et al. [44], and Anderson et al. [45]
were introduced to explain the inhibition effect occurring within the small pores of the
porous sediments (i.e., the lowering of the hydrate equilibrium temperature for a constant
pressure, or the increasing of the hydrate equilibrium pressure for a constant temperature).
The inhibition effect of a porous medium on the hydrate equilibrium curve was modeled
by using a modified version of the van der Waals–Platteeuw-based thermodynamic models
(van der Waals and Platteeuw [46]; Parrish and Prausnitz [47]; Holder et al. [48,49], where
an extra term was added to account for the lowering of the water activity as a result
of the presence of the porous medium. Such works were reported, among others by
Clarke et al. [50], Klauda and Sandler [12,51], Peddireddy et al. [52], Sun and Duan [53],
Song et al. [54], and Duan et al. [55], Li et al. [56], Zarifi et al. [37], Zhou et al. [57], and
Azimi et al. [58]. An additional discussion and related references on the effect of the
capillarity in narrow pores on the hydrate equilibrium conditions can be found in the recent
study by De La Fuente et al. [59].

Tsimpanogiannis [60] examined, in an earlier study (denoted herein as part I), the
dissociation of methane hydrate occurring inside a single pore, as well as the effect of pore
size on the ability to produce the gas phase that results from methane hydrate dissociation.
The particular study focused on obtaining critical pore sizes for which the production
of methane gas was possible. Essentially, an effort was undertaken to identify when the
resulting gas phase can arrive at the edge of the system (i.e., indicating arrival at the gas
production end). In part I, the hydrate inhibition, which results from the presence of
small pore-sizes, was ignored. The objective of the current study is to relax that particular
assumption and expand the previous work with the incorporation of hydrate inhibition
phenomena on the calculation of the critical pore sizes for which methane gas production
is possible from geological media. The main purpose is to quantify the effect of hydrate
inhibition, occurring due to confinement, on the calculation of the critical pore radius.

The paper is organized as follows: First, we present a brief description of the problem
in the framework of simple geological settings, associated with hydrate deposits. Methane
gas is the product of hydrate dissociation. Then, the mathematical analysis is introduced
and, in a subsequent step, we present the corresponding results for the critical pore-body
sizes that are essential to successfully produce methane gas from the porous systems
considered. Finally, the conclusions are presented. The conclusions from the current study
can provide tentative insights on potential methane production scenarios during hydrate
dissociation from geological media.

2. Background

Consider a geological porous medium (i.e., deposited sediment) saturated with water
that also contains a distributed solid methane hydrate phase. The geological medium can be
located either beneath the ocean floor (off-shore) or under the permafrost (on-shore). Based
on earlier studies, Davie and Buffet [61] reported that the hydrate saturation, SH (defined
as: SH = VH/VP, where VP is the total volume of the initial pore space, while VH is the total
volume that is occupied by the hydrate solid; essentially, SH indicates the percentage of
pore space that is occupied by hydrate), in oceanic porous deposits varies between values as
low as 4–8% and as high as 20–35% of the available pore space. The particular values have
been estimated based on seismic observations, resistivity measurements, and chlorinity
profiles [61]. According to Davie and Buffet [61], the lower limit for hydrate saturation has
been reported from studies at the Blake Ridge (Ocean Drilling Program (ODP); ODP Leg
164), while the higher limit for saturation has been reported from studies at the Cascadia
Margin (ODP Leg 146). The lower hydrate saturations are often associated with hydrate
conversion of biogenic methane that is produced locally (at temperatures lower than 50 ◦C).
On the other hand, the higher hydrate saturations are associated with hydrate conversion of
thermogenic methane that has migrated from deeper sediments where it has been produced
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at temperatures in the range 50–150 ◦C, which can also be combined with locally produced
biogenic methane. Xie et al. [62] in a recent study presented a detailed report on hydrate
saturation, obtained from natural gas hydrate deposits around the world, that have been
studied during the recent years (e.g., Nankai Trough, Japan; Mallik Site Canada; Krishna-
Godavari Basin, India; Bay of Bengal, India; Gulf of Mexico, USA; Ulleung Basin, South
Korea; Shenhu Area, China; etc.). An extensive list of references regarding these sites can be
found in Xie et al. [62]. Additionally, a detailed overview of hydrate occurrences in Europe
has been reported by Minshul et al. [63]. Finally, You et al. [16] presented a comprehensive
review of the different mechanisms that are associated with methane hydrate formation in
geological porous media.

Depending on the fluid saturation in the geological sediments, different hydrate habits
can develop (i.e., cementing at grain contact, grain coating, supporting matrix/grain, and
pore filling). A detailed discussion has been presented by Waite et al. [64] and You et al. [16].

It is widely accepted that during hydrate formation in porous media with high initial
water saturation, all the water inside a pore can solidify into hydrate with the exception
of a thin (e.g., 5–50 nm for the case of mineral grains) adsorbed film that remains liquid
(Clennell et al. [42]). Ice is strongly nonwetting and forms convex shapes within the pores
that minimize the surface area (Clennell et al. [42]). This hypothesis was also confirmed
by the two-dimensional visualization experiments of Tohidi et al. [65]. Thus, during the
dissociation of hydrate, the liquid phase is the wetting phase while the produced gas is the
non-wetting phase that occupies the center of the pore.

