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Abstract: Circulating Fluidized Bed gasifiers are widely used in industry to convert solid fuel into
liquid fuel. The Artificial Neural Network and neuro-fuzzy algorithm have immense potential to
improve the efficiency of the gasifier. The main focus of this article is to implement the Artificial
Neural Network and Adaptive Neuro-Fuzzy Inference System modeling approach to estimate solid
circulation rate at high pressure in the Circulating Fluidized Bed gasifier. The experimental data
is obtained on a laboratory scale prototype in the Chemical Engineering laboratory at COMSATS
University Islamabad. The Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System
use four input features—pressure, single mean diameter, total valve opening and riser dp—and one
output feature mass flow rate with multiple neurons in the hidden layers to estimate the flow of
solid particles in the riser. Both Artificial Neural Network and Adaptive Neuro-Fuzzy Inference
System model worked on 217 data samples and output results are compared based on their Mean
Square Error, Regression analysis, Mean Absolute Error and Mean Absolute Percentage Error. The
experimental results show the effectiveness of Adaptive Neuro-Fuzzy Inference System (Mean Square
Error is 0.0519 and Regression analysis R2 = 1.0000), as it outperformed Artificial Neural Network in
terms of accuracy (Mean Square Error is 1.0677 and Regression analysis R2 = 0.9806).

Keywords: artificial neural network (ANN); adaptive neuro fuzzy inference system (ANFIS);
circulating fluidized bed combustion (CFBC)

1. Introduction

With the discovery of fossil fuels, they have become the most utilized medium to produce
energy very rapidly. The relentless consumption of fossil fuels has been causing many
problems including global warming, energy crises, air and water pollutions and many other
environmental hazards, noticed and warned by many international organizations. Renewable
energy, which includes biomass energy, wind energy, hydro energy and solar energy among
many others, is a reasonable approach to solve above mentioned problems [1,2].

In all these alternative energy sources, the biomass energy entices attention for its
numerous benefits like neutralization of CO2 which makes environment clean. A survey
for biomass energy consumption was conducted in 2017 which describes that 9% to 13%
of energy is obtained from biomass which is approximately 60 MJ in total amount of
energy consumed [3]. There are various forms of energy, categorized as renewable energy,
non-renewable energy and nuclear energy.

Out of these energy sources; coal, oil, natural gas and furnace oil are well developed
sub-categories of non-renewable energy. While on the other hand; solar, wind, geothermal,
hydel, biomass and intermittent sources are listed down under renewable energy sources.
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However, there are some problems regarding handling unit, transportation unit, storage
unit and production unit of biomass which have been discussed in this article in detail [4–6].

Biomass is not a very clean process because Carbon, Oxygen and Hydrogen are basic
byproducts of biomass. Agricultural, forestry and industrial sectors are important for
generating the primary sources of biomass [7]. Therefore, biomass is considered important
source in energy production for the utilization in various sectors. Pyrolysis is a thermo-
chemical process which takes place in the absences of oxygen. In this process, solid material
is subjected as the input at high temperature (400–650 ◦C) depending on the conditions and
properties of solid material [8–10]. The solid fuel is converted into three parts:

• Solid
• Liquid
• Gas

The solid part comprises of carbon and ash which is known as char, the liquid part
consists of flammable and inflammable molecules which is tar, and the last part consists
of hydrogen gases. The solid circulation rate is estimated by modeling diagonal recurrent
neural network controller for Circulating Fluidized Bed (CFB) to reduce non-linearity,
complexity and the mean square error [11–15].

Since, the demand of energy is always increasing in power sector; Fluidized Bed
Combustion (FBC) is the most considerable methodology which has ability to burn low
quality fuel for processing. Due to the decrement in amount of Nitrogen Oxide, Sulphur
Oxide, and low combustion temperature, the gasifier performance would be improved;
also the size of boiler would become smaller. Shape is also an important factor which is
beneficial for FBC [16–20]. FBCs are categorized based on fluidized bed; some of them
are fixed bed combustor, Atmospheric/Bubbling bed combustion, Turbulent FBC, Fast
bed/Circulating FBC, Transport FBC. A circulating fluidized bed boiler is a type of boiler
which is used to produce steam by taking main source of biomass or fossil fuel as raw
material for combustion chamber. In CFBC, some solid particles blown out and circulate
again through cyclone in the boiler. The major issue to be addressed in CFBC is that the
solid circulation rate in boiler is measured by conventional methods which are unable to
provide reliable accuracy at high pressure because of non-linearity [21,22]. So, there is a
need to design a soft computing base controller. The results reported by other researchers
using neural network have been mentioned in Table 1.