Hydrate dissociation occurs at appropriate equilibrium temperature, Teq, and pres-
sure, Peq, conditions. For prevailing pressures in the porous medium that are above the
dissociation pressure Peq, the hydrate remains stable within the porous medium. However,
when the pressure drops below Peq, the hydrate dissociates into gas and either water (for
temperatures that are above the freezing temperature of water) or ice (for temperatures
that are below the freezing temperature of water).

After hydrate dissociation has occurred, we can identify two distinct steps in the
process, with respect to the behavior of the produced gas phase. The gas phase partially
occupies a given pore volume during the first stage, essentially staying far from the pore
walls. For cases where the gas pressure, Pg, becomes higher than the sum of pressures
in the surrounding liquid phase, Pl, plus the capillary pressure of the gas bubble, Pc
(Pc = Pg − Pl), the growth of the gas bubble is possible. Such bubble growth can continue
up to the point that the gas phase reaches the pore walls. Upon the arrival of the gas
cluster at the pore walls, any further bubble growth is opposed by the capillary forces at
the neighboring pore throats. This is considered the end of the first step. A significant
consequence results from the first step. In case that within a particular pore the pressure
is such that Pg < Pc + Pl , then the gas phase cannot grow any further. This implies that
the gas phase is not capable of connecting with other neighboring gas clusters that are
located in the proximity; therefore, remaining completely isolated in the particular pore. In
such a case, the gas phase connectivity, as well as the gas phase production capability, are
negatively affected. This particular problem can be remediated through gas mobilization.
The gas phase can be mobilized in the presence of strong viscous/buoyancy forces (i.e.,
encountered close to a production well).

During the second step, if the pressure in the gas phase, Pg, is high enough to overcome
the capillary threshold, Pc, of at least one of the neighboring pore throats (i.e., the largest
pore throat), the gas phase can expand to occupy additional pores, until capillary pressure
equilibrium is achieved within the system.

Hydrates are non-stoichiometric compounds. Namely, the hydrate crystal structure
can retain stability, while at the same time certain cavities of the structure can be empty;
therefore, the cavity occupancies are variable and depend on the prevailing pressures and
temperatures. Figure S1a of the Supplementary Data shows the large and small cavity
occupancies of sI methane hydrate along the hydrate equilibrium curve. Shown also
(Figure S1b) is the three-phase (H–Lw–V) equilibrium pressure of the system methane +
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water system. Both the hydrate equilibrium pressure and the cavity occupancy values were
calculated using the CSMGem simulator (Sloan and Koh [1]).

Natural hydrate deposits in sediments are often over-pressured. Namely, the prevail-
ing pressure is higher than the three-phase (H–Lw–V) equilibrium pressure required for
the hydrate to be stable. This is clearly shown in Figure S2a of the Supplementary Data,
where the pressure conditions of several, known oceanic sites, with confirmed hydrate
occurrence, are plotted along with the three-phase (H–Lw–V) equilibrium curve (based
on data reported by Makogan et al. [66]). Shown also (Figure S2b) are the corresponding
overpressures (Tsimpanogiannis and Lichtner [67]). There are cases where the pressure in
the hydrate deposit is 450 bars above the hydrate equilibrium pressure. Earlier Monte Carlo
(MC) simulations of sI methane hydrates (Papadimitriou et al. [68–70]; Lasich et al. [71];
Brumby et al. [72]) or other gas hydrate ([73,74]), have shown that for a given temperature,
if the pressure is higher than the hydrate equilibrium pressure, an increase in the cavity
occupancies, θi,CH4 (with i = S, L, indicating the small (512) and large (51262) cavities, respec-
tively, of the sI methane hydrate), can occur. Namely, it was concluded that θi,CH4 → 1 ,
as the pressure increases. In addition, the calculations for methane that were reported in
part I (Tsimpanogiannis [60]), indicate that the results when partial cavity occupancy is
considered are very close to the results when 100% occupancy is considered. This is true
at higher pressures/lower temperatures, where cavities are close to being fully occupied.
Minor differences occur at lower pressures/higher temperatures where cavity occupancies
deviate from 100%. Therefore, for the remainder of the paper we report results only for the
case of 100% cavity occupancy. A detailed discussion of hydrate-related MC simulations
has been presented in a recent review by Tsimpanogiannis and Economou [75].

3. Mathematical Modeling

As discussed in part I (Tsimpanogiannis [60]), the following condition needed to be
satisfied for a gas bubble that results from the dissociation of hydrate under confinement,
in order for the gas phase to grow:

Pg ≥ Pc + Pl (1)

where the pressure is denoted by P and the subscripts g and l denote the gas and liquid
phases, respectively. The capillary pressure is denoted by Pc and results from the presence
of curvature in the gas–liquid interface. The capillary pressure can be, (i) either that of
the gas bubble, for the case of a bubble located inside the pore-body, or (ii) that of the
largest pore-throat, for the case of a gas bubble that has occupied most of the pore-body
and resides inside a number of neighboring pore-throats.

In order to calculate the gas-phase pressure, Pg, we used the ideal gas law corrected
with the compressibility factor, z, in order to account for the high pressures that the
gas phase can reach for the problems under consideration. In the current study, the
compressibility factor was calculated using the component-specific Equation of State (EoS)
for methane introduced by Duan et al. [76].