In very recent years, the online analysis is carried out to predict the gas fuel by making
ANN controller with multilayer perceptron in bubbling fluidized bed gasifier based on
biomass technology [10]. Authors in [23,24] efficiently implemented the fuzzy logic control
on autonomous wheeled mobile robot and photovoltaic application to produce maximum
power through maximum power point tracking (MPPT). Adaptive Neuro-Fuzzy Inference
System (ANFIS) approach has been applied for MPPT of variable speed wind turbine
system, bearing fault identification and financial and welding system which gives more
accurate results as compared to traditional techniques [25–27]. For the near future, we
may say that the neural network and hybrid neuro-fuzzy network controllers are useful to
improve the accuracy in different steps of biomass, gasification and pyrolysis process.

Table 1. Results reported by other researchers in literature.

Reference No. Data Set Errors

[10]
coconut shell, coffee husk,

groundnut hell, sawdust and
sugarcane bagasse

R2 = 0.98
MSE = 0.71

[12] 131 biomass samples from gasifier MSE = 0.375
R2 = 0.963

[28]
315 experimental data of biomass,
coal, and blends of biomass and

coal from various gasifier

MISO system with R2 = 0.78–0.98
MIMO system with R2 = 0.95–0.96

[21]
61 samples of biomass data set

with varying hidden layer from 1
to 10 layers

MSE = 0.00057
R2 = 0.98
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This paper is organized as: Section 2 explains experimental setup and the modeling of
artificial neural network and adaptive neuro-fuzzy inference system (ANFIS) to predict
mass flow rate of solid. In Section 3, results are summarized, while the discussions and
conclusions are outlined in Sections 4 and 5, respectively.

2. Materials and Methods
2.1. Experimental Setup and Data Collection

The experimental setup consisted of a riser (0.0275 m i.d. and 2.75 m height), two
bubbling fluidized beds (0.106 m i.d., 0.96 m height), an L-valve, a cyclone, a hopper, and a
pressure control system including bag filters, as shown in Figure 1. A range of different
sensors are used to detect and measure the accurate readings of solid particles of biomass
in pyrolysis process. The experimental process study generally comprises of two distinctive
parts. The first significant step in pyrolysis process is the collection of viable data from
experimental process at high pressure in CFBC riser.
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9. L-valve and aeration; 10. Lower bubbling bed; 11.Hopper; 12. Cyclone; 13. Pressure controller
including bag filters; 14. Pressure transducer; 15. Data logger; 16. Personal computer; 17. Final bag
filter. Own elaboration based on [22].

In this study, the experimental data set consisted of 217 samples of solid fuel properties,
i.e., single mean diameter of solid particle (m), pressure acting on solid particles (Bar-abs),
riser dp (mmH20), total valve opening (cm/s) and mass flow rate of solids (g/s). During
ANN and ANFIS modeling, four input features comprising of single mean diameter,
pressure, riser dp and total valve opening while the output variable has compromised the
mass flow rate of solid. The other part of the experiment process includes the development
of ANN and ANFIS model in MATLAB 2019a for accurately estimating the solid particle
by using online computing techniques.

The data has further distributed into 70% for training, 15% for validation and 15% for
testing, i.e., 151 training samples, 33 samples for validation and 33 samples for testing.
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Compressor: The basic purpose of using compressor is to compress the air. In CFB
gasifier bubbling fluidized gas is used at the bed of gasifier which is produced by com-
pressor. Mass flow meter controller: the Mass flow meter controller is used to control the
flow of compressed air, i.e., fluidized gas in the gasifier. Riser inlet: this is input inlet of
riser through which compressed air, i.e., fluidized gas enters at the bed of riser. Riser: the
riser in CFB gasifier is used to measure the flow characteristic of solid particles. In riser,
the fluidized gas from compressor and solid particle from riser inlet are mixed and flow in
upward direction. Pressure port: the pressure transducers are installed at the bottom and
upper side of the riser to measure the pressure of fluidized air and solid particles. Lower
bubbling bed: the lower bubbling bed consists of solid particles fed with gas, coming from
upper bubbling bed and the L valve is fixed at the bottom side of bubbling bed through
which fed gas is supplied to riser. Hopper: the hopper is just like a large bin, in which solid
particles were stored. In case of shortage of resources or other technical faults then the
hopper is used to provide the input to the gasifier. Hopper serves as a storage area. Cyclone:
the main function of cyclone is to separate the solid particles and fluidized gas coming
from bubbling bed and riser. Pressure transducers: pressure transducers are basically used
to measure pressure. Data logger: the data logger is used to save the measured data from
the instruments in personal computer. The data logger we are using is Graphet GI800. Bag
filter: the bag filter is a thin paper filter which is used to filter the fluidized gas from cyclone.
If any remaining solid particle is present in the fluidized gas then it will be extracted by
bag filter to clean the fluidized gas and return the solid from bag filter to riser.

2.2. Granulated Sample and Different Parameters in CFBC

Basically, the fluidized bed temperature is affected by the mass flow rate and the
pressure exerting on solid particles. Moreover, the velocities of the fluidized particles
would also affect the input feedstock of the reactor. Execution of pyrolysis takes place at
700–1000 ◦C. The schematic block diagram of pyrolysis process with extraction of hydrogen
gas is shown in Figure 2. The pressure, single mean diameter (SMD), riser dp and total
valve opening have been taken as inputs and the mass flow rate is taken as output of the
pyrolysis process while modeling the ANN and ANFIS as mentioned in Table 2.
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Table 2. Artificial neural network I/P & O/P parameters.

Input Parameters Dimensions Output Parameters Dimensions

Single mean diameter (m) 1 × 217

Mass flow rate (g/s) 1 × 217
Pressure (Bar-abs) 1 × 217
Riser dp (mmH20) 1 × 217

Total valve opening (cm/s) 1 × 217

2.3. ANN Model Development and Its Working Principal
2.3.1. Parameters Selection for Developing ANN

To accurately predict the solid circulation rate at high pressure in CFBC, the structure
of artificial neural network with multiple input single output (MISO) system is developed.
The neurons in the hidden layer receive signals from the input layer and transfer it to the
neurons present in the output layer, but the units of the network in the hidden layer must
have summed its weighted inputs and used the activation function to produce the output
signal. The mode of operations of the activation function is expressed in Equation (1).

Factivation(∑i=1 Wij ∗ Xij + bj) (1)

where Wij represent weight of ith input and jth neuron of the hidden layer and bj is bias of
jth layer. A tansigmoid function has been used for training of model. The proposed ANN
model uses Levenberg–Marquardt feed forward back propagation (BP) learning algorithm
with tansigmoid function for training expressed in Equation (2). The architecture of ANN
model used is shown in Figure 3.

FActivation(X) =
1

1− e−x (2)
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Input layer: this layer consists of 4 neurons as there are four input parameters as
shown in Table 3.

Table 3. Optimal parameter selection for Artificial Neural Network.

Tuning of Parameters Values

Input layer neurons 4
Number of hidden layers 3

Hidden layer neurons 50
Momentum rate 0.9
Transfer function Hyperbolic tangent sigmoid (Tansig)

Number of iterations (epochs) 1000
Output layer neurons 1

Error tolerance 0.0001
Training function Levenberg–Marquardt backpropagation (TRAINLM)

Performance function MSE, Regression
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Hidden layer: It consists of two hidden layers with 50 neurons in each layer. The
number of neurons in the hidden layer is set to be adequate and optimal so that the error is
diminished and gives an optimal best performance.

Output layer: Neurons in output layer usually depend on the number of output
features which get extracted in that particular process. Hence, the proposed structure has
one neuron at output layer for solid circulation rate as output.