Regarding the liquid pressure, Pl , which also corresponds to the pore pressure (used
interchangeably in the current study) it was essential to obtain the pressure field in the
domain of interest. Consider the schematic depicted in Figure 1, where a two-dimensional
(2D) domain with a randomly distributed hydrate phase is shown. The entire domain
is depicted as an effective porous medium, while the geometrical details of the pore
network are not shown. Two characteristic zones can be identified; one zone where the
pore pressure is Pl > Peq, and, thus, no hydrate dissociation is possible, and a second
zone where the pore pressure is Pl ≤ Peq, which corresponded to the area where hydrate
dissociation is possible. The hydrate-dissociation front is part of the second zone and the
following equality applies at the front: Pl = Peq. It should be noted that the depiction of the
“dissociation front” as a simple straight line in Figure 1 is a simplistic approach (needed
for obtaining analytical solutions to the problem), indicating the presence of a zone where
the hydrate had dissociated completely and a zone where dissociation had not occurred.
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However, in a realistic geological system, a “dissociation front zone” exists instead. The
width of the particular zone can depend on the width of the pore size distribution that is
present in the system. Furthermore, it should be pointed out that, in a real porous medium
with pores that follow a pore size distribution, the dissociation front is expected to be
a fractal object, rather than a straight line (note that it can reduce to a straight line if all
pores are of the same size or, alternatively, in the absence of the porous domain). The
particular problem bears similarities with the “liquid-to-gas” phase change problem that
is encountered in the drying/evaporation of porous media, which has been discussed in
detailed in [77–79]. Additionally, it should be noted that P–T diagrams of real geological
media, which also indicate the shift of the hydrate equilibrium curves, can be found in the
studies of Liu and Flemings [80] and De La Fuente et al. [59].
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Gas-occupied and hydrate-occupied pore spaces are denoted with blue and red colors, respectively.
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where Pl = Peq.

Condition for Gas Bubble Growth and Production.

3.1. Case A: Ignoring the Effect of Small Pores on the Hydrate Equilibrium Conditions

In the current study, we followed the same notation as the one used in the case of part
I (Tsimpanogiannis [60]). In a similar manner, we examined a methane hydrate-saturated
system consisting of a single pore-body connected with a number of pore-throats (the
coordination number, ζ, indicates the number of pore-throats connected to the single
pore-body), where the solid hydrate dissociated into liquid water and methane gas. We
were interested in identifying a critical value (denoted with subscript c) for the pore-body
radius, rpc,Si, such that the gas saturation after dissociation in the porous medium under
examination reached a critical gas saturation ( Sg,Si → Sgc,Si ). Essentially, the amount of
hydrate that was present within the pore-body was adequate to release enough methane
gas (upon hydrate dissociation), such that the gas phase could reach the outside boundaries
of the porous medium. Therefore, the production of the gas, resulting from hydrate
dissociation, could be practically realized. Alternatively, for the case where rp ≥ rpc,Si,
the production of gas was possible. However, in the case of rp < rpc,Si, not enough gas
arrived at the outer boundaries of the porous system and, consequently, an inhibition of gas
production was observed. Gas bubble mobilization due to buoyancy or viscous gradients
was ignored in the current study. Note that the viscous gradients close to the production
well could be important and result in the mobilization of gas bubbles.

In part I, the following general solution was obtained for the critical pore-body radius,
rpc,Si. The particular solution could be applied to two different porous media systems
denoted with Si (with I = 1 or 2). The systems that were examined consisted of a single pore-
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body and a number of pore-throats. In particular, S1 corresponds to a system consisting of
only a single pore-body, while S2 corresponds to a system consisting of a single pore-body
connected with a number, ζ (i.e., coordination number), of pore throats.

rpc,Si =
2γgl

zλRTbulk
eq
·

Sgc,Si(
1− bSgc,Si

) · FSi
(
Sgc,Si

)
(2)

where γgl is the gas (methane)/liquid (water) interfacial tension, z is the gas compressibility
factor, R is the universal gas constant, λ is a parameter that is proportional to the amount of
gas that is present in the hydrate cages, b = Pl

zλRT , and FSi
(
Sgc,Si

)
is a function that depends

on the geometric characteristics of the porous system and discussed in detail in part I.
Figure 2 shows the effect of temperature (and pressure) on the gas–liquid interfacial tension,
γgl (Figure 2a), and the compressibility factor, z (Figure 2b). The calculations shown in
Figure 2 correspond to the bulk phase and are essential for Equation (2). The calculations
shown in Figure 2 are performed at P, T conditions that correspond to the three-phase
(H–Lw–V) equilibrium conditions for the binary system: methane + water.
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Figure 2. Effect of temperature on: (a) the gas/methane–liquid/water interfacial tension, γgl ; (b) the
methane compressibility factor, z. The corresponding pressures are those along the three-phase
(H–Lw–V) equilibria for the methane + water binary system.

The hydrate dissociation temperature in the bulk is a function of pressure, Tbulk
eq = f

(
Pbulk

eq

)
.

For the case of methane hydrate it can be calculated from a simple expression,

Pbulk
eq = exp

(
m + n

Tbulk
eq

)
(where m, n are component-specific constants), as the one dis-

cussed by Holder et al. [49], or a more refined correlation, such as the one proposed by
Moridis [81]. Alternatively, a method that couples the van der Waals–Platteeuw method
(van der Waals and Platteeuw [46]) with a cubic equation of state (e.g., the CSMGem simu-
lator discussed by Sloan and Koh [1]) or a Statistical Associating Fluid Theory (SAFT) type
equation of state (e.g., see the discussion by Dufal et al. [82]; El Meragawi et al. [83]), can
be utilized.