2.3.2. Tuning of ANN Model

The tuning of ANN model, which includes training, validation and testing, were
all done by using NNTOOL. During tuning of these parameters, the pressure exerted on
solid particles, single mean diameter of solid particles, riser dp and total valve opening in
the circulating pipe as inputs features, and mass flow rate of particles value as an output
feature. In this ANN model, total number of samples is 217, which are further subdivided
into 70% for training, 15% for testing and 15% for validations.

The division of data was randomly done by MATLAB. Moreover, this distribution can
be changed for desirable alterations according to the demand.

The optimal values were selected for tuning parameters of proposed model are shown
in Table 3. Multiple training operations are available in MATLAB, out of them, some are
mentioned below:

• Batch training operation in which noises are included to train the model.
• Levenberg Marquardt (LM) with second order method which gives more accuracy in

comparison of first order as time consumed by second order is less, while noises are
also included in this operation.

After the completion of ANN model tuning, it stops automatically and gives provides
optimal pathway which might be seen through mean square error validation samples.
The MSE can be well defined as the average squared difference of outputs and targets.
The structure of proposed model is shown in Figure 4, which represents that ANN has
multiple inputs and single output (MISO). If ANN consists of two or more than two hidden
layers then such neural network is considered in deep learning state. Training flow sheet of
ANN algorithm is given in Figure 5. It represents how ANN model start and complete the
learning process on the basis of stopping conditions, i.e., MSE, MAPE, MAE and regression
analysis clearly shown in training flow sheet of ANN. The Regression analysis of ANN is
given in Figure 6.
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Momentum rate is a parameter which speeds up the convergence of first order opti-
mization methods like gradient descent. The number of iterations which are referred as
epochs are taken as 1000 to improve the accuracy of trained neural network. The default
performance function in trained neural network is MSE to improve generalization of the
neural network.

Regression represents the relationship between dependent variable, i.e., mass flow
rate and independent variables, i.e., pressure, riser dp, total valve opening and single mean
diameter of solid particles. In regression analysis we find a line that most closely fit the
data according to the mathematical Equation (9). The regression line describes the strength
of independent variables and the trend of dependent variable in future. The regression
analysis is widely used in predicting, forecasting and error reduction applications. The
regression analysis for training, testing and validation is represented in blue, red and green
line, respectively, as shown in Figure 6.

2.4. Adaptive Neuro Fuzzy Inference System (ANFIS)

The precise prediction of solid circulation rate is carried out by ANFIS modeling
approach which usually works at high pressure in circulating fluidized bed gasifier to
improve the accuracy regarding syngas and input feedstock to the boiler. The architecture of
ANFIS comprises of five layers of neuron as shown in Figure 7. Five membership functions
were designed in fuzzification layer for fuzzifying all the crisp inputs in Equation (3) (see
Appendix A for details). If ‘m’ is number membership functions and ‘n’ is number of
inputs then,

Wi = µAi(x).µBi(y) i = {1, 2, . . . .(mxn)} (3)
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The number of neurons was always equal to the number of memberships function in
the fuzzification layer. In layer 2 and 3, if then rules normalizing of each weights process
will be performed in Equation (4).

W1 =
Wi

W1 + W2
(4)
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In the 5th layer linguistic variables were then defuzzified into crisp output in Equation (5).

f = ∑ Wi.fi =
∑ Wi.fi

∑ Wi
i = {1, 2, . . . .(mn)} (5)

The Sugeno type if then rules were evaluated in ANFIS model on the basis of Equations (6)
and (7) to estimate the solid circulation rate.

Rk : IFµAi(y) and µBi (6)

Then,
F = Pk(y) + Qk(z) + rk (7)

where, P and Q are two inputs of ANFIS, k is total number of rules generated in the
model, µ is input membership function, while P and Q are polynomial constant of 1st order.
Total 625 rules are developed in the structure of ANFIS and the upper and lower bound
membership function for all the inputs.

2.5. Parameters Selection and Tuning for Developing ANFIS

The tuning of ANFIS model was carried out by using Neuro fuzzy toolbox in MATLAB
2019a. There are different types of membership functions, such as Bell-shaped, Sigmoidal,
Gaussian and Gaussian2, which were selected to check the performance of ANFIS model for
the estimation of solid circulation rate at high pressure in Circulating Fluidized Bed gasifier.

The Figure 8 presents the training flow sheet and total layers in ANFIS model, while
the parameters used for tuning the ANFIS model are shown in Table 4. The hybrid
optimization method is far more superior in terms of providing accurate results than
gradient decent method because it involves both the methods, i.e., Least Square Method
and Back Propagation Gradient Decent Method.

The collected data set is subdivided into three groups of data. The first group is
composed of 70% samples and it is used for training the ANFIS module. Each of the other
two groups is composed of 15% data samples which are used for testing and validation
purposes. The system is trained for 250 epochs by using different types of input MFs. It has
been observed that the Gaussian MFs provided the best results as compared to the other
types of input MFs. The trained Gaussian MFs of input variables, i.e., pressure, riser dp,
single mean diameter and total value opening are shown in Figure 9.

Table 4. Parameters for tuning ANFIS model.

ANFIS Parameters Description/Values

Fuzzy structure Sugeno-type
FIS Generation approach Grid partition

I/P Membership Function Gaussian, Bell-shaped, Sigmoidal, Gaussian2
Error Tolerance 0.001

O/P Membership Function Linear, constant
No of I/P data 4 × 217
No of O/P data 1 × 217
No of Iteration 250
No. of I/P MF 5

Optimization Method Hybrid
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3. Results

The final findings of all the experimental procedure were collected after tuning of the
proposed model. These results of the ANN and ANFIS were examined and calculated in
multiple steps. The error between actual and testing results are compared and shown in
form of mean squared error (MSE) which is calculated by the formula given in Equation (8).
If ‘M’ is mass flow rate of given solid particle and Mi,model is the predicted mass flow rate,
and N is number of observations, then

MSE =
1
N

N=217

∑
i=1

(ei)
2 =

1
N

N=217

∑
i=1

(Mi −Mi,model)
2 (8)

The regression analysis (R2) of ANN and ANFIS can be determined by Equation (9).

Y = aX + b (9)

where, Y is dependent variable that is plotted on Y-axis and X is independent variable
which is plotted on X-axis, a is y intercept and b is slope of line.

The mean absolute error (MAE) is given in Equation (10).

MAE =
1
N ∑N=217

i=1 |Mi −Mi,model| (10)

The mean absolute percentage error (MAPE) is given in Equation (11).

MAPE =
1
N

N=217

∑
i=1

∣∣∣∣∣Mi −Mi,model

Mi

∣∣∣∣∣ (11)
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The MSE and R2 values for training, testing and validation of data for ANN are repre-
sented in Table 5. Figure 10 compares the values predicted by ANN with the (experimental)
target values while Figure 11 shows the error produced by ANN.

Table 5. Statistical values of purposed ANN model.

Type of Data MSE REG (R2)

Training 0.0439 0.9914
Testing 0.0337 0.9918

Validation 0.0422 0.9934
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The ANFIS analysis was carried out to determine the type of input membership
function which may give more accurate results for constant and linear membership function
of output as shown in Tables 6 and 7, respectively. Moreover, the MSE, RMSE, MAE, MAPE
should approach to zero and R2 should approach to 1 for accurate results.
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Table 6. Comparative analysis of ANFIS performance for various types of input MFs for constant MF
of output.

Type of Input MF No. of MF No of Epochs MSE RMSE MAE MAPE R2

Psigmf 5 250 1.4282 1.1951 0.8193 5.3922 0.9799
Bell-shape 5 250 0.6002 0.7747 0.5052 3.1644 0.9916

Gauss 5 250 0.4507 0.6713 0.4326 2.6397 0.9937
Gauss2mf 5 250 1.7482 1.3222 0.9025 5.8431 0.9754

Table 7. Comparative analysis of ANFIS performance for various types of input MFs for linear MF of
output.