It was shown in part I that meaningful solutions (i.e., rpc,Si > 0) are obtained as long as:

1− bSgc,Si > 0⇒ Sgc,Si <
zλRT

Pl
(3)

A detailed discussion regarding the behavior of rpc,Si, in the absence of any confine-
ment effects, has been presented in part I, and therefore, it is not discussed further in the
current study. The growth behavior of the gas bubbles, resulting from hydrate dissociation,
has been explored in detail using the hydrate pore-network simulator that has been devel-
oped by Tsimpanogiannis and Lichtner [84,85]. The particular problem has also similarities
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with the earlier pore-network studies on the critical gas saturation during primary oil
production, discussed by Du and Yortsos [86], and Tsimpanogiannis and Yortsos [87].

3.2. Case B: Incorporating the Effect of Small Pores on the Hydrate Equilibrium Conditions

When hydrates are located inside small pores (e.g., confined within a porous sediment
with a pore radius smaller than 100 nm) a depression of the hydrate dissociation temper-
ature occurs as a result of the confinement (Clennell et al. [42]; Henry et al. [44]). This
shift (inhibition) of the equilibrium conditions becomes stronger as the pore size decreases.
The temperature depression of the hydrate equilibrium value (∆Teq = Tpore

eq − Tbulk
eq ), when

compared to the bulk conditions (Tbulk
eq ), that results from the presence of a porous medium

can be described by the Gibbs-Thompson equation [40]:

Tpore
eq − Tbulk

eq

Tbulk
eq

= −κ

(
γsl cos ϑsl

ρs∆Hs

)
(4)

where γsl is the solid (hydrate)/liquid (water) interfacial tension, ϑsl is the contact angle
between the solid hydrate–liquid water interface and the pore wall (ϑsl is equal to 180◦

when measured through the solid hydrate and further assuming that the pores are “water-
wet”, while the solid hydrate is nonwetting, thus cos ϑsl = 1). The effect of having solid
pore walls with different chemistry can be reflected through the change in wettability and in
particular through a different contact angle, ϑsl . An extensive discussion and experimental,
as well as molecular, simulation data, on the effect of surface chemistry on contact angles,
can be found in the recent review by Liang et al. [88]. ρs is the solid (i.e., hydrate) density, κ
is the solid–liquid interface curvature, and ∆Hs is the latent heat of dissociation/melting.
Tsimpanogiannis et al. [89] reported a detailed review on experimental and computational
methods for the ∆Hs of sI methane hydrate. The interface curvature between the solid and
liquid can be defined as follows:

κ =

(
1
r1

+
1
r2

)
(5)

where r1 and r2 are the two principle radii of curvature with directions that intersect
orthogonally at that point.

For the particular case of a cylindrical pore, Anderson et al. [45] argued that one of
the principle radii (i.e., the one along the length of the cylindrical pore) is infinite, when
dissociation occurs. In that case, hydrate dissociation throughout the entire pore-length
can occur instantly. Therefore, for the case of cylindrical pores, the solid–liquid interface
curvature is equal to:

κ = 1/r (6)

while for the case of (i) hydrate formation in cylindrical pores and (ii) hydrate dissocia-
tion/formation in spherical/cubic pores, it is equal to:

κ = 2/r (7)

It has been shown by Tsimpanogiannis [40] that the hydrate dissociation temperature
inside the porous medium is related to the dissociation temperature in the bulk through
the following equation:

Tpore
eq = Tbulk

eq (1− κα) (8)

where we have defined the parameter α, as:

α ≡ γsl cos ϑsl
ρs∆Hs

(9)

As it has been discussed in detail in Tsimpanogiannis [40] the temperature depression,
∆Teq, has also been associated with experimental measurements of three-phase equilibrium
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conditions under confinement in porous media with pore diameter, d, through the following
expression:

∆Teq

Tbulk
eq

= −β∗ · 1
d

(10)

β∗ the slope of the line that goes through the origin of the axes in the plot ∆Teq/Tbulk
eq vs. 1/d,

for the available experimental data of hydrate equilibrium. A value of 0.1695± 0.0006 (nm)
has been reported for β∗ (Tsimpanogiannis [40]). By combining Equations (4), (8) and (9),
we observe that α = β∗

κ·d , which finally reduces to α = β∗

4 for hydrate dissociation in

spherical or cubic pores or α = β∗

2 for hydrate dissociation in cylindrical pores (see also the
detailed discussion in Tsimpanogiannis [40]).

Tsimpanogiannis [40] has examined the case when the three parameters γsl , ∆Hs and ρs
are functions of temperature and their dependence is such that the parameter α is constant
(i.e., α ≡ const) and independent of temperature. The temperature-dependence of ρs has
been obtained from extensive Monte Carlo simulations (Papadimitriou et al. [68–70,90]),
The temperature-dependence of ∆Hs has been obtained from molecular dynamics (MD)
simulations (Tsimpanogiannis et al. [89]), while the temperature-dependence of γsl has been
obtained by a hybrid method that combined the aforementioned calculated parameters
with experimental measurements of three-phase equilibrium conditions under confinement
(Tsimpanogiannis [40]). Figure S3 of the Supplementary Data shows the temperature
dependence of the three parameters, ρs, ∆Hs and γsl , for the case of sI methane hydrate.

On the other hand, a number of studies have determined the engineering assumption
that the values for the particular three parameters (ρs, ∆Hs and γsl) are independent of
temperature in the short range of interest (275–300 K) to gas hydrate equilibria. Table 1
shows the range of values that have been used in various studies for the case of methane
hydrate. Based on the values that are reported in Table 1 we observe that α can range
between 6.7699× 10−11 and 1.1489× 10−10, if we select the min/max values for ρs, ∆Hs and
γsl appropriately. The two aforementioned distinct scenarios with respect to the parameters
ρs, ∆Hs and γsl (i.e., temperature -dependent or -independent), both result to having a
constant value for the parameter α.

Table 1. Comparison of calculated values for γsl (methane hydrate–liquid water), using experimental
measurements reported by different studies (adopted from Tsimpanogiannis [40]).

Study γsl (mN/m) ρs (kg/m3) ∆Hs (kJ/(mol CH4))

Uchida et al. [27] 17 ± 3 914 54.2

Uchida et al. [27] (a) 34 ± 6 914 54.2

Uchida et al. [26] 39 914 45.92

Uchida et al. [26] (b) 78 914 45.92

Uchida et al. [26] (c) 32.72 914 45.92

Anderson et al. [45] 32 ± 1 to 35 ± 1 907–914 53.2–57.7

Anderson et al. [45] (d) 32 ± 3 – –

Zarifi et al. [37] 31 ± 3 914 57.8

Liu et al. [39] 32 ± 2 914 54.2
(a) Corrected by Anderson et al. [45], accounting for the curvature of dissociation. (b) Corrected by Tsimpanogian-
nis [40], accounting for the curvature of dissociation. (c) Corrected by Tsimpanogiannis [40], accounting for (i) the
curvature of dissociation and (ii) using a refitted value of the slope β∗ (β∗ = −0.1948 (nm)) of the line that goes
through the origin of the axes. (d) Average value.

Figure 3 shows the effect of pore radius on the temperature depression (absolute
values) during methane hydrate dissociation in porous media. Results are shown for the
temperature of 275 K and the two aforementioned scenarios regarding the parameters ρs,
∆Hs, and γsl (i.e., constant and variable). The corresponding case for the temperature of
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310 K is shown in Figure S4 of the Supplementary Data. The curves that are shown in
Figure S4 of the Supplementary Data shifted by approx. 3K to higher values than those
shown in Figure 3. The limited shift observed between 275 K and 310 K is a result of
the small variability for the parameters of Equation (4) that are shown in Figure S3 of
the Supplementary Data, in the same temperature range. From the particular figure we
can observe that for Tbulk

eq = 275 K there is a shift to lower values by, ∆Teq = 1 K, for the
case of hydrate dissociation in a pore with an approximate radius of 2.5× 108 m, while
higher ∆Teq

′s result for smaller pore-body sizes. The corresponding pore-body radius for
Tbulk

eq = 310 K is approximately 2.8× 108 m. It is evident; therefore, that for small pore
sizes the depression in temperature needs to be taken into account in the calculations.
Sahou et al. [91] estimated that the temperature shift (towards lower values) for the case
of bulk methane hydrate equilibrium conditions at 8.8 MPa and 9.8 ◦C, is equal to 4.8 ◦C.
For the particular calculation, Sahou et al. used the constant values for ρs, ∆Hs and γsl ,
reported by Clennell et al. [42] for the case of ice. For the same bulk equilibrium P, T
conditions, we calculated in the current study (using variable parameters for ρs, ∆Hs and
γsl) a temperature shift to lower values that is equal to 2.52 K.
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correspond to the estimated minimum and maximum values for α, based on the fixed values for the
parameters in Table 1.

In part I, we reported results obtained from an analytical solution for the case that the
depression of the dissociation temperature was ignored and thus Peq was independent of
the pore size. In this paper the aforementioned assumption is relaxed and the depression
of the dissociation temperature is taken into account and therefore Peq depends on the
pore size.

By introducing Equation (4) into (2), we can obtain an expression for the critical
pore-body radius which consists of two terms:

rtotal
pc,Si = rpc,Si + rshi f t

pc,Si (11)

The first term at the right-hand side (RHS) of Equation (11) is the solution that cor-
responds to the problem in the bulk (discussed extensively in part I), while the second
term at the RHS is the correction that corresponds to the effect of the porous medium. The
correction term, rshi f t

pc,Si , is given as:
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rshi f t
pc,Si =

zλRTbulk
eq

zλRTbulk
eq − PlSgc,Si

· ( f α) ≡ Ωc,Si · ( f α) (12)

where f is a constant that has a value equal to 1 for the case of hydrate dissociation in
cylindrical pores, while a value equal to 2 for the case of hydrate dissociation in spherical
or cubic pores. In Equation (12) we have also defined the function Ωc,Si as follows:

Ωc,Si ≡
zλRTbulk

eq

zλRTbulk
eq − PlSgc,Si

(13)

4. Results and Discussion
4.1. System S1: Single Pore-Body

Figure 4 shows the correction term, rshi f t
pc,S1, as a function of temperature, calculated

along the three-phase (H–Lw–V) equilibria line for the methane + water binary system. We
observe that the correction term has a very week dependence on temperature. Essentially,
there is a change of only 0.002% between the minimum (at 275 K) and maximum (at
305 K) values of rshi f t

pc,S1. Furthermore, for the case of S1 we observe that the term Ωc,S1 is
approximately equal to one (i.e., for all engineering purposes), as is shown in Figure 5,
where we plot (Ωc,S1 − 1) as a function of temperature. We can observe that (Ωc,S1 − 1)
is in the range 1× 10−6–3× 10−5, for the temperature range 275 K–305 K. Therefore, the
following approximation can provide accurate results for engineering-type calculations:

rshi f t
pc,S1 ≈ f · α (14)
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Figure 4. The correction term, rshi f t
pc,S1, as a function of temperature for a porous system S1. The

corresponding pressures are those along the three-phase (H–Lw–V) equilibria line for the methane +
water binary system.