Type of Input MF No of Epochs MSE RMSE MAE MAPE R2

Psigmf 250 0.0075 0.0866 0.0306 0.2319 0.9999
Bell-shape 250 0.1114 0.0247 0.0084 0.0675 1.0000

Gauss 250 0.0519 0.0168 0.0060 0.0379 1.0000
Gauss2mf 250 0.0392 0.1981 0.0653 0.4892 0.9994

Keeping accuracy as our priority, Gaussian input membership functions are selected
with linear output membership function because ANFIS here has ability to provide more
precise and accurate results. The R2 values in training and testing are close to one another.
Furthermore, if the MSE value touches approximately zero, and then it indicates that tuning
of the proposed model is excellent for all data sets, also the results are very close to each
other in between predicted and experimental values. The difference between network
output and the intended outputs is found to be very low which can be neglected. Such
results are of utmost satisfaction and quite acceptable on the basis of R2 and MSE values.
Figure 12 compares the values predicted by ANFIS with the (experimental) target values
while Figure 13 shows the error produced by ANFIS. There might be some fraction of noise
in 100th sample due to any sensors while collecting experimental data set. As the ANFIS is
trained for training data samples only, any noise can therefore contribute to error. It can
be one of the main reasons that error between the experimental results and the predicted
values starts to become more noticeable at this specific sample. Yet, the error variation is
not too high if we see the scale on Y-axis and it does not significantly affect the accuracy of
the results. The experimental findings for the prediction of solid circulation rate at high
pressure in CFBC through ANN and ANFIS model are mentioned in Table 8. The ANFIS
model predicts mass flow rate of solid better than artificial neural network as can be seen
in Table 9.
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Table 8. Random prediction of samples for testing ANN and ANFIS model.

Pressure SMD Total Valve Riser Dip
Mass Flow
Rate by Ex-
perimental

Mass Flow
Rate by
ANN

ANN Error
Mass Flow

Rate by
ANFIS

ANFIS
Error

1.013 5.5 × 10−3 160 379 12.2075 12.7592 −0.5517 12.2064 0.0011
1.013 5.5 × 10−3 280 102 12.4266 12.1434 0.2831 12.4262 0.0004
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Table 9. Comparison analysis of ANN and ANFIS.

Types of NN
Types of Error

MAE R2 MAPE MSE RMSE

ANN 0.7919 0.9806 4.4612 1.0677 1.0806
ANFIS 0.0060 1.0000 0.0379 0.0519 0.0168

4. Discussions

The CFBC technology is receiving wide attention of researchers for burning low-grade
coal, biomass and other organic waste. The sustainable energy which can be developed
by CFBC reactor is playing a vital role to meet the growing energy demand. This research
paper is mainly focused on estimating the solid circulation rate in CFB system. The ANN
and fuzzy logic based soft computing techniques are very helpful in adopting the nonlinear
behavior of the systems. Therefore, we have implemented ANN and ANFIS models for
accurate estimation of solid circulation rate. The experimental data is collected from a
laboratory scale prototype and simulations are done for 217 data samples, each consisting
of four input parameters and one output parameter. The ANN is trained for 50 neurons in
the hidden layer and results are obtained using Levenberg–Marquardt back propagation
algorithm, while ANFIS is designed by assigning 5 MFs to each input variable. The ANFIS
model is trained using least square method in forward pass and back propagation algorithm
in the backward pass. It is observed that ANFIS produced the best results with Gaussian
MFs for input variables and linear MFs for output variable. The results produced by ANFIS
are compared with the ANN while calculating the values of MSE, RMSE, MAE, MAPE
and R2. We have compared our findings with Table 1 in the introduction part. We found
that proposed ANFIS model gives more accurate results and value of MSE error is very
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low and regression analysis is approaching to 1. The local sensitivity analysis is performed
using one-at-a-time method to check that how much output variable is sensitive to any
change in the input variable. The results of the sensitivity analysis are summarized in
Table 10. It has been observed that output is most sensitive to any change in the total
value opening, then riser dp, pressure and SMD. Pyrolysis process usually takes place
at 700–1000 ◦C and to get high heat efficiency the temperature must be maintained at
800–1000 ◦C. In order to improve the efficiency of gasifier, a balance between flow of mass
and produced energy must be maintained to achieve the desired values of temperature and
pressure. The pressure, temperature, valve opening and height of the reactor bed are the
most important hydrodynamic parameters which ensure smooth flow of solid particles.
Therefore, accurate estimation of solid circulation rate on the basis of these input parameters
greatly affects the efficiency and performance of CFB gasifier. The CFB usually achieves
combustion efficiency of 95% which can be further improved by employing proposed ANN
and ANFIS algorithms.