Figure 6a shows for comparison purposes the calculated rpc,S1 as a function of tempera-
ture (along the three-phase, H–Lw–V, equilibrium line) without accounting the confinement
effect (discussed in part I). Figure 6b shows the contribution of the correction term (i.e.,
rshi f t

pc,S1) that is calculated from Equation (12), that originates from confinement. The figure
shows the ratio,

Φc,S1 ≡
(

rshi f t
pc,S1/rtotal

pc,S1

)
(15)

plotted as a function of temperature (and the corresponding hydrate equilibrium pressure),
for the case of a spherical, cylindrical or cubic pore-body, without any liquid film remaining
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at the pore-body walls (i.e., ωp = 1). Essentially, it shows the value of
(
100 ∗Φc,S1

)
, namely,

the per cent (%) contribution of confinement on the total value of rpc,S1.
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Figure 6. System of a single pore-body (i.e., system S1). (a) Effect of pore-body geometry (spherical—
blue; cylindrical—green; cubic—red) on the critical pore-body radius, rpc,S1, plotted as a function
of temperature along the three-phase (H–Lw–V) equilibrium line for the methane + water system
(modified from Tsimpanogiannis [60]). (b) Effect of pore-body geometry for system S1 on the value of
(100 ∗Φc,S1), plotted as a function of temperature along the same three-phase equilibrium line. Solid
lines correspond to pores located at the hydrate-dissociation front (Pl = Pbulk

eq ), while the dashed
lines correspond to pores at minimum pore pressure (Pl = 0) for well production via a pressure
depletion scheme.

The Figure 6a,b show two distinct families of curves. In particular, pore-bodies that
were located exactly on the hydrate-dissociation front (Pl = Pbulk

eq ) belong to the first family
of curves and correspond to the upper limit (denoted as solid lines). On the other hand,
pore-bodies that were located at points where the pressure was observed to be at a minimum
(Pl = 0) belong to the second family of curves and correspond to the lower limit (denoted
as dashed lines). In addition, for pressures such that Pbulk

eq > Pl > 0, an infinite number of
curves could be identified between the aforementioned upper and lower limits. Essentially,
such pressures can be encountered within the porous domain between the location of the
hydrate dissociation front and the location of the initial lowering of the pressure (e.g., at
the production well for the case, a pressure depletion scheme was followed).

We observed the following regarding the shift in the hydrate equilibrium temperature
that resulted from the confinement:
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• At pores located on the hydrate-dissociation front (i.e., where Pl = Pbulk
eq ), a shift of less

than 2% is observed, with the shift magnitude having values in the following order:
cubic > cylindrical > spherical.

• At pores located at points with the minimum pore pressure (i.e., where Pl = 0) for well
production via a pressure depletion scheme, a shift of less than 5% was observed, with
the shift magnitude having values in the following order: cubic > cylindrical > spherical.

Figure 7b shows the effect of a thin liquid film that remains on the pore-body walls
on the value of

(
100 ∗Φc,S1

)
, as a function of temperature (and the corresponding hydrate

equilibrium pressure) for the case of a spherical pore-body. The existence of thin liquid
films remaining on the pore-body walls (i.e., ωp < 1), results in shifting the correction
term to higher values. In particular, for the case of a spherical pore-body located on the
hydrate-dissociation front, to less than 0.8% (for ωp = 1.00), 1.0% (for ωp = 0.90), and 1.4%
(for ωp = 0.80). The corresponding values for the case of a spherical pore-body, located
far from the hydrate-dissociation front (i.e., Pl = 0), are less than 2.5% (for ωp = 1.00),
3.5% (for ωp = 0.90), and 4.0% (for ωp = 0.80). Similarly, the top panel of Figure 7 shows
for comparison purposes the calculated rpc,S1, plotted as a function of temperature (along
the three-phase, H–Lw–V, equilibrium line), without accounting the confinement effect
(discussed in part I).
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Figure 7. System of a single spherical pore-body (i.e., system S1). (a) Effect of the remaining liquid
film thickness inside a spherical pore on the critical pore-body radius, rpc,S1, plotted as a function
of temperature along the three-phase (H–Lw–V) equilibrium line for the methane + water system
(modified from Tsimpanogiannis [60]). (b) Effect of the remaining liquid film thickness inside a
spherical pore on the value of (100 ∗Φc,S1), plotted as a function of temperature along the same
three-phase equilibrium line. When ωp = 1, there was no liquid film on the pore-body wall. Solid
lines correspond to pores located at the hydrate-dissociation front (Pl = Pbulk

eq ), while the dashed
lines correspond to pores at minimum pore pressure (Pl = 0) for well production via a pressure
depletion scheme.

4.2. System S2: Single Pore-Body Connected with a Number of Pore-Throats

In the current Section, we consider a porous system consisting of a single pore-body
(spherical, cylindrical, or cubic) that is connected with four (i.e., ζ = 4) cubic pore-throats
(i.e., system S2). The remaining geometrical parameters are defined and have values that
are similar to cases considered in our previous study (part I). In particular, the parameter, is
defined as the ratio of the radius of the pore-body (rp) over the radius of the pore-throat (rt):
β = rp/rt with β > 1. Additionally, the parameter υ is defined as the ratio of the length of
the Unit Porous Block (UPB), LUPB (defined in part I), over the radius of the pore-body as
follows: υ = LUPB/rp.

Figure 8 shows the correction term, rshi f t
pc,S2, as a function of temperature, calculated

along the three-phase (H–Lw–V) equilibria line for the methane + water binary system.
We observe that the correction term for pores located far from the hydrate-dissociation
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front (i.e., where the pore pressure is a minimum; namely, where Pl = 0) is essentially
constant and independent of temperature. On the other hand, for pores located on the
hydrate-dissociation front the correction term has strong temperature dependence. In
particular, the correction term changes almost four orders of magnitude between 273 K and
295 K. Such behavior is a direct result of the term Ωc,S2, which is shown in Figure 9, plotted
as a function of temperature. Therefore, a similar approximation to Equation (14) cannot
be used for the case of system S2 and the complete Equation (12) needs to be used for the
correction term, rshi f t

pc,S2.
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Figure 9. Plotting the term (Ωc,S1 − 1) as a function of temperature along the three-phase (H–Lw–V)
equilibrium line of sI methane hydrate for porous system S1.

Figure 10a shows for comparison purposes the calculated rpc,S2 as a function of tem-
perature (along the three-phase, H–Lw–V, equilibrium line) without accounting the confine-
ment effect (part I). On the other hand, Figure 10b shows the contribution of the correction
term (i.e., rshi f t

pc,S2) that is calculated from Equation (12), that originates from confinement.

The figure shows the ratio,
[
Φc,S2 ≡

(
rshi f t

pc,S2/rtotal
pc,S2

)]
as a function of temperature (and the

corresponding hydrate equilibrium pressure), for the case of a spherical, cylindrical or
cubic pore-body, without any liquid film remaining at the pore-body walls (i.e., ωp = 1).
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Figure 10. System of a single pore-body connected with 4 cubic pore-throats (i.e., system S2); (a) effect
of pore-body geometry (spherical—blue; cylindrical—green; cubic—red) on the critical pore-body
radius, rpc,S2, plotted as a function of temperature along the three-phase (H–Lw–V) equilibrium
line for the methane + water system (modified from Tsimpanogiannis [60]). (b) Effect of different
pore-body geometries for system S2 on the value of (100 ∗Φc,S2), plotted as a function of temperature
along the same three-phase equilibrium line. Solid lines correspond to pores located at the hydrate-
dissociation front (Pl = Pbulk

eq ), while the dashed lines correspond to pores at minimum pore pressure
(Pl = 0) for well production via a pressure depletion scheme.

We observe that, even though the correction term, rshi f t
pc,S2, increases by more than

three orders of magnitude between 273 K and 305 K, the term rpc,S2, increases also by
approximately the same orders of magnitude. Therefore, the ratio Φc,S2, remains essentially
constant in the temperature ranges 273 K–293 K, while increases slightly for temperatures
higher than 293 K. Notice, however, that in all cases the correction term, rshi f t

pc,S2, is less

than 0.5% of the total value of rtotal
pc,S2. It is also observed that pores that are located at the

hydrate dissociation front exhibit the same shift with those pores that are located at points
of minimum pressure. Furthermore, it should be pointed out that there is an asymptotic
behavior for the case of pores located at the front (see Figure 10a), and it’s effect is clearly
shown in Figure 10b, where we observe that the resulting curves are plotted only up to
291 K (spherical pore-body), 293 K (cylindrical pore-body), and 295 K (cubic pore-body),
respectively, for the three pore-body geometries that are considered in the current study.
For the three particular cases the magnitudes of the shift are having values in the following
order: cubic > cylindrical > spherical.

5. Conclusions

In this study we examined the dissociation of sI methane hydrate, occurring inside
simple model porous media with small pore sizes. We performed analytical calculations
for the critical pore sizes that are required in order for the gas phase to reach the critical
gas saturation, and therefore that can be produced. The current study is an extension
of our previous work (Tsimpanogiannis [60]), where hydrate dissociation in larger pores
was considered. Namely, in our previous work we have ignored the depression of the
temperature of methane hydrate dissociation, which is a result of confinement within the
porous medium. Note that the particular effect becomes stronger as the pore size decreases.
In the current calculations, on the other hand, we considered the effect of the depression of
the temperature of hydrate dissociation, and moved forward to quantify its effect on the
calculated critical pore sizes.

Two different types of fundamental porous media have been considered. The first
porous system (S1), consisted only of a single pore-body, while the second porous system
(S2), consisted of a single pore-body connected with a number of pore-throats. Different
geometries have been considered for pore-bodies (spherical, cylindrical, and cubic), while
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only cubic pore-throats have been considered. It is expected, however, that the use of other
pore-throat geometries will not alter significantly the main conclusions.