Table 10. Sensitivity Analysis.

Input Parameter Sensitivity Ratio Importance Order

Total valve opening 4.2 1
Riser dp 2.14 2
Pressure 1.99 3

SMD 1.07 4

5. Conclusions

The ANFIS model has both numerical and linguistic variable knowledge while ANN
has only numerical variable knowledge. Moreover, ANFIS has ANN’s ability to classify the
data and identify the patterns. If we compare ANFIS with ANN model, ANFIS is more
suitable to user and causes less memorization error. In ANFIS model, neural network
algorithm is used to select a proper rule base which is accomplished by using the back
propagation algorithm. Selection of the appropriate membership function and the rule
base improves the accuracy of ANFIS model. From Table 8 it is clearly shown that MSE
and regression analysis of ANFIS is 0.0519 and 1.0000. Moreover, MSE and regression
analysis of ANN is 1.0677 and 0.9806. Ideally the value of MSE should be closer to zero
and regression approaches to 1 to get more accurate results. Therefore, ANFIS is selected
as more suitable and accurate method to estimate the solid circulation rate in CFB system.

Recurrent neural network (RNN), long short-term memory (LSTM) neural network
and convolutional neural network (CNN) are types of artificial neural network (ANN).
These types of neural networks involve deep learning. The learning capabilities of RNN
can be significantly improved when used with LSTM neural networks. All ANN models
can be used for numeric data and they differ only in performance. When we give an image
to CNN, it sees the image as 2D arrays of numbers that describe each pixel of the image. All
calculations are performed on these numbers. CNNs are highly noise-resistant models and
they are able to extract deep features. The 1D CNN is a hot research area these days, which
has been successfully implemented in applications involving numeric data classification
such biomedical data classification, early diagnosis, health monitoring and fault detection
in power electronics and electrical motors. In the future, RNN with LSTM and CNN can be
implemented to improve the results for estimation of solid circulation rate in CFBC. There
are some actuators, sensors and rotatory valves in circulating gasifiers that are manually
controlled by labor and their operation is greatly dependent on the expertise of the person.
This research paper is a case study which suggests some novel ideas to automatically
control the flow rate using soft computing techniques to reduce the labor cost and time
consumption by minimizing the human interference. Moreover, some other techniques
such as granular neural network and granular computing-based neuro-fuzzy modeling can
also be implemented to estimate the solid circulation rate.
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Appendix A

Membership functions were introduced by Zadeh in 1965. In ANFIS, membership
functions are used to represent truth degree in fuzzy logic. Truth degrees are related to
probabilities. Membership function value varies in between interval (0, 1). It represents
whether it is zero or partially zero otherwise it is 1 or partially 1. The degree of membership
function is the grade of membership of the element in the fuzzy set. If degree of membership
function is 0 then it means such parameter does not belongs to fuzzy set. If degree of
membership is 1 then such parameter is member in the fuzzy set. If degree of membership
varies from 0 and 1 then such parameter is partially present in the fuzzy set. There are
different types of membership function like triangular, sigmoidal, trapezoidal, Gaussian,
bell shaped and gauss2 membership function. All these membership function have different
shapes and mathematical formulas. In this paper all types of membership function are
applied to the data set and Gaussian membership function is selected because it gives more
accurate results for given data as compared to other membership functions.

Membership functions characterize fuzziness (i.e., all the information in fuzzy set),
whether the elements in fuzzy sets are discrete or continuous. Membership functions can
be defined as a technique to solve practical problems by experience rather than knowledge.
A Gaussian membership function is not similar to Gaussian probability distribution. Its
maximum value is always 1. The Gaussian membership function is calculated by Equation
(A1) which is given below.

f (x) = e
−(x−c)2

2σ2 (A1)

where, σ is the standard deviation and c is the mean value and Membership values are
computed for each input value in x.
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