The following observations can be summarized:

• As pore sizes decrease, the shift in the three-phase (H–Lw–V) equilibrium temperature
becomes more important.

• In the current study the parameters γsl , ∆Hs and ρs are considered to be functions of
temperature and their dependence is such that the parameter, α ≡ γsl cos ϑsl

ρs∆Hs
, is constant

(i.e., α ≡ const) and thus, independent of temperature. The temperature dependence
has been obtained from Monte Carlo simulations (ρs), molecular dynamics simulations
(∆Hs), and hybrid methods that combine MD/MC simulations with experimental
measurements (γsl).

• For system S1, when accounting for the effect of confinement on the H–Lw–V equi-
librium Teq shift, results in a contribution up to 8% of the total value of rtotal

pc,S1. The
shift magnitude was found to have values in the following order: cubic > cylindri-
cal > spherical.

• For system S2, when accounting for the effect of confinement on the H–Lw–V equi-
librium Teq shift, results in a contribution up to 1% of the total value of rtotal

pc,S2. The
shift magnitude was found to have values in the following order: cubic > cylindri-
cal > spherical.

• The current analysis indicated that the contribution of the effect of the hydrate equilib-
rium Teq shift (due to confinement in small pores) on the critical value of the pores,
rtotal

pc,Si, in order to be able to produce the gas phase was less than 10%. The contribution
to overcome the capillary thresholds of neighboring pore-throats accounted for the
remaining 90%.

• Based on the previous observations we can conclude that for hydrate deposits within
coarse-grained sediments or fractured systems, there is not going to be a significant
negative effect, resulting from accounting for the confinement in small pores.

• Due to the lack of any experimental measurements (to the best of our knowledge) the
provided discussion is limited only to the analytical solutions.

• The current analysis does not take into consideration the possible mobilization of the
gas phase due to buoyancy or viscous gradients. While the contribution of buoyancy
gradients is expected to be insignificant for such small gas clusters, the contribution of
viscous gradients can be important, particularly in the vicinity of production wells.
When accounting for such gradients, the gas production from hydrate deposits within
formations with smaller pore sizes can become possible, due to gas mobilization.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/en15010210/s1, Figure S1: Properties as a function of temperature along the three-phase
(H–Lw–V) equilibrium line of sI methane hydrate, Figure S2: Hydrate equilibrium properties at know
oceanic deposits. Figure S3: Properties as a function of temperature for sI methane hydrate. Figure S4:
The effect of pore radius on the temperature depression during methane hydrate dissociation in
porous media at 310 K.
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Nomenclature

b Parameter defined through: b = Pl
zλRT (–)

d Pore-body diameter (m)
f Constant with values: 1 (cylindrical pore-body) or 2 (spherical or cubic pore body)

FS1

(
Sg,S1

)
Geometric function defined through Equation (30) of Tsimpanogiannis [60] (–)

FS2

(
Sg,S2

)
Geometric function defined through Equation (32) of Tsimpanogiannis [60] (–)

LUPB Length of unit porous block (UPB) (m)

m, n Component-specific constants for hydrate equilibrium: Pbulk
eq = exp

(
m + n

Tbulk
eq

)
Pc Capillary pressure (Pa)
Pg Pressure in the gas (g) phase (Pa)
Pl Pressure in the liquid (l) phase (Pa)
Peq Hydrate equilibrium pressure (Pa)
R Universal gas constant (J/mol K)
r1, r2 Principle radii of curvature (m)
rp Radius of pore-body (m)
rt Radius of pore-throat (m)
rpc,S1 Critical pore-body radius of pore system S1 (m)
rpc,S2 Critical pore-body radius of pore system S2 (m)

rshi f t
pc,S1 Correction term defined through Equation (12) for pore system S1 (m)

rshi f t
pc,S2 Correction term defined through Equation (12) for pore system S2 (m)

Sg,S1 Gas saturation of pore system S1 (–)
Sg,S2 Gas saturation of pore system S2 (–)
Sgc,S1 Critical gas saturation of pore system S1 (–)
Sgc,S2 Critical gas saturation of pore system S2 (–)
SH Hydrate saturation (–)
T Temperature (K)
Teq Hydrate equilibrium temperature (K)
VH Volume of pore space that is occupied by hydrate (m3)
VP Total volume of pore space (m3)
z Compressibility factor of methane gas (–)
α Parameter defined as: α ≡ γsl cos ϑsl

ρs∆Hs

β Constant defined through: β = rp/rt (–)
β ∗ Constant defined through Equation (10) (–)
γgl Gas (Methane)/Liquid (Water) interfacial tension (N/m)
γsl Solid (Hydrate)/Liquid (Water) interfacial tension (N/m)
∆Hs Latent heat of hydrate dissociation/melting (kJ/mol methane)
ζ Coordination number of pore network (–)
ϑsl Contact angle (o)
θS,CH4 Cavity fractional occupancy of the small (S) cavities (–)
θL,CH4 Cavity fractional occupancy of the large (L) cavities (–)
κ solid–liquid interface curvature defined through Equation (5)
λ Constant defined through Equation (28) of Tsimpanogiannis [60] (mol/m3)
ρs Density of hydrate (kg/m3)
υ Constant defined through: υ = LUPB/rp (–)
Φc,Si Function defined through Equation (15) (–)
Ωc,Si Function defined through Equation (13) (–)
ωp Constant indicating amount of wetting liquid attached to pore-body wall (–)
